10 Clock Evolution and Adaptation: Whence and Whither?
Annual Plant Reviews book series, Volume 21: Endogenous Plant Rhythms
Carl Hirschie Johnson,
Charalambos P. Kyriacou,
Carl Hirschie Johnson
Department of Biological Sciences, Vanderbilt University, Box 1634 Station B, Nashville, TN, 37235 USA
Search for more papers by this authorCharalambos P. Kyriacou
Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, U.K.
Search for more papers by this authorCarl Hirschie Johnson,
Charalambos P. Kyriacou,
Carl Hirschie Johnson
Department of Biological Sciences, Vanderbilt University, Box 1634 Station B, Nashville, TN, 37235 USA
Search for more papers by this authorCharalambos P. Kyriacou
Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, U.K.
Search for more papers by this authorFirst published: 19 April 2018
This article was originally published in 2005 in Endogenous Plant Rhythms, Volume 21 (ISBN 9781405123761) of the Annual Plant Reviews book series, this volume edited by Anthony J W Hall and Harriet McWatterss. The article was republished in Annual Plant Reviews online in April 2018.
Abstract
The sections in this article are
- Introductory Quotation
- Setting the Stage: The Appearance of Circadian Clocks
- Putative Selective Pressures
- Cyanobacteria and the First Clock Genes
- The Appearance of Clocks in Photosynthetic Eukaryotes
- Clocks are Widespread in Plants: Mosses, Gymnosperms and Angiosperms
- Rhythms Controlled by the ‘Clockwork Green’
- Why not an Hourglass Timer?
- The Clock as an Adaptation: Past and Present
- The Circadian Clock as an Adaptation
- Experimental Tests of Adaptive Significance before 1980
- Laboratory Studies of Circadian Clocks and Reproductive Fitness since 1980
- Evidence that the Clock is Still Adaptive from Studies of Organisms in Natural Environments
- Clocks: Where did they come from? What are they Doing Now?
- Acknowledgements
References
- Aschoff, J., von Saint Paul, U. & Wever, R. (1971) Die Lebensdauer von Fliegen unter dem Einfluss von Zeit-Verschiebungen. Naturwissenschaften, 58, 574.
- Balzer, I. & Hardeland, R. (1991) Photoperiodism and effects of indoleamines in a unicellular alga, Gonyaulax polyedra . Science, 253, 795–797.
- Beaver, L.M., Gvakharia, B.O., Vollintine, T.S., Hege, D.M., Stanewsky, R. & Giebultowicz, J.M. (2002) Loss of circadian clock function decreases reproductive fitness in males of Drosophila melanogaster . Proc. Natl. Acad. Sci. USA, 99, 2134–2139.
- Beaver, L.M., Rush, B.L., Gvakharia, B.O. & Giebultowicz, J.M. (2003) Noncircadian regulation and function of clock genes period and timeless in oogenesis of Drosophila melanogaster. J. Biol. Rhythm., 18, 463–472.
- Brosche P., Seiler U., Sundermann J. & Wunsch J. (1989) Periodic changes in earths rotation due to oceanic tides. Astron. Astrophys. 220: 318–320.
- Bünning, E. (1936) Die Endogene Tagesrhythmik als Grundlage der Photoperiodischen Reaktion. Ber. Detsch. Bot. Ges., 54, 590–607.
- Byrne, T.E., Wells, M.R. & Johnson, C.H. (1992) Circadian rhythms of chemotaxis to ammonium and of methylammonium uptake in Chlamydomonas . Plant Physiol., 98, 879–886.
- Chan, R.C., Chan, A., Jeon, M., Wu, T.F., Pasqualone, D., Rougvie, A.E. & Meyer, B.J. (2003) Chromosome cohesion is regulated by a clock gene paralogue TIM-1. Nature, 423, 1002–9.
- Christensen, S. & Silverthorne, J. (2001) Origins of phytochrome-modulated Lhcb mRNA expression in seed plants. Plant Physiol., 126, 1609–1618.
- Costa, R., Peixoto, A.A., Barbujani, G. & Kyriacou, C.P. (1992) A latitudinal cline in a Drosophila clock gene. Proc. Roy. Soc. Lond. B, 250, 43–49.
- Daniel, X., Sugano, S. & Tobin, E.M. (2004) CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis. Proc. Natl. Acad. Sci. USA, 101, 3292–3297.
-
Darwin, C. (1880) The Power of Movement in Plants, John Murray, London.
10.5962/bhl.title.102319 Google Scholar
- DasSarma, S., Kennedy, S.P., Berquist, B., Ng, W.V., Baliga, N.S., Spudich, J.L., Krebs, M.P., Eisen, J.A., Johnson, C.H. & Hood, L. (2001) Genomic perspective on the photobiology of Halobacterium species NRC-1, a phototrophic, phototactic, and UV-tolerant haloarchaeon. Photosynthesis Res., 70, 3–17.
- de Mairan, J.J. (1729) Observation botanique. Histoire de l'Academie Royale de Sciences (Paris) , p. 35 (see Sleep, 2, 155–160, 1979, for a translation in English).
- Ditty, J.L., Williams, S.B. & Golden, S.S. (2003) A cyanobacterial circadian timing mechanism. Annu. Rev. Genet., 37, 513–43.
- Dodd, A.N., Salathia, N., Hall, A., Kérei, E., Tóth, R., Nagy, F., Hibberd, J.M., Millar, A.J. & Webb, A.A.R. (2005) Plant Circadian Clocks Increase Photosynthesis, Growth, Survival, and Competitive Advantage. Science, 309, 630–633.
- Dvornyk, V., Vinogradova, O. & Nevo, E. (2003) Origin and evolution of circadian clock genes in prokaryotes. Proc. Natl. Acad. Sci., 100, 2495–2500.
- Edmunds, L.N. (1988) Cellular and Molecular Bases of Biological Clocks, Springer-Verlag, New York.
- Enright, J.T. (1982) Sleep movements of leaves: in defense of Darwin's interpretation. Oecologia (Berl), 54, 253–259.
- Folk, G.E. Jr. (1964) Daily physiological rhythms of Arctic carbivores exposed to extreme changes in Arctic daylight. Fed. Proc., 23, 1221–1228.
- Futuyma, D.J. (1998) Evolutionary Biology , Third Edition, Sinauer, Sunderland, MA.
- Garner, W.W. & Allard, H.A. (1920) Effect of the relative length of day and night and other factors of the environment of growth and reproduction in plants. J. Agric. Res., 18, 553–606.
- Gehring, W. & Rosbash, M. (2003) The coevolution of blue-light photoreception and circadian rhythms. J. Mol. Evol., 57, Suppl 1, S286–9.
- Golden, S.S. & Canales, S.R. (2003) Cyanobacterial circadian clocks–timing is everything. Nat. Rev. Microbiol., 1, 191–9.
- Goto, K. & Johnson, C.H. (1995) Is the cell division cycle gated by a circadian clock? The case of Chlamydomonas reinhardtii . J. Cell. Biol., 129, 1061–1069.
- Green, R.M., Tingay, S., Wang, Z.Y. & Tobin, E.M. (2002) Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol., 129, 576–584.
- Hamner, K.C. & Takimoto, A. (1964) Circadian rhythms and plant photoperiodism. Amer. Nat., 98, 295–322.
- Harmer, S.L., Hogenesch, J.B., Straume, M., Chang, H. S., Han, B., Zhu, T., Wang, X., Kreps, J.A. & Kay, S.A. (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science, 290, 2110–2113.
- Highkin, H.R. & Hanson, J.B. (1954) Possible interaction between light-dark cycles and endogenous daily rhythms on the growth of tomato plants. Plant Physiol., 29, 301–302.
- Hillman, W.S. (1956) Injury of tomato plants by continuous light and unfavorable photoperiodic cycles. Amer. J. Bot., 43, 89–96.
- Hohe, A., Rensing, S.A., Mildner, M., Lang, D. & Reski, R. (2002) Day length and temperature strongly influence sexual reproduction and expression of a novel MADS-box gene in the moss Physcomitrella patens . Plant Biol., 4, 595–602.
- Hurd, M.W. & Ralph, M.R. (1998) The significance of circadian organization for longevity in the golden hamster. J. Biol. Rhythm., 13, 430–436.
- Imaizumi, T., Tran, H.G., Swartz, T.E., Briggs, W.R. & Kay, S.A. (2003) FKF1 is essential for photoperiodic specific signaling in Arabidopsis . Nature, 426, 302–306.
- Ishiura, M., Kutsuna, S., Aoki, S., Iwasaki, H., Andersson, C.R., Tanabe, A., Golden, S.S., Johnson C.H. & Kondo, T. (1998) Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science, 281, 1519–1523.
- Iwasaki, H., Taniguchi, Y., Kondo, T. & Ishiura, M. (1999) Physical interactions among circadian clock proteins, KaiA, KaiB and KaiC, in Cyanobacteria. EMBO. J., 18, 1137–45.
- Jacobsen, S., Lüning, K. & Goulard, F. (2003) Circadian changes in relative abundance of two photosynthetic transcripts in the marine macroalga Kappaphycus alvarezii (Rhodophyta). J. Phycol., 39, 888–896.
- Johnson, C.H. (2001) Endogenous timekeepers in photosynthetic organisms. Annu. Rev. Physiol., 63, 695–728.
- Johnson, C.H. (2004) Precise circadian clocks in prokaryotic cyanobacteria. Curr. Issues Mol. Biol., 6, 103–110.
- Johnson, C.H. & Golden, S.S. (1999) Circadian programs in cyanobacteria: adaptiveness and mechanism. Ann. Rev. Microbiol., 53, 389–409.
- Johnson, C.H., Roeber, J. & Hastings, J.W. (1984) Circadian changes in enzyme concentration account for rhythm of enzyme activity in Gonyaulax . Science, 223, 1428–1430.
- Johnson, C.H., Golden, S.S., Ishiura, M. & Kondo, T. (1996) Circadian clocks in prokaryotes. Mol. Microbiol., 21, 5–11.
- Johnson, C.H., Elliott, J.A. & Foster, R.G. (2003) Entrainment of circadian programs. Chronobiol. Int., 20, 741–774.
- Kloppstech, K. (1985) Diurnal and circadian rhythmicity in the expression of light-induced plant nuclear messenger RNAs. Planta, 165, 502–506.
- Kondo, T. (1982) Persistence of the potassium uptake rhythm in the presence of exogenous sucrose in Lemna gibba G3. Plant Cell Physiol., 23, 467–472.
- Klarsfeld, A. & Rouyer, F. (1998) Effects of circadian mutations and LD periodicity on the life span of Drosophila melanogaster. J. Biol. Rhythm., 13, 471–478.
- Krasinsky, G. (2002) Dynamical history of the Earth-Moon system. Celestial Mech. Dynam. Astron., 84, 27–55.
- Larimer, F.W., Chain, P., Hauser, L., Lamerdin, J., Malfatti, S., Do, L., Land, M.L., Pelletier, D.A., Beatty, J.T., Lang, A.S., Tabita, F.R., Gibson, J.L., Hanson, T.E., Bobst, C., Torres, J.L., Peres, C., Harrison, F.H., Gibson, J. & Harwood, C.S. (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris . Nat. Biotechnol., 22, 55–61.
- Laskar, J. (1999) The limits of Earth Orbital calculations for geological time use. Phil. Trans. Roy. Soc. Lond. A, 357, 1735–1759.
- Lathe, R. (2004) Fast tidal cycling and the origin of life. Icarus, 168, 18–22.
- Leipe, D.D., Aravind, L., Grishin, N.V. & Koonin, E.V. (2000) The bacterial replicative helicase DnaB evolved from a RecA duplication. Genome. Res., 10, 5–16.
- Liu, Y., Tsinoremas, N.F., Johnson, C.H., Lebedeva, N.V., Golden, S.S., Ishiura, M. & Kondo, T. (1995) Circadian orchestration of gene expression in cyanobacteria. Genes and Dev., 9, 1469–1478.
- P. Lumsden & A. Millar, A. (eds) (1998) Biological Rhythms and Photoperiodism in Plants, BIOS Scientific Publishers, Oxford.
- Masashi, S., Kazuhiro, I. & Aoki, S. (2004) Photoperiod-regulated expression of the PpCOL1 gene encoding a homolog of CO/COL proteins in the moss Physcomitrella patens . BBRC, 324, 1296–1301.
- Michael, T.P. & McClung, C.R. (2003) Enhancer trapping reveals widespread circadian clock transcriptional control in Arabidopsis. Plant Physiol., 132, 629–639.
- Michael, T.P., Salomé, P.A., Yu, H.J., Spencer, T.R., Sharp, E.L., McPeek, M.A., Alonso, J.M., Ecker, J.R. & McClung, C.R. (2003) Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science, 302, 1049–1053.
- Miller, B.H., Olson, S.L., Turek, F.W., Levine, J.E., Horton, T.H. & Takahashi, J.S. (2004) Circadian clock mutation disrupts estrous cyclicity and maintenance of pregnancy. Curr. Biol., 14, 1367–1373.
- Mitsui, A., Kumazawa, S., Takahashi, A., Ikemoto, H. & Arai, T. (1986) Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. Nature, 323, 720–722.
- Mittag, M., Kiaulehn, S. & Johnson, C.H. (2005) The circadian clock in Chlamydomonas reinhardtii: What is it for? What is it similar to? Plant Physiol., 137, 399–409.
- Mori, T. & Johnson, C.H. (2001) Circadian programming in cyanobacteria. Sem. Cell Develop. Biol., 12, 271–278.
- Nielsen J., Peixoto A.A. Piccin A., Costa R., Kyriacou C.P. & Chalmers D. 1994. Big flies, small repeats: the ‘Thr-Gly’ region of the period gene in Diptera . Mol. Biol. Evol., 11, 839–853.
- Nikaido, S.S. & Johnson, C.H. (2000) Daily and circadian variation in survival from ultraviolet radiation in Chlamydomonas reinhardtii . Photochem. Photobiol., 71, 758–765.
- Nishimura, H., Nakahira, Y., Imai, K., Tsuruhara, A., Kondo, H., Hayashi, H., Hirai, M., Saito, H. & Kondo, T. (2002) Mutations in KaiA, a clock protein, extend the period of circadian rhythm in the cyanobacterium Synechococcus elongatus PCC 7942. Microbiology., 148, 2903–2909.
- Ouyang, Y., Andersson, C.R., Kondo, T., Golden, S.S. & Johnson, C.H. (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc. Natl. Acad. Sci. USA, 95, 8660–8664.
- Pattanayek, R., Wang, J., Mori, T., Xu, Y., Johnson, C.H. & Egli, M. (2004) Visualizing a circadian clock protein: crystal structure of KaiC and functional insights. Mole. Cell, 15, 375–388.
- Peixoto, A., Campesan, S., Costa, R., & Kyriacou, C.P. (1993). Molecular evolution of a repetitive region within the per gene of Drosophila. Mol. Biol. Evol, 10, 127–139.
- Peixoto, A.A., Hennessey, M., Townson, I.,Hasan, G., Rosbash, M., Costa, R., & Kyriacou, C.P. (1998). Molecular coevolution within a clock gene in Drosophila.. Proc. Nat. Acad. Sci. USA, 95, 4475–4480.
- Pittendrigh, C.S. (1965) Biological clocks: the functions, ancient and modern, of circadian oscillations. In: Science and the Sixties. Proceedings of the Cloudcraft Symposium, pp. 96–111. Air Force Office of Scientific Research.
- Pittendrigh, C.S. (1993) Temporal organization: reflections of a Darwinian clock-watcher. Annu. Rev. Physiol., 55, 17–54.
- Pittendrigh, C.S., & Minis, D.H. (1972) Circadian systems: longevity as a function of circadian resonance in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA, 69, 1537–1539.
- Pittendrigh, C.S. & Daan, S. (1976) A functional analysis of circadian pacemakers in nocturnal rodents. IV. Entrainment: pacemaker as clock. J. Comp. Physiol., 106, 291–331.
- Roenneberg, T. & Merrow, M. (2002) Life before the clock: modeling circadian evolution. J. Biol. Rhythm., 17, 495–505.
- Rogers A.S., Rosato E, Costa R. & Kyriacou C.P. (2004). Molecular analysis of circadian clocks in Drosophilasimulans . Genetica, 120, 223–232.
- Rosato, E. & Kyriacou, C.P. (2002) Origins of circadian rhythmicity. J. Biol. Rhythm., 17, 506–511.
- Rosato E., Peixoto A.A., Barbujani G., Costa R. & Kyriacou C.P. (1994). Molecular evolution of the period gene in Drosophilasimulans . Genetics, 138, 693–707.
- Rosato, E., Peixoto, A.A., Costa, R., & Kyriacou, C.P. (1997). Mutation rate, linkage disequilibrium, and selection in the repetitive region of the period gene in Drosophila melanogaster. Genet. Res., 69, 89–99.
- Sathyanarayanan, S., Zheng, X., Xiao, R. & Sehgal, A. (2004) Posttranslational regulation of Drosophila PERIOD protein by protein phosphatase 2A. Cell, 116, 603–615.
- Sawyer, L.A., Hennessy, J.M., Peixoto, A.A., Rosato, E., Parkinson, H., Costa, R. & Kyriacou, C.P. (1997) Natural variation in a Drosophila clock gene and temperature compensation. Science, 278, 2117–2120.
- Semenov, Y., Ramousse, R., Le Berre, M,. Vassiliev, V. & Solomonov, N. (2001) Aboveground activity rhythm in Arctic black capped marmot (Marmota camtschatica bungei Katchenko 1991) under polar day conditions. Acta. Oecologica. Int. J. Ecol., 22, 99–107.
- Sheeba, V., Sharma, V.K., Shubha, K., Chandrashekaran, M.K. & Joshi, A. (2000) The effect of different light regimes on adult life span in Drosophila melanogaster is partly mediated through reproductive output. J. Biol. Rhythm., 15, 380–392.
- Shimizu, M., Ichikawa, K. & Aoki, S. (2004) Circadian expression of the PpLhcb2 gene encoding a major light-harvesting chlorophyll a/b-binding protein in the moss Physcomitrella patens . Plant. Cell. Physiol., 45, 68–76.
- Suzuki, L. & Johnson, C.H. (2001) Algae know the time of day: circadian and photoperiodic programs. J. Phycol., 37, 1–10.
- Suzuki, L. & Johnson, C.H. (2002) Photoperiodic control of germination in the unicell Chlamydomonas . Naturwissenschaften, 89, 214–220.
- Swarup, K., Alonso-Blanco, C., Lynn, J.R., Michaels, S.D., Amasino, R.M., Koornneef, M. & Millar, A.J. (1999) Natural allelic variation identifies new genes in the Arabidopsis circadian system. Plant J., 20, 67–77.
- Sweeney, B.M. (1987) Rhythmic Phenomena in Plants, Second Edition, San Diego, Academic Press, 172 pp. 000–000.
- Taniguchi, Y., Yamaguchi, A., Hijikata, A, Iwasaki, H., Kamagata, K., Ishiura, M., Go, M. & Kondo, T. (2001) Two KaiA-binding domains of cyanobacterial circadian clock protein KaiC. FEBS Lett., 496, 86–90.
- Tauber, E., Roe, H., Costa, R., Hennessy, J.M. & Kyriacou, C.P. (2003) Temporal mating isolation driven by a behavioral gene in Drosophila. Curr. Biol., 13, 140–145.
- Tauber, E., Last, K.S., Olive, P.J.W. & Kyriacou, C.P. (2004) Clock gene evolution and functional divergence. J. Biol. Rhythm., 19, 445–458.
- Thomas, B. & Vince-Prue, D. (1997) Photoperiodism in Plants , Second Edition, San Diego, Academic Press, 428 pp. 000–000.
- Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach A. & Coupland, G. (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science, 303, 103–106.
- von Saint Paul, U. & Aschoff, J. (1978) Longevity among blowflies Phormia terraenovae R.D. kept in non-24-hour light-dark cycles. J. Comp. Physiol., 127, 191–195.
- Wells, J.W. (1963) Coral Growth and Geochronometry. Nature, 197, 948–950.
- Went, F.W. (1960) Photo- and thermoperiodic effects in plant growth. In: Cold Spring Harbor Symposia on Quantitative Biology, Biological Clocks, Vol. 25, pp. 221–230. Cold Spring Harbor Press, Cold Spring Harbor NY.
- Withrow, A.P. & Withrow, R.B. (1949) Photoperiodic chlorosis in tomato. Plant Physiol., 24, 657–663.
- Woelfle, M.A., Ouyang, Y., Phanvijhitsiri, K. & Johnson, C.H. (2004) The adaptive value of circadian clocks: An experimental assessment in cyanobacteria. Current Biol., 14, 1481–1486.
- Yang, Y., He, Q., Cheng, P., Wrage, P., Yarden, O. & Liu, Y. (2004) Distinct roles for PP1 and PP2A in the Neurospora circadian clock. Genes Dev., 18, 255–260.
- Yen, U.C., Huang, T.C. & Yen, T.C. (2004) Observation of the circadian photosynthetic rhythm cyanobacteria with a dissolved-oxygen meter. Plant Sci., 166, 949–952.
- Zhong, H.H. & McClung, C.R. (1996) The circadian clock gates expression of two Arabidopsis catalase genes to distinct and opposite circadian phases. Mol. Gen. Genet., 251, 196–203.
Browse other articles of this reference work: