9 Control of Flowering Time
Annual Plant Reviews book series, Volume 29: Regulation of Transcription in Plants
Steven van Nocker,
Maria Julissa Ek-Ramos,
Steven van Nocker
Department of Horticulture, Michigan State University, 390 Plant and Soil Sciences Building, East Lansing, MI, 48824 USA
Search for more papers by this authorMaria Julissa Ek-Ramos
Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autönoma de Mexico, Ciudad Universitaria, 04510 México, DF, México
Search for more papers by this authorSteven van Nocker,
Maria Julissa Ek-Ramos,
Steven van Nocker
Department of Horticulture, Michigan State University, 390 Plant and Soil Sciences Building, East Lansing, MI, 48824 USA
Search for more papers by this authorMaria Julissa Ek-Ramos
Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autönoma de Mexico, Ciudad Universitaria, 04510 México, DF, México
Search for more papers by this authorFirst published: 19 April 2018
This article was originally published in 2006 in Regulation of Transcription in Plants, Volume 29 (ISBN 9781405145282) of the Annual Plant Reviews book series, this volume edited by KLaus D. Grasser. The article was republished in Annual Plant Reviews online in April 2018.
Abstract
The sections in this article are
- Introduction
- Regulation of FLC Expression through the ‘Autonomous Pathway’
- Chromatin-Related Pleiotropic Regulators of FLC
- Vernalization-Associated Repression of FLC
- Transcriptional Repression of Flowering by FLC
- Transcriptional Regulation in the Photoperiodic Induction of Flowering
- Activation of SOC1 by CO
- Chromatin-Related Mechanisms of Photoperiod Pathway Regulation
- Transcriptional Activation of AP1 by FT and FD
- Transcriptional Mechanisms in the Promotion of Flowering by GAs
- PcG-Mediated Repression of Floral Homeotic Genes
- Summary and Prospects
- Acknowledgments
References
- R. Aasland, T.J. Gibson and A.F. Stewart (1995) The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends in Biochemical Sciences 20 (2), 56–59.
- M. Abe, Y. Kobayashi, S. Yamamoto, et al. (2005) A bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309 (5737), 1052–1056.
- P. Achard, A. Herr, D.C. Baulcombe and N.P. Harberd (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131 (14), 3357–3365.
- R.M. Amasino (2003) Flowering time: a pathway that begins at the 3′ end. Current Biology 13 (17), R670–R672.
- H. An, C. Roussot, P. Suarez-Lopez, et al. (2004) CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis . Development 131 (15), 3615–3626.
- D. Aubert, L. Chen, Y.H. Moon, et al. (2001) EMF1, a novel protein involved in the control of shoot architecture and flowering in Arabidopsis . The Plant Cell 13 (8), 1865–1875.
- M.J. Aukerman and H. Sakai (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. The Plant Cell 15 (11), 2730–2741.
- I. Ausin, C. Alonso-Blanco, J.A. Jarillo, L. Ruiz-Garcia and J.M. Martinez-Zapater (2004) Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nature Genetics 36 (2), 162–166.
- N. Ayoub, K. Noma, S. Isaac, T. Kahan, S.I. Grewal and A. Cohen (2003) A novel jmjC domain protein modulates heterochromatization in fission yeast. Molecular and Cellular Biology 23 (12), 4356–4370.
- D. Balciunas and H. Ronne (2000) Evidence of domain swapping within the jumonji family of transcription factors. Trends in Biochemical Sciences 25 (6), 274–276.
- A.J. Bannister, P. Zegerman, J.F. Partridge, et al. (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410 (6824), 120–124.
- R. Bastow, J.S. Mylne, C. Lister, Z. Lippman, R.A. Martienssen and C. Dean (2004) Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427 (6970), 164–167.
- C. Beisel, A. Imhof, J. Greene, E. Kremmer and F. Sauer (2002) Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1. Nature 419 (6909), 857–862.
- A. Birve, A.K. Sengupta, D. Beuchle, et al. (2001) Su(z)12, a novel Drosophila Polycomb group gene that is conserved in vertebrates and plants. Development 128 (17), 3371–3379.
- M.A. Blazquez, J.H. Ahn and D. Weigel (2003) A thermosensory pathway controlling flowering time in Arabidopsis thaliana . Nature Genetics 33 (2), 168–171.
- M.A. Blázquez, R. Green, O. Nilsson, M.R. Sussman and D. Weigel (1998) Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. The Plant Cell 10 (5), 791–800.
- M.A. Blázquez and D. Weigel (2000) Integration of floral inductive signals in Arabidopsis . Nature 404 (6780), 889–892.
- K.L. Borden (1998) RING fingers and B-boxes: zinc-binding protein–protein interaction domains. Biochemistry and Cell Biology 76 (2–3), 351–358.
- R. Borner, G. Kampmann, J. Chandler, et al. (2000) A MADS domain gene involved in the transition to flowering in Arabidopsis . The Plant Journal 24 (5), 591–599.
- J.M. Casolari, C.R. Brown, D.A. Drubin, O.J. Rando and P.A. Silver (2005) Developmentally induced changes in transcriptional program alter spatial organization across chromosomes. Genes and Development 19 (10), 1188–1198.
- J.M. Casolari, C.R. Brown, S. Komili, J. West, H. Hieronymus and P.A. Silver (2004) Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117 (4), 427–439.
- Y. Chanvivattana, A. Bishopp, D. Schubert, et al. (2004) Interaction of Polycomb-group proteins controlling flowering in Arabidopsis . Development 131 (21), 5263–5276.
- L. Chen, J.C. Cheng, L. Castle and Z.R. Sung (1997) EMF genes regulate Arabidopsis inflorescence development. The Plant Cell 9 (11), 2011–2024.
- X.F. Cheng and Z.Y. Wang (2005) Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana . The Plant Journal 43 (5), 758–768.
- K. Choi, S. Kim, S.Y. Kim, et al. (2005) SUPPRESSOR OF FRIGIDA3 encodes a nuclear actin-related protein6 required for floral repression in Arabidopsis . The Plant Cell 17 (10), 2647–2660.
- P.M. Clissold and C.P. Ponting (2001) JmjC: cupin metalloenzyme-like domains in jumonji, hairless and phospholipase A2beta. Trends in Biochemical Sciences 26 (1), 7–9.
- B. Czermin, R. Melfi, D. McCabe, V. Seitz, A. Imhof and V. Pirrotta (2002) Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111 (2), 185–196.
- R.B. Deal, M.K. Kandasamy, E.C. McKinney and R.B. Meagher (2005) The nuclear actin-related protein ARP6 is a pleiotropic developmental regulator required for the maintenance of FLOWERING LOCUS C expression and repression of flowering in Arabidopsis . The Plant Cell 17 (10), 2633–2646.
- A. Dill and T.-P. Sun (2001) Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana . Genetics 159 (2), 777–785.
- S.C. Elgin (1996) Heterochromatin and gene regulation in Drosophila . Current Opinion in Genetics and Development 6 (2), 193–202.
- J.Y. Fan, F. Gordon, K. Luger, J.C. Hansen and D.J. Tremethick (2002) The essential histone variant H2A.Z regulates the equilibrium between different chromatin conformational states. Nature Structural Biology 9 (3), 172–176.
- S.D. Farris, E.D. Rubio, J.J. Moon, W.M. Gombert, B.H. Nelson and A. Krumm (2005) Transcription-induced chromatin remodeling at the c-myc gene involves the local exchange of histone H2A.Z. The Journal of Biological Chemistry 280 (26), 25298–25303.
- C. Ferrandiz, Q. Gu, R. Martienssen and M.F. Yanofsky (2000) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127 (4), 725–734.
- R. Foster, T. Izawa and N.H. Chua (1994) Plant bZIP proteins gather at ACGT elements. FASEB Journal 8 (2), 192–200.
- V. Gaudin, M. Libault, S. Pouteau, et al. (2001) Mutations in LIKE HETEROCHROMATIN PROTEIN 1 affect flowering time and plant architecture in Arabidopsis . Development 128 (23), 4847–4858.
- A.R. Gendall, Y.Y. Levy, A. Wilson and C. Dean (2001) The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis . Cell 107 (4), 525–535.
- Gill, G. (2004) SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes and Development 18 (17), 2046–2059.
- G.F.W. Gocal, C.C. Sheldon, F. Gubler, et al. (2001) GAMYB-like genes, flowering, and gibberellin signalling in Arabidopsis . Plant Physiology 127 (4), 1682–1693.
- C. Gomez-Mena, M. Pineiro, J.M. Franco-Zorrilla, J. Salinas, G. Coupland and J.M. Martinez-Zapater (2001) Early bolting in short days: an Arabidopsis mutation that causes early flowering and partially suppresses the floral phenotype of leafy. The Plant Cell 13 (5), 1011–1024.
- J. Goodrich, P. Puangsomlee, M. Martin, D. Long, E.M. Meyerowitz and G. Coupland (1997) Polycomb-group gene regulates homeotic gene expression in Arabidopsis . Nature 386 (6620), 44–51.
- O. Gozani, P. Karuman, D.R. Jones, et al. (2003) The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 114 (1), 99–111.
- M.G. Guenther, R.G. Jenner, B. Chevalier, et al. (2005) Global and Hox-specific roles for the MLL1 methyltransferase. Proceedings of the National Academy of Sciences 102 (24), 8603–8608.
- M. Hampsey and D. Reinberg (2003) Tails of intrigue: phosphorylation of RNA polymerase II mediates histone methylation. Cell 113 (4), 429–432.
- U. Hartmann, S. Hohmann, K. Nettesheim, E. Wisman, H. Saedler and P. Huijser (2000) Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis . The Plant Journal 21 (4), 351–360.
- R. Hayama and G. Coupland (2003) Shedding light on the circadian clock and the photoperiodic control of flowering. Current Opinion in Plant Biology 6 (1), 13–19.
- R. Hayama and G. Coupland (2004) The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiology 135 (2), 677–684.
- Y. He, M.R. Doyle and R.M. Amasino (2004) PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-annual habit in Arabidopsis . Genes and Development 18 (22), 2774–2784.
- Y. He, S.D. Michaels and R.M. Amasino (2003) Regulation of flowering time by histone acetylation in Arabidopsis . Science 302 (5651), 1751–1754.
- F.D. Hempel, D. Weigel, M.A. Mandel, et al. (1997) Floral determination and expression of floral regulatory genes in Arabidopsis . Development 124 (19), 3845–3853.
- I.R. Henderson, F. Liu, S. Drea, G.G. Simpson and C. Dean (2005) An allelic series reveals essential roles for FY in plant development in addition to flowering-time control. Development 132 (16), 3597–3607.
- K.W. Henry, A. Wyce, W.S. Lo, et al. (2003) Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes and Development 17 (21), 2648–2663.
- S.R. Hepworth, F. Valverde, D. Ravenscroft, A. Mouradov and G. Coupland (2002) Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. The EMBO Journal 21 (16), 4327–4337.
- R.S. Hilgarth, L.A. Murphy, H.S. Skaggs, D.C. Wilkerson, H. Xing and K.D. Sarge (2004) Regulation and function of SUMO modification. The Journal of Biological Chemistry 279 (52), 53899–53902.
- T. Huang, H. Bohlenius, S. Eriksson, F. Parcy and O. Nilsson (2005) The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309 (5741), 1694–1696.
- T. Imaizumi, T.F. Schultz, F.G. Harmon, L.A. Ho and S.A. Kay (2005) FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis . Science 309 (5732), 293–297.
- M. Jakoby, B. Weisshaar, W. Droge-Laser, et al. (2002) bZIP transcription factors in Arabidopsis . Trends in Plant Science 7 (3), 106–111.
- U. Johanson, J. West, C. Lister, S. Michaels, R. Amasino and C. Dean (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290 (5490), 344–347.
- J. Jung, T.G. Kim, G.E. Lyons, H.R. Kim and Y. Lee (2005) Jumonji regulates cardiomyocyte proliferation via interaction with retinoblastoma protein. The Journal of Biological Chemistry 280 (35), 30916–30923.
- M.H. Kagey, T.A. Melhuish and D. Wotton (2003) The polycomb protein Pc2 is a SUMO E3. Cell 113 (1), 127–137.
- A. Katz, M. Oliva, A. Mosquna, O. Hakim and N. Ohad (2004) FIE and CURLY LEAF polycomb proteins interact in the regulation of homeobox gene expression during sporophyte development. The Plant Journal 37 (5), 707–719.
- C.S. Ketel, E.F. Andersen, M.L. Vargas, J. Suh, S. Strome and J.A. Simon (2005) Subunit contributions to histone methyltransferase activities of fly and worm polycomb group complexes. Molecular and Cellular Biology 25 (16), 6857–6868.
- S.Y. Kim, Y. He, Y. Jacob, Y.S. Noh, S. Michaels and R. Amasino (2005) Establishment of the vernalization-responsive winter-annual habit in Arabidopsis requires a putative histone H3 methyl transferase. The Plant Cell 17, 3301–3310.
- T.G. Kim, J.C. Kraus, J. Chen and Y. Lee (2003) JUMONJI, a critical factor for cardiac development, functions as a transcriptional repressor. The Journal of Biological Chemistry 278 (43), 42247–42255.
- T. Kinoshita, J.J. Harada, R.B. Goldberg and R.L. Fischer (2001) Polycomb repression of flowering during early plant development. Proceedings of the National Academy of Sciences 98 (24), 14156–14161.
- T. Klymenko and J. Muller (2004) The histone methyltransferases Trithorax and Ash1 prevent transcriptional silencing by Polycomb group proteins. EMBO Reports 5 (4), 373–377.
- Y. Kobayashi, H. Kaya, K. Goto, M. Iwabuchi and T. Araki (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286 (5446), 1960–1962.
- M.S. Kobor, S. Venkatasubrahmanyam, M.D. Meneghini, et al. (2004) A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biology 2 (5), E131.
- T. Kotake, S. Takada, K. Nakahigashi, M. Ohto and K. Goto (2003) Arabidopsis TERMINAL FLOWER 2 gene encodes a heterochromatin protein 1 homolog and represses both FLOWERING LOCUS T to regulate flowering time and several floral homeotic genes. Plant and Cell Physiology 44 (6), 555–564.
- A. Kouskouti and I. Talianidis (2005) Histone modifications defining active genes persist after transcriptional and mitotic inactivation. The EMBO Journal 24 (2), 347–357.
- N.J. Krogan, M.C. Keogh, N. Datta, et al. (2003) A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1. Molecular Cell 12 (6), 1565–1576.
- N.J. Krogan, M. Kim, S.H. Ahn, et al. (2002) RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach. Molecular and Cellular Biology 22 (20), 6979–6992.
- A. Kuzmichev, K. Nishioka, H. Erdjument-Bromage, P. Tempst and D. Reinberg (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes and Development 16 (22), 2893–2905.
- N. Lauter, A. Kampani, S. Carlson, M. Goebel and S.P. Moose (2005) microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proceedings of the National Academy of Sciences 102 (26), 9412–9417.
- S. Ledger, C. Strayer, F. Ashton, S.A. Kay and J. Putterill (2001) Analysis of the function of two circadian-regulated CONSTANS-LIKE genes. The Plant Journal 26 (1), 15–22.
- I. Lee, M.J. Aukerman, S.L. Gore, et al. (1994) Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis . The Plant Cell 6 (1), 75–83.
- I. Lee, A. Bleecker and R.M. Amasino (1993) Analysis of naturally occurring late flowering in Arabidopsis thaliana . Molecular and General Genetics 237 (1–2), 171–176.
- Y. Lee, A.J. Song, R. Baker, B. Micales, S.J. Conway and G.E. Lyons (2000a) Jumonji, a nuclear protein that is necessary for normal heart development. Circulation Research 86 (9), 932–938.
- H. Lee, S.S. Suh, E. Park, et al. (2000b) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis . Genes and Development 14 (18), 2366–2376.
- Y.Y. Levy, S. Mesnage, J.S. Mylne, A.R. Gendall and C. Dean (2002) Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297 (5579), 243–246.
- M.H. Lim, J. Kim, Y.S. Kim, et al. (2004) A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. The Plant Cell 16 (3), 731–740.
- R. Macknight, I. Bancroft, T. Page, et al. (1997) FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89 (5), 737–745.
- J. Marx (2004) Plant biology. Remembrance of winter past. Science 303 (5664), 1607.
- S.D. Michaels and R.M. Amasino (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. The Plant Cell 11 (5), 949–956.
- S.D. Michaels and R.M. Amasino (2001) Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. The Plant Cell 13 (4), 935–941.
- S.D. Michaels, I.C. Bezerra and R.M. Amasino (2004) FRIGIDA-related genes are required for the winter-annual habit in Arabidopsis . Proceedings of the National Academy of Sciences 101 (9), 3281–3285.
- S.D. Michaels, E. Himelblau, S.Y. Kim, F.M. Schomburg and R.M. Amasino (2005) Integration of flowering signals in winter-annual Arabidopsis . Plant Physiology 137 (1), 149–156.
- T. Misteli (2005) Concepts in nuclear architecture. Bioessays 27 (5), 477–487. (review)
- Y. Mito, J.G. Henikoff and S. Henikoff (2005) Genome-scale profiling of histone H3.3 replacement patterns. Nature Genetics 37 (10), 1090–1097.
- G. Mizuguchi, X. Shen, J. Landry, W.H. Wu, S. Sen and C. Wu (2004) ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303 (5656), 343–348.
- T.C. Mockler, X. Yu, D. Shalitin, et al. (2004) Regulation of flowering time in Arabidopsis by K homology domain proteins. Proceedings of the National Academy of Sciences 101 (34), 12759–12764.
- J. Moon, H. Lee, M. Kim and I. Lee (2005) Analysis of flowering pathway integrators in Arabidopsis . Plant and Cell Physiology 46 (2), 292–299.
- J. Moon, S.S. Suh, H. Lee, et al. (2003a) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis . The Plant Journal 35 (5), 613–623. (erratum in The Plant Journal 37 (3), 459).
- Y.H. Moon, L. Chen, R.L. Pan, et al. (2003b) EMF genes maintain vegetative development by repressing the flower program in Arabidopsis . The Plant Cell 15 (3), 681–693. (erratum in The Plant Cell 15 (5), 1257).
- J. Motoyama, K. Kitajima, M. Kojima, S. Kondo and T. Takeuchi (1997) Organogenesis of the liver, thymus and spleen is affected in jumonji mutant mice. Mechanisms of Development 66 (1–2), 27–37.
- C.L. Mueller and J.A. Jaehning (2002) Ctr9, Rtf1, and Leo1 are components of the Paf1/RNA polymerase II complex. Molecular and Cellular Biology 22 (7), 1971–1980.
- J. Muller, C.M. Hart, N.J. Francis, et al. (2002) Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111 (2), 197–208.
- G. Murtas, P.H. Reeves, Y.F. Fu, I. Bancroft, C. Dean and G. Coupland (2003) A nuclear protease required for flowering-time regulation in Arabidopsis reduces the abundance of SMALL UBIQUITIN-RELATED MODIFIER conjugates. The Plant Cell 15 (10), 2308–2319.
- C. Mussig and T. Altmann (2003) Changes in gene expression in response to altered SHL transcript levels. Plant Molecular Biology 53 (6), 805–820.
- C. Mussig, A. Kauschmann, S.D. Clouse and T. Altmann (2000) The Arabidopsis PHD-finger protein SHL is required for proper development and fertility. Molecular and General Genetics 264 (4), 363–370.
- K. Nakahigashi, Z. Jasencakova, I. Schubert and K. Goto (2005) The Arabidopsis HETEROCHROMATIN PROTEIN1 homolog (TERMINAL FLOWER2) silences genes within euchromatic region but not genes positioned in heterochromatin. Plant and Cell Physiology 46, 1747–1756.
- J. Nakayama, J.C. Rice, B.D. Strahl, C.D. Allis and S.I. Grewal (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292 (5514), 110–113.
- M. Nekrasov, B. Wild and J. Muller (2005) Nucleosome binding and histone methyltransferase activity of Drosophila PRC2. EMBO Reports 6 (4), 348–353.
- H.H. Ng, S. Dole and K. Struhl (2003a). The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B. The Journal of Biological Chemistry 278 (36), 33625–33628.
- H.H. Ng, F. Robert, R.A. Young and K. Struhl (2003b). Targeted recruitment of Set1 histone methylase by elongating PolII provides a localized mark and memory of recent transcriptional activity. Molecular Cell 11 (3), 709–719.
- S.J. Nielsen, R. Schneider, U.M. Bauer, et al. (2001) Rb targets histone H3 methylation and HP1 to promoters. Nature 412 (6846), 561–565.
- B. Noh, S.H. Lee, H.J. Kim, et al. (2004) Divergent roles of a pair of homologous jumonji/zinc-finger-class transcription factor proteins in the regulation of Arabidopsis flowering time. The Plant Cell 16 (10), 2601–2613.
- Y.S. Noh and R.M. Amasino (2003) PIE1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis . The Plant Cell 15 (7), 1671–1682.
- S. Oh, H. Zhang, P. Ludwig and S. van Nocker (2004) A mechanism related to the yeast transcriptional regulator Paf1c is required for expression of the Arabidopsis FLC/MAF MADS box gene family. The Plant Cell 16 (11), 2940–2953.
- H. Onouchi, M.I. Igeno, C. Perilleux, K. Graves and G. Coupland (2000) Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. The Plant Cell 12 (6), 885–900.
- R. Pandey, A. Muller, C.A. Napoli, et al. (2002) Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Research 30 (23), 5036–5055.
- V.G. Panse, B. Kuster, T. Gerstberger and E. Hurt (2003) Unconventional tethering of Ulp1 to the transport channel of the nuclear pore complex by karyopherins. Nature Cell Biology 5 (1), 21–27.
- M. Piñeiro, C. Gomez-Mena, R. Schaffer, J.M. Martinez-Zapater and G. Coupland (2003) EARLY BOLTING IN SHORT DAYS is related to chromatin remodeling factors and regulates flowering in Arabidopsis by repressing FT. The Plant Cell 15 (7), 1552–1562.
- A.V. Probst, M. Fagard, F. Proux, et al. (2004) Arabidopsis histone deacetylase HDA6 is required for maintenance of transcriptional gene silencing and determines nuclear organization of rDNA repeats. The Plant Cell 16 (4), 1021–1034.
- J. Putterill, F. Robson, K. Lee, R. Simon and G. Coupland (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80 (6), 847–857.
- V. Quesada, C. Dean and G.G. Simpson (2005) Regulated RNA processing in the control of Arabidopsis flowering. The International Journal of Developmental Biology 49 (5–6), 773–780.
- V. Quesada, R. Macknight, C. Dean and G.G. Simpson (2003) Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. The EMBO Journal 22 (12), 3142–3152.
- O.J. Ratcliffe, R.W. Kumimoto, B.J. Wong and J.L. Riechmann (2003) Analysis of the Arabidopsis MADS AFFECTING FLOWERING gene family: MAF2 prevents vernalization by short periods of cold. The Plant Cell 15 (5), 1159–1169.
- O.J. Ratcliffe, G.C. Nadzan, T.L. Reuber and J.L. Riechmann (2001) Regulation of flowering in Arabidopsis by an FLC homologue. Plant Physiology 126 (1), 122–132.
- S. Rea, F. Eisenhaber, D. O'Carroll, et al. (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406 (6796), 593–599.
- L. Ringrose and R. Paro (2004) Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annual Review of Genetics 38, 413–443.
- S. Ross, J.L. Best, L.I. Zon and G. Gill (2002) SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Molecular Cell 10 (4), 831–842.
- P.A. Salome and C.R. McClung (2004) The Arabidopsis thaliana clock. Journal of Biological Rhythms 19 (5), 425–435.
- A. Samach, H. Onouchi, S.E. Gold, et al. (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis . Science 288 (5471), 1613–1616.
- H. Santos-Rosa, R. Schneider, A.J. Bannister, et al. (2002) Active genes are tri-methylated at K4 or histone H3. Nature 419 (6905), 407–411.
- H. Santos-Rosa, R. Schneider, B.E. Bernstein, et al. (2003) Methylation of histone H3 K4 mediates association of the Isw1p ATPase with chromatin. Molecular Cell 12 (5), 1325–1332.
- M. Schmid, N.H. Uhlenhaut, F. Godard, et al. (2003) Dissection of floral induction pathways using global expression analysis. Development 130 (24), 6001–6012.
- F.M. Schomburg, D.A. Patton, D.W. Meinke and R.M. Amasino (2001) FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. The Plant Cell 13 (6), 1427–1436.
- K. Scortecci, S.D. Michaels and R.M. Amasino (2003) Genetic interactions between FLM and other flowering-time genes in Arabidopsis thaliana . Plant Molecular Biology 52 (5), 915–922.
- K.C. Scortecci, S.D. Michaels and R.M. Amasino (2001) Identification of a MADS-box gene, FLOWERING LOCUS M, that represses flowering. The Plant Journal 26 (2), 229–236.
- I. Searle and G. Coupland (2004) Induction of flowering by seasonal changes in photoperiod. The EMBO Journal 23 (6), 1217–1222.
- C.C. Sheldon, J.E. Burn, P.P. Perez, et al. (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. The Plant Cell 11 (3), 445–458.
- C.C. Sheldon, A.B. Conn, E.S. Dennis and W.J. Peacock (2002) Different regulatory regions are required for the vernalization-induced repression of FLOWERING LOCUS C and for the epigenetic maintenance of repression. The Plant Cell 14 (10), 2527–2537.
- Y. Shi, F. Lan, C. Matson, et al. (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119 (7), 941–953.
- Y.J. Shi, J.-I. Sawada, G.C. Sui, et al. (2003) Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422 (6933), 735–738.
- Y. Shiio and R.N. Eisenman (2003) Histone sumoylation is associated with transcriptional repression. Proceedings of the National Academy of Sciences 100 (23), 13225–13230.
- R. Simic, D.L. Lindstrom, H.G. Tran, et al. (2003) Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. The EMBO Journal 22 (8), 1846–1856.
- R. Simon, M.I. Igeno and G. Coupland (1996) Activation of floral meristem identity genes in Arabidopsis . Nature 384 (6604), 59–62.
- G.G. Simpson, P.P. Dijkwel, V. Quesada, I. Henderson and C. Dean (2003) FY is an RNA 3′ end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113 (6), 777–787.
- G.G. Simpson, V. Quesada, I.R. Henderson, P.P. Dijkwel, R. Macknight and C. Dean (2004) RNA processing and Arabidopsis flowering time control. Biochemical Society Transactions 32 (Pt 4), 565–566.
- W.J. Soppe, L. Bentsink and M. Koornneef (1999) The early-flowering mutant efs is involved in the autonomous promotion pathway of Arabidopsis thaliana . Development 126 (21), 4763–4770.
- C. Strayer, T. Oyama, T.F. Schultz, et al. (2000) Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289 (5480), 768–771.
- P. Suarez-Lopez, K. Wheatley, F. Robson, H. Onouchi, F. Valverde and G. Coupland (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis . Nature 410 (6832), 1116–1120.
- T.P. Sun and F. Gubler (2004) Molecular mechanism of gibberellin signaling in plants. Annual Review of Plant Biology 55, 197–222.
- S. Sung and R.M. Amasino (2004) Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427 (6970), 159–164.
- Z.R. Sung, A. Belachew, S. Bai and R. Bertrand-Garcia (1992) EMF, an Arabidopsis gene required for vegetative shoot development. Science 258 (5088), 1645–1647.
- S. Takada and K. Goto (2003) Terminal flower2, an Arabidopsis homolog of heterochromatin protein1, counteracts the activation of flowering locus T by constans in the vascular tissues of leaves to regulate flowering time. The Plant Cell 15 (12), 2856–2865.
- Y. Takahashi, J. Mizoi, A. Toh-E and Y. Kikuchi (2000) Yeast Ulp1, an Smt3-specific protease, associates with nucleoporins. Journal of Biochemistry 128 (5), 723–725.
- T. Takeuchi, Y. Yamazaki, Y. Katoh-Fukui, et al. (1995) Gene trap capture of a novel mouse gene, jumonji, required for neural tube formation. Genes and Development 9 (10), 1211–1222.
- P. Teper-Bamnolker and A. Samach (2005) The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves. The Plant Cell 17 (10), 2661–2675.
- L. Tian and Z.J. Chen (2001) Blocking histone deacetylation in Arabidopsis induces pleiotropic effects on plant gene regulation and development. Proceedings of the National Academy of Sciences 98 (1), 200–205.
- L. Tian, J. Wang, M.P. Fong, et al. (2003) Genetic control of developmental changes induced by disruption of Arabidopsis histone deacetylase 1 (AtHD1) expression. Genetics 165 (1), 399–409.
- F. Tie, T. Furuyama, J. Prasad-Sinha, E. Jane and P.J. Harte (2001) The Drosophila Polycomb group proteins ESC and E(Z) are present in a complex containing the histone-binding protein p55 and the histone deacetylase RPD3. Development 128 (2), 275–286.
- J.K. Tong, C.A. Ha, G.R. Schnitzler, R.E. Kingston and S.L. Schreiber (1998) Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 395 (6705), 917–921.
- S.C. Trewick, P.J. McLaughlin and R.C. Allshire (2005) Methylation: lost in hydroxylation? EMBO Reports 6 (4), 315–320.
- W. van Leeuwen, L. Okresz, L. Bogre and T. Munnik (2004) Learning the lipid language of plant signaling. Trends in Plant Science 9 (8), 378–384.
- S. van Nocker (2003) CAF-1 and MSI1-related proteins: linking nucleosome assembly with epigenetics. Trends in Plant Science 8 (10), 471–473.
- A. Verger, J. Perdomo and M. Crossley (2003) Modification with SUMO. A role in transcriptional regulation. EMBO Reports 4 (2), 137–142.
- P.A. Wigge, M.C. Kim, K.E. Jaeger, et al. (2005) Integration of spatial and temporal information during floral induction in Arabidopsis . Science 309 (5737), 1056–1059.
- R.N. Wilson, J.W. Heckman and C.R. Sommerville (1992) Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiology 100 (1), 403–408.
- A. Wood, J. Schneider, J. Dover, M. Johnston and A. Shilatifard (2003) The Paf1 complex is essential for histone monoubiquitination by the Rad6–Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. The Journal of Biological Chemistry 278 (37), 34739–34742.
- K. Wu, K. Malik, L. Tian, D. Brown and B. Miki (2000) Functional analysis of a RPD3 histone deacetylase homologue in Arabidopsis thaliana . Plant Molecular Biology 44 (2), 167–176.
- A. Yamaguchi, Y. Kobayashi, K. Goto, M. Abe and T. Araki (2005) TWIN SISTER OF FR (TSF), a new member of floral pathway integrators (Abstract 305). In: The 16th International Conference on Arabidopsis Research, Madison, WI.
- K. Yamamoto, M. Sonoda, J. Inokuchi, S. Shirasawa and T. Sasazuki (2004) Polycomb group suppressor of zeste 12 links heterochromatin protein 1alpha and enhancer of zeste 2. The Journal of Biological Chemistry 279 (1), 401–406.
- C.-H. Yang, L.J. Chen and Z.R. Sung (1995) Genetic regulation of shoot development in Arabidopsis: role of the EMF genes. Developmental Biology 169 (2), 421–435.
- N. Yoshida, Y. Yanai, L. Chen, et al. (2001) EMBRYONIC FLOWER2, a novel polycomb group protein homolog, mediates shoot development and flowering in Arabidopsis . The Plant Cell 13 (11), 2471–2481.
- A. You, J.K. Tong, C.M. Grozinger and S.L. Schreiber (2001) CoREST is an integral component of the CoREST-human histone deacetylase complex. Proceedings of the National Academy of Sciences 98 (4), 1454–1458.
- H. Yu, T. Ito, Y. Zhao, J. Peng, P. Kumar and E.M. Meyerowitz (2004) Floral homeotic genes are targets of gibberellin signaling in flower development. Proceedings of the National Academy of Sciences 101 (20), 7827–7832.
- Y. Zhang, R. Iratni, H. Erdjument-Bromage, P. Tempst and D. Reinberg (1997) Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 89 (3), 357–364.
- Y. Zhang, G. LeRoy, H.P. Seelig, W.S. Lane and D. Reinberg (1998) The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 95 (2), 279–289.
- H. Zhang, C. Ransom, P. Ludwig and S. van Nocker (2003) Genetic analysis of early flowering mutants in Arabidopsis defines a class of pleiotropic developmental regulator required for expression of the flowering-time switch flowering locus C. Genetics 164 (1), 347–358.
- H. Zhang and S. van Nocker (2002) The VERNALIZATION INDEPENDENCE 4 gene encodes a novel regulator of FLOWERING LOCUS C. The Plant Journal 31 (5), 663–673.
Browse other articles of this reference work: