1 Carpel Evolution
Aurélie C.M. Vialette-Guiraud
Laboratoire de Reproduction et Développement des Plantes (CNRS UMR 5667-INRA-ENSL-UCBL), Université de Lyon, Lyon Cedex, France
Search for more papers by this authorCharlie P. Scutt
Laboratoire de Reproduction et Développement des Plantes (CNRS UMR 5667-INRA-ENSL-UCBL), Université de Lyon, Lyon Cedex, France
Search for more papers by this authorAurélie C.M. Vialette-Guiraud
Laboratoire de Reproduction et Développement des Plantes (CNRS UMR 5667-INRA-ENSL-UCBL), Université de Lyon, Lyon Cedex, France
Search for more papers by this authorCharlie P. Scutt
Laboratoire de Reproduction et Développement des Plantes (CNRS UMR 5667-INRA-ENSL-UCBL), Université de Lyon, Lyon Cedex, France
Search for more papers by this authorAbstract
The carpel is the progenitor organ to the fruit and a defining feature of the flowering plants, or angiosperms. This organ has evolved in the angiosperms to generate a wide diversity of forms, often related to breeding strategies and seed distribution mechanisms. In this chapter, we focus on a number of key stages in the evolution of the carpel and fruit, about which something can be said of the molecular mechanisms underlying evolutionary change. In particular, we describe hypotheses for the evolutionary origin of the carpel in the first flowering plants and attempt to reconstruct the history of its structural diversification in various major angiosperm groups. In doing so, we concentrate on the genes and mechanisms whose presence can be deduced at key evolutionary stages in the angiosperms, and on molecular-evolutionary processes such as neo- and sub-functionalization, which have moulded these genes and the developmental processes they regulate. We also review the literature on the evolution of syncarpy – a phenomenon of enormous adaptive significance in the angiosperms. Lastly, we describe some examples of convergent evolution that have led to the development of fruit-like structures both within and outside the flowering plants.
References
- Agrawal, G., Abe, K., Yamazaki, M., Miyao, A. and Hirochika, H. (2005) Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADS1 gene. Plant Molecular Biology 59, 125–135.
- Aida, M., Ishida, T., Fukaki, H., Fujisawa, H. and Tasaka, M. (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9, 841–857.
- Albert, V.A., Soltis, D.E., Carlson, J.E., Farmerie, W.G., Wall, P.K., Ilut, D.C., Solow, T.M., Mueller, L.A., Landherr, L.L., Hu, Y., Buzgo, M., Kim, S., Yoo, M.J., Frohlich, M.W., Perl-Treves, R., Schlarbaum, S.E., Bliss, B.J., Zhang, X., Tanksley, S.D., Oppenheimer, D.G., Soltis, P.S., Ma, H., DePamphilis, C.W. and Leebens-Mack, J.H. (2005) Floral gene resources from basal angiosperms for comparative genomics research. BMC Plant Biology 5, 5.
- Alvarez, J. and Smyth, D.R. (1999) CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS. Development 126, 2377–2386.
- Angenent, G.C., Franken, J., Busscher, M., Vandijken, A., Vanwent, J.L., Dons, H.J.M. and Vantunen, A.J. (1995) A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell 7, 1569–1582.
- Aoki, S., Uehara, K., Imafuku, M., Hasebe, M. and Ito, M. (2004) Phylogeny and divergence of basal angiosperms inferred from APETALA3- and PISTILLATA-like MADS-box genes. Journal of Plant Research 117, 229–244.
-
Arber, E.A.N. and Parkin, J. (1907) On the origin of angiosperms. Botanical Journal of the Linnean Society
38, 29–80.
10.1111/j.1095-8339.1907.tb01074.x Google Scholar
- Armbruster, W.S., Debevec, E.M. and Willson, M.F. (2002) Evolution of syncarpy in angiosperms: theoretical and phylogenetic analyses of the effects of carpel fusion on offspring quantity and quality. Journal of Evolutionary Biology 15, 657–672.
- Barrett, P.M. and Willis, K.J. (2001) Did dinosaurs invent flowers? Dinosaur–angiosperm coevolution revisited. Biological Reviews 76, 411–447.
-
Baum, D.A. and Hileman, L.C. (2006) A developmental genetic model for the origin of the flower. In: Flowering and Its Manipulation (ed. C. Ainsworth). Blackwell, Oxford.
10.1002/9780470988602.ch1 Google Scholar
- Becker, A. and Theissen, G. (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Molecular Phylogenetics and Evolution 29, 464–489.
- Becker, A., Winter, K.U., Meyer, B., Saedler, H. and Theissen, G. (2000) MADS-box gene diversity in seed plants 300 million years ago. Molecular Biology and Evolution 17, 1425–1434.
- Bennett, M.D., Leitch, I.J., Price, H.J. and Johnston, J.S. (2003) Comparisons with Caenorhabditis (similar to 100 Mb) and Drosophila (similar to 175 Mb) using flow cytometry show genome size in Arabidopsis to be similar to 157 Mb and thus similar to 25% larger than the Arabidopsis genome initiative estimate of similar to 125 Mb. Annals of Botany 91, 547–557.
- Bernhardt, P., Sage, T., Weston, P., Azuma, H., Lam, M., Thien, L.B. and Bruhl, J. (2003) The pollination of Trimenia moorei (Trimeniaceae): floral volatiles, insect/wind pollen vectors and stigmatic self-incompatibility in a basal angiosperm. Annals of Botany 92, 445–458.
- Bowman, J.L. (2000) The YABBY gene family and abaxial cell fate. Current Opinion in Plant Biology 3, 17–22.
- Bowman, J.L. and Smyth, D.R. (1999) CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix–loop–helix domains. Development 126, 2387–2396.
- Bowman, J.L., Smyth, D.R. and Meyerowitz, E.M. (1991) Genetic interactions among floral homeotic genes of arabidopsis. Development 112, 1–20.
- Brenner, E.D., Katari, M.S., Stevenson, D.W., Rudd, S.A., Douglas, A.W., Moss, W.N., Twigg, R.W., Runko, S.J., Stellari, G.M., McCombie, W.R. and Coruzzi, G.M. (2005) EST analysis in Ginkgo biloba: an assessment of conserved developmental regulators and gymnosperm specific genes. BMC Genomics 6, 143.
- Brenner, E.D., Stevenson, D.W., McCombie, R.W., Katari, M.S., Rudd, S.A., Mayer, K.F.X., Palenchar, P.M., Runko, S.J., Twigg, R.W., Dai, G.W., Martienssen, R.A., Benfey, P.N. and Coruzzi, G.M. (2003) Expressed sequence tag analysis in Cycas, the most primitive living seed plant. Genome Biology 4, R78.
- Carlsbecker, A., Tandre, K., Johanson, U., Englund, M. and Engstrom, P. (2004) The MADS-box gene DAL1 is a potential mediator of the juvenile-to-adult transition in Norway spruce (Picea abies). Plant Journal 40, 546–557.
- Coen, E.S. and Meyerowitz, E.M. (1991) The war of the whorls – genetic interactions controlling flower development. Nature 353, 31–37.
- Colombo, L., Franken, J., Koetje, E., Vanwent, J., Dons, H.J.M., Angenent, G.C. and Vantunen, A.J. (1995) The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7, 1859–1868.
- Davies, B., Motte, P., Keck, E., Saedler, H., Sommer, H. and Schwarz-Sommer, Z. (1999) PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. Embo Journal 18, 4023–4034.
- Davies, T.J., Barraclough, T.G., Chase, M.W., Soltis, P.S., Soltis, D.E. and Savolainen, V. (2004) Darwin's abominable mystery: insights from a supertree of the angiosperms. Proceedings of the National Academy of Sciences of the United States of America 101, 1904–1909.
- De Bodt, S., Maere, S. and Van de Peer, Y. (2005) Genome duplication and the origin of angiosperms. Trends in Ecology and Evolution 20, 591–597.
- Donoghue, M.J. and Doyle, J.A. (2000) Seed plant phylogeny: demise of the anthophyte hypothesis?Current Biology 10, R106–R109.
- Dornelas, M.C. and Rodriguez, A.P.M. (2005) A FLORICAULA/LEAFY gene homolog is preferentially expressed in developing female cones of the tropical pine Pinus caribaea var. caribaea. Genetics and Molecular Biology 28, 299–307.
- Dreni, L., Jacchia, S., Fornara, F., Fornari, M., Ouwerkerk, P.B.F., An, G.H., Colombo, L. and Kater, M.M. (2007) The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice. Plant Journal 52, 690–699.
- Efremova, N., Schreiber, L., Bar, S., Heidmann, I., Huijser, P., Wellesen, K., Schwarz-Sommer, Z., Saedler, H. and Yephremov, A. (2004) Functional conservation and maintenance of expression pattern of FIDDLEHEAD-like genes in Arabidopsis and Antirrhinum. Plant Molecular Biology 56, 821–837.
- Endress, P.K. (1982) Syncarpy and alternative modes of escaping disadvantages of apocarpy in primitive angiosperms. Taxon 31, 48–52.
- Endress, P.K. (2001) The flowers in extant basal angiosperms and inferences on ancestral flowers. International Journal of Plant Sciences 162, 1111–1140.
- Endress, P.K. and Igersheim, A. (2000) Gynoecium structure and evolution in basal angiosperms. International Journal of Plant Sciences 161, S211–S223.
- Fahn, A. (1982) Plant Anatomy. Pergamon, Oxford.
- Feild, T.S., Arens, N.C. and Dawson, T.E. (2003) The ancestral ecology of angiosperms: emerging perspectives from extant basal lineages. International Journal of Plant Sciences 164, S129–S142.
- Feild, T.S., Arens, N.C., Doyle, J.A., Dawson, T.E. and Donoghue, M.J. (2004) Dark and disturbed: a new image of early angiosperm ecology. Paleobiology 30, 82–107.
- Ferrandiz, C., Liljegren, S.J. and Yanofsky, M.F. (2000) Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289, 436–438.
- Fourquin, C., Vinauger-Douard, M., Chambrier, P., Berne-Dedieu, A. and Scutt, C.P. (2007) Functional conservation between CRABS CLAW orthologues from widely diverged Angiosperms. Annals of Botany 100, 651–657.
- Fourquin, C., Vinauger-Douard, M., Fogliani, B., Dumas, C. and Scutt, C.P. (2005) Evidence that CRABS CLAW and TOUSLED have conserved their roles in carpel development since the ancestor of the extant angiosperms. Proceedings of the National Academy of Sciences of the United States of America 102, 4649–4654.
- Friedman, W.E. (1998) The evolution of double fertilization and endosperm: an ‘historical’ perspective. Sexual Plant Reproduction 11, 6–16.
- Friedman, W.E. (2006) Embryological evidence for developmental lability during early angiosperm evolution. Nature 441, 337–340.
- Friedman, W.E. (2008) Hydatellaceae are water lilies with gymnospermous tendencies. Nature 453, 94–97.
- Friis, E.M., Pedersen, K.R. and Crane, P.R. (2005) When Earth started blooming: insights from the fossil record. Current Opinion in Plant Biology 8, 5–12.
- Frohlich, M.W. (2003) An evolutionary scenario for the origin of flowers. Nature Reviews Genetics 4, 559–566.
- Frohlich, M.W. and Parker, D.S. (2000) The mostly male theory of flower evolutionary origins: from genes to fossils. Systematic Botany 25, 155–170.
- Gomez-Mena, C., de Folter, S., Costa, M.M.R., Angenent, G.C. and Sablowski, R. (2005) Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development 132, 429–438.
- Goremykin, V., Bobrova, V., Pahnke, J., Troitsky, A., Antonov, A. and Martin, W. (1996) Noncoding sequences from the slowly evolving chloroplast inverted repeat in addition to rbcL data do not support Gnetalean affinities of angiosperms. Molecular Biology and Evolution 13, 383–396.
- Goremykin, V.V., Hansmann, S. and Martin, W.F. (1997) Evolutionary analysis of 58 proteins encoded in six completely sequenced chloroplast genomes: revised molecular estimates of two seed plant divergence times. Plant Systematics and Evolution 206, 337–351.
- Grotkopp, E., Rejmanek, M., Sanderson, M.J. and Rost, T.L. (2004) Evolution of genome size in pines (Pinus) and its life-history correlates: supertree analyses. Evolution 58, 1705–1729.
- Gu, Q., Ferrandiz, C., Yanofsky, M.F. and Martienssen, R. (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125, 1509–1517.
- Honma, T. and Goto, K. (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409, 525–529.
- Jager, M., Hassanin, A., Manuel, M., Le Guyader, H. and Deutsch, J. (2003) MADS-box genes in Ginkgo biloba and the evolution of the AGAMOUS family. Molecular Biology and Evolution 20, 842–854.
- Kang, H.G., Jeon, J.S., Lee, S. and An, G.H. (1998) Identification of class B and class C floral organ identity genes from rice plants. Plant Molecular Biology 38, 1021–1029.
- Kapoor, M., Tsuda, S., Tanaka, Y., Mayama, T., Okuyama, Y., Tsuchimoto, S. and Takatsuji, H. (2002) Role of petunia pMADS3 in determination of floral organ and meristem identity, as revealed by its loss of function. Plant Journal 32, 115–127.
- Kato, M., Inoue, T. and Nagamitsu, T. (1995) Pollination biology of gnetum (Gnetaceae) in a lowland mixed dipterocarp forest in sarawak. American Journal of Botany 82, 862–868.
- Kim, S., Koh, J., Ma, H., Hu, Y., Endress, P.K., Hauser, B.A., Buzgo, M., Soltis, P.S. and Soltis, D.E. (2005) Sequence and expression studies of A-, B-, and E-class MADS-box homologues in Eupomatia (Eupomatiaceae): support for the bracteate origin of the calyptra. International Journal of Plant Sciences 166, 185–198.
- Kramer, E.M. and Hall, J.C. (2005) Evolutionary dynamics of genes controlling floral development. Current Opinion in Plant Biology 8, 13–18.
- Kramer, E.M., Jaramillo, M.A. and Di Stilio, V.S. (2004) Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics 166, 1011–1023.
- Kuzoff, R.K. and Gasser, C.S. (2000) Recent progress in reconstructing angiosperm phylogeny. Trends in Plant Science 5, 330–336.
- Lawrence, G.H. (1951) Taxonomy of Flowering Plants. Macmillan, New York.
- Leitch, I.J. and Hanson, L. (2002) DNA C-values in seven families fill phylogenetic gaps in the basal angiosperms. Botanical Journal of the Linnean Society 140, 175–179.
- Liljegren, S.J., Ditta, G.S., Eshed, H.Y., Savidge, B., Bowman, J.L. and Yanofsky, M.F. (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404, 766–770.
- Liljegren, S.J., Roeder, A.H.K., Kempin, S.A., Gremski, K., Ostergaard, L., Guimil, S., Reyes, D.K. and Yanofsky, M.F. (2004) Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell 116, 843–853.
- Litt, A. and Irish, V.F. (2003) Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165, 821–833.
- Liu, Z.C., Franks, R.G. and Klink, V.P. (2000) Regulation of gynoecium marginal tissue formation by LEUNIG and AINTEGUMENTA. Plant Cell 12, 1879–1891.
- Lolle, S.J. and Cheung, A.Y. (1993) Promiscuous germination and growth of wildtype pollen from Arabidopsis and related species on the shoot of the Arabidopsis Mutant, Fiddlehead. Developmental Biology 155, 250–258.
- Lolle, S.J., Cheung, A.Y. and Sussex, I.M. (1992) Fiddlehead – an Arabidopsis mutant constitutively expressing an organ fusion program that involves interactions between epidermal-cells. Developmental Biology 152, 383–392.
- Lolle, S.J. and Pruitt, R.E. (1999) Epidermal cell interactions: a case for local talk. Trends in Plant Science 4, 14–20.
- Moore, M.J., Bell, C.D., Soltis, P.S. and Soltis, D.E. (2007) Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proceedings of the National Academy of Sciences of the United States of America 104, 19363–19368.
- Mouradov, A., Glassick, T., Hamdorf, B., Murphy, L., Fowler, B., Maria, S. and Teasdale, R.D. (1998) NEEDLY, a Pinus radiata ortholog of FLORICAULA/LEAFY genes, expressed in both reproductive and vegetative meristems. Proceedings of the National Academy of Sciences of the United States of America 95, 6537–6542.
- Nesi, N., Debeaujon, I., Jond, C., Stewart, A.J., Jenkins, G.I., Caboche, M. and Lepiniec, L. (2002) The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. Plant Cell 14, 2463–2479.
- Nikovics, K., Blein, T., Peaucelle, A., Ishida, T., Morin, H., Aida, M. and Laufs, P. (2006) The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 18, 2929–2945.
- Ohri, D. and Khoshoo, T.N. (1986) Genome size in gymnosperms. Plant Systematics and Evolution 153, 119–132.
- Okada, K., Komaki, M.K. and Shimura, Y. (1989) Mutational analysis of pistil structure and development of Arabidopsis-Thaliana. Cell Differentiation and Development 28, 27–38.
-
Page, C.N. (1990) Coniferophytina. In: Pteridophytes and Gymnosperms (eds K.U. Kramer, and P.S. Green). Springer, Berlin.
10.1007/978-3-662-02604-5_48 Google Scholar
- Pavy, N., Johnson, J.J., Crow, J.A., Paule, C., Kunau, T., MacKay, J. and Retzel, E.F. (2007) ForestTreeDB: a database dedicated to the mining of tree transcriptomes. Nucleic Acids Research 35, D888–D894.
- Pavy, N., Paule, C., Parsons, L., Crow, J.A., Morency, M.J., Cooke, J., Johnson, J.E., Noumen, E., Guillet-Claude, C., Butterfield, Y., Barber, S., Yang, G., Liu, J., Stott, J., Kirkpatrick, R., Siddiqui, A., Holt, R., Marra, M., Seguin, A., Retzel, E., Bousquet, J. and MacKay, J. (2005) Generation, annotation, analysis and database integration of 16,500 white spruce EST clusters. BMC Genomics 6, 144.
- Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E. and Yanofsky, M.F. (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405, 200–203.
- Pinyopich, A., Ditta, G.S., Savidge, B., Liljegren, S.J., Baumann, E., Wisman, E. and Yanofsky, M.F. (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424, 85–88.
- Prakash, N. and Alexander, J.H. (1984) Self-incompatibility in Austrobaileya scandens . In: Pollination ‘84 (eds E.G. Williams and R.B. Knox). University of Melbourne, Melbourne.
- Pruitt, R.E., Vielle-Calzada, J.P., Ploense, S.E., Grossniklaus, U. and Lolle, S.J. (2000) FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme. Proceedings of the National Academy of Sciences of the United States of America 97, 1311–1316.
- Qiu, Y.L., Lee, J., Whitlock, B.A., Bernasconi-Quadroni, F. and Dombrovska, O. (2001) Was the ANITA rooting of the angiosperm phylogeny affected by long-branch attraction?Molecular Biology and Evolution 18, 1745–1753.
- Roe, J.L., Nemhauser, J.L. and Zambryski, P.C. (1997) TOUSLED participates in apical tissue formation during gynoecium development in Arabidopsis. Plant Cell 9, 335–353.
- Roeder, A.H.K., Ferrandiz, C. and Yanofsky, M.F. (2003) The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Current Biology 13, 1630–1635.
- Saarela, J.M., Rai, H.S., Doyle, J.A., Endress, P.K., Mathews, S., Marchant, A.D., Briggs, B.G. and Graham, S.W. (2007) Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree. Nature 446, 312–315.
- Savard, L., Li, P., Strauss, S.H., Chase, M.W., Michaud, M. and Bousquet, J. (1994) Chloroplast and nuclear gene-sequences indicate late Pennsylvanian time for the last common ancestor of extant seed plants. Proceedings of the National Academy of Sciences of the United States of America 91, 5163–5167.
- Scutt, C.P., Vinauger-Douard, M., Fourquin, C., Ailhas, J., Kuno, N., Uchida, K., Gaude, T., Furuya, M. and Dumas, C. (2003) The identification of candidate genes for a reverse genetic analysis of development and function in the Arabidopsis gynoecium. Plant Physiology 132, 653–665.
- Sessions, R.A. and Zambryski, P.C. (1995) Arabidopsis gynoecium structure in the wild-type and in effin mutants. Development 121, 1519–1532.
- Sieber, P., Wellmer, F., Gheyselinck, J., Riechmann, J.L. and Meyerowitz, E.M. (2007) Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness. Development 134, 1051–1060.
- Siegel, B.A. and Verbeke, J.A. (1989) Diffusible factors essential for epidermal-cell redifferentiation in catharanthus-roseus. Science 244, 580–582.
- Smyth, D.R., Bowman, J.L. and Meyerowitz, E.M. (1990) Early flower development in Arabidopsis. Plant Cell 2, 755–767.
- Soltis, D.E., Albert, V.A., Leebens-Mack, J., Palmer, J.D., Wing, R.A., Depamphilis, C.W., Ma, H., Carlson, J.E., Altman, N., Kim, S., Wall, P.K., Zuccolo, A. and Soltis, P.S. (2008) The Amborella genome: an evolutionary reference for plant biology. Genome Biology 9, 402.
- Stellari, G.M., Jaramillo, M.A. and Kramer, E.M. (2004) Evolution of the APETALA3 and PISTILLATA lineages of MADS-box-containing genes in the basal angiosperms. Molecular Biology and Evolution 21, 506–519.
- Tandre, K., Albert, V.A., Sundas, A. and Engstrom, P. (1995) Conifer homologs to genes that control floral development in angiosperms. Plant Molecular Biology 27, 69–78.
- Tandre, K., Svenson, M., Svensson, M.E. and Engstrom, P. (1998) Conservation of gene structure and activity in the regulation of reproductive organ development of conifers and angiosperms. Plant Journal 15, 615–623.
- Theissen, G., Becker, A., Winter, K.-U., Munster, T., Kirchner, C. and Saedler, H. (2002) How the land plants learned their floral ABCs: the role of MADS-box genes in the evolutionary origin of flowers. In: Developmental Genetics and Plant Evolution (eds Q.B.C. Cronk, R.M. Bateman and J.A. Hawkins). Taylor and Francis, London.
- Theissen, G. and Melzer, R. (2007) Molecular mechanisms underlying origin and diversification of the angiosperm flower. Annals of Botany 100, 603–619.
- Theissen, G. and Saedler, H. (2001) Plant biology – floral quartets. Nature 409, 469–471.
- Vandenbussche, M., Theissen, G., Van de Peer, Y. and Gerats, T. (2003) Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations. Nucleic Acids Research 31, 4401–4409.
- Vanderschoot, C., Dietrich, M.A., Storms, M., Verbeke, J.A. and Lucas, W.J. (1995) Establishment of a cell-to-cell communication pathway between separate carpels during gynoecium development. Planta 195, 450–455.
- Vazquez-Lobo, A., Carlsbecker, A., Vergara-Silva, F., Alvarez-Buylla, E.R., Pinero, D. and Engstrom, P. (2007) Characterization of the expression patterns of LEAFY/FLORICAULA and NEEDLY orthologs in female and male cones of the conifer genera Picea, Podocarpus, and Taxus: implications for current evo-devo hypotheses for gymnosperms. Evolution and Development 9, 446–459.
- Verbeke, J.A. (1992) Fusion events during floral morphogenesis. Annual Review of Plant Physiology and Plant Molecular Biology 43, 583–598.
- Villanneva, J.M., Broadhvest, J., Hauser, B.A., Meister, R.J., Schneitz, K. and Gasser, C.S. (1999) INNER NOOUTER regulates abaxial–adaxial patterning in Arabidopsis ovules. Genes and Development 13, 3160–3169.
-
von Goethe, J.W. (1790) Versuch die Metamorphose der Pflanzen zu erklären. C.W. Ettinger, Gotha, Germany.
10.5962/bhl.title.127448 Google Scholar
- Walker, D.B. (1978) Post-genital carpel fusion in catharanthus-roseus (Apocynaceae). 4. Significance of fusion. American Journal of Botany 65, 119–121.
- Williams, E.G., Sage, T.L. and Thien, L.B. (1993) Functional syncarpy by intercarpellary growth of pollen tubes in a primitive apocarpous angiosperm, illicium-floridanum (Illiciaceae). American Journal of Botany 80, 137–142.
- Williams, J.H. and Friedman, W.E. (2002) Identification of diploid endosperm in an early angiosperm lineage. Nature 415, 522–526.
- Williams, J.H. and Friedman, W.E. (2004) The four-celled female gametophyte of Illicium (Illiciaceae; Austrobaileyales): implications for understanding the origin and early evolution of monocots, eumagnoliids, and eudicots. American Journal of Botany 91, 332–351.
- Winter, K.U., Becker, A., Munster, T., Kim, J.T., Saedler, H. and Theissen, G. (1999) MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proceedings of the National Academy of Sciences of the United States of America 96, 7342–7347.
- Winter, K.U., Saedler, H. and Theissen, G. (2002) On the origin of class B floral homeotic genes: functional substitution and dominant inhibition in Arabidopsis by expression of an orthologue from the gymnosperm Gnetum. Plant Journal 31, 457–475.
- Yalovsky, S., Rodriguez-Concepcion, M., Bracha, K., Toledo-Ortiz, G. and Gruissem, W. (2000) Prenylation of the floral transcription factor APETALA1 modulates its function. Plant Cell 12, 1257–1266.
- Yamada, T., Ito, M. and Kato, M. (2003) Expression pattern of INNER NOOUTER homologue in Nymphaea (water lily family, Nymphaeaceae). Development Genes and Evolution 213, 510–513.
- Yamaguchi, T., Lee, D.Y., Miyao, A., Hirochika, H., An, G.H. and Hirano, H.Y. (2006) Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell 18, 15–28.
- Yamaguchi, T., Nagasawa, N., Kawasaki, S., Matsuoka, M., Nagato, Y. and Hirano, H.Y. (2004) The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16, 500–509.
- Zahn, L.M., Kong, H., Leebens-Mack, J.H., Kim, S., Soltis, P.S., Landherr, L.L., Soltis, D.E., de Pamphilis, C.W. and Ma, H. (2005) The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout Angiosperm history. Genetics 169, 2209–2223.
- Zanis, M.J., Soltis, D.E., Soltis, P.S., Mathews, S. and Donoghue, M.J. (2002) The root of the angiosperms revisited. Proceedings of the National Academy of Sciences of the United States of America 99, 6848–6853.
- Zhang, P.Y., Tan, H.T.W., Pwee, K.H. and Kumar, P.P. (2004) Conservation of class C function of floral organ development during 300 million years of evolution from gymnosperms to angiosperms. Plant Journal 37, 566–577.
Browse other articles of this reference work: