7 Ligand-Gated Ion Channels
Annual Plant Reviews book series, Volume 15: Membrane Transport in Plants
Frans Maathuis,
Frans Maathuis
University of York, Biology Department, Area 9, York, YO10 5DD UK
Search for more papers by this authorFrans Maathuis,
Frans Maathuis
University of York, Biology Department, Area 9, York, YO10 5DD UK
Search for more papers by this authorThis article was originally published in 2004 in Membrane Transport in Plants, Volume 15 (ISBN 9781405118033) of the Annual Plant Reviews book series, this volume edited by Michael R. Blatt. The article was republished in Annual Plant Reviews online in April 2018.
Abstract
The sections in this article are
- Introduction
- Acetylcholine Receptors, the Archetypal Ligand-Gated Ion Channels
- Techniques to Study Ligand-Gated Channels
- Plant Ligand-Gated Ion Channels
- Ca2+ Release Channels from Endomembranes
- Non-Selective Ligand-Gated Ion Channels
- Concluding Remarks
References
- Aidley, D.J. & Stanfield, P.R. (1996) Ion Channels, Molecules in Action, Cambridge University Press, Cambridge, UK.
- Alexandre, J., Lassalles, J.P. & Kado, R.T. (1990) Opening of Ca2+ channels in isolated red beet root vacuole membrane by inositol 1,4,5-triphosphate, Nature, 343, 567–570.
- Allen, G.J., Chu, S.P., Harrington, C.L., et al. (2001) A defined range of guard cell calcium oscillation parameters encodes stomatal movements, Nature, 411, 1053–1057.
- Allen, G.J., Muir, S.R. & Sanders, D. (1995) Release of Ca2+ from individual plant vacuoles by both Insp(3) and cyclic ADP-ribose, Science, 268, 735–737.
- Allen, G.J. & Sanders, D. (1994) Osmotic-stress enhances the competence of Beta vulgaris vacuoles to respond to inositol 1,4,5-trisphosphate, Plant J., 6, 687–695.
- Amtmann, A. & Sanders, D. (1999) Mechanisms of Na+ uptake by plant cells, Adv. Bot. Res. Incorporating Adv. Plant Pathol., 29, 75–112.
- Arazi, T., Kaplan, B. & Fromm, H. (2000) A high-affinity calmodulin-binding site in a tobacco plasma-membrane channel protein coincides with a characteristic element of cyclic nucleotide-binding domains, Plant Mol. Biol., 42, 591–601.
- Arazi, T., Sunkar, R., Kaplan, B. & Fromm, H. (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants, Plant J., 20, 171–182.
- Balague, C., Lin, B.Q., Alcon, C., et al. (2003) HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family, Plant Cell, 15, 365–379.
- Berg, J.M., Tymockzko, J.L. & Stryer, L. (2001) Biochemistry, 5th edn, Freeman and Co., New York.
- Bewell, M.A., Maathuis, F.J.M., Allen, G.J. & Sanders, D. (1999) Calcium-induced calcium release mediated by a voltage-activated cation channel in vacuolar vesicles from red beet, FEBS Lett., 458, 41–44.
- Biel, M., Zong, X.G. & Hofmann, F. (1996) Cyclic nucleotide-gated cation channels–molecular diversity, structure, and cellular functions, Trends Cardiovasc. Med., 6, 274–280.
- Bigge, C.F. (1999) Ionotropic glutamate receptors, Curr. Opin. Chem. Biol., 3, 441–447.
- Bindschedler, L.V., Minibayeva, F., Gardner, S.L., Gerrish, C., Davies, D.R. & Bolwell, G.P. (2001) Early signalling events in the apoplastic oxidative burst in suspension cultured French bean cells involve cAMP and Ca2+ , New Phytol., 151, 185–194.
- Blatt, M.R. (1990) Potassium channel currents in intact stomatal guard cells: rapid enhancement by abscisic acid, Planta, 180, 445–455.
- Blatt, M.R., Thiel, G. & Trentham, D. (1990) Reversible inactivation of K+ channels of Vicia stomatal guard cells following the photolysis of caged inositol 1,4,5-trisphosphate, Nature, 346, 766–769.
- Bowler, C., Neuhaus, G., Yamagata, H. & Chua, N.H. (1994) Cyclic GMP and calcium mediate phytochrome phototransduction, Cell, 77, 73–81.
- Brenner, E.D., Martinez-Barboza, N., Clark, A.P., Liang, Q.S., Stevenson, D.W. & Coruzzi, G.M. (2000) Arabidopsis mutants resistant to S(+)-beta-methyl-alpha, beta-diaminopropionic acid, a cycad-derived glutamate receptor agonist, Plant Physiol., 124, 1615–1624.
- Buchanan, B.B., Gruissem, W. & Jones, R.L. (2000) Biochemistry and Molecular Biology of Plants, ASPP, Rockville.
- Chan, C.W.M., Schorrak, L.M., Smith, R.K., Bent, A.F. & Sussman, M.R. (2003) A cyclic nucleotidegated ion channel, CNGC2, is crucial for plant development and adaptation to calcium stress, Plant Physiol., 132, 728–731.
- Chen, G.Q., Cui, C.H., Mayer, M.L. & Gouaux, E. (1999) Functional characterization of a potassium-selective prokaryotic glutamate receptor, Nature, 402, 817–821.
- Chiu, J., DeSalle, R., Lam, H.M., Meisel, L. & Coruzzi, G. (1999) Molecular evolution of glutamate receptors: a primitive signaling mechanism that existed before plants and animals diverged, Mol. Biol. Evol., 16, 826–838.
- Clough, S.J., Fengler, K.A., Yu, I., Lippok, B., Smith, R.K. & Bent, A. (2000) The Arabidopsis dnd1 ‘defense, no death’ gene encodes a mutated cyclic nucleotide-gated ion channel, Proc. Natl. Acad. Sci. U.S.A., 97, 9323–9328.
- Colquhoun, D. (1998) Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors, Brit. J. Pharmacol., 125, 924–947.
- Dahan, M., Humbert, M., Hanus, C., Levi, S., Vannier, C. & Triller, A. (2003) Dynamics of glycine and GABA receptors in spinal cord neurons studied by single molecule fluorescence imaging, Biophys. J., 84 (Pt 2, Suppl.), 123A.
- Davenport, R. (2002) Glutamate receptors in plants, Ann. Bot., 90, 549–557.
- Davenport, R.J. & Tester, M. (2000) A weakly voltage-dependent, nonselective cation channel mediates toxic sodium influx in wheat, Plant Physiol., 122, 823–834.
- Demidchik, V., Bowen, H.C., Maathuis, F.J.M., et al. (2002a) Arabidopsis thaliana root non-selective cation channels mediate calcium uptake and are involved in growth, Plant J., 32, 799–808.
-
Demidchik, V., Davenport, R.J. & Tester, M. (2002b) Nonselective cation channels in plants, Ann. Rev. Plant Biol., 53, 67–107.
10.1146/annurev.arplant.53.091901.161540 Google Scholar
- Dennison, K.L. & Spalding, E.P. (2001) Glutamate-gated calcium fluxes in Arabidopsis , Plant Physiol., 125, 2203–2203.
- DeWald, D.B., Torabinejad, J., Jones, C.A., et al. (2001) Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis , Plant Physiol., 126, 759–769.
- Dingledine, R., Borges, K., Bowie, D. & Traynelis, S.F. (1999) The glutamate receptor ion channels, Pharmacol. Rev., 51, 7–61.
- Drobak, B.K., Dewey, R.E. & Boss, W.F. (1999) Phosphoinositide kinases and the synthesis of polyphosphoinositides in higher plant cells, Int. Rev. Cytol., 189, 95–130.
- Drobak, B.K. & Watkins, P.A.C. (2000) Inositol(1,4,5) trisphosphate production in plant cells: an early response to salinity and hyperosmotic stress, FEBS Lett., 481, 240–244.
- Du, G.G., Guo, X.H., Khanna, V.K. & MacLennan, D.H. (2002) Ryanodine sensitizes the cardiac ryanodine receptor (RyR2) to Ca2+ activation and dissociates as the channel is closed by Ca2+depletion, Biophys. J., 82, 359.
- Dubos, C., Huggins, D., Grant, G.H., Knight, M.R. & Campbell, M.M. (2003) A role for glycine in the gating of plant NMDA-like receptors, Plant J., 35, 800–810.
- Durner, J., Wendehenne, D. & Klessig, D.F. (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose, Proc. Natl. Acad. Sci. U.S.A., 95, 10328–10333.
- Dutzler, R., Campbell, E.B., Cadene, M., Chait, B.T. & MacKinnon, R. (2002) X-ray structure of a CIC chloride channel at 3.0 angstrom reveals the molecular basis of anion selectivity, Nature, 415, 287–294.
- Ehsan, H., Reichheld, J.P., Roef, L., et al. (1998) Effect of indomethacin on cell cycle dependent cyclic AMP fluxes in tobacco BY-2 cells, FEBS Lett., 422, 165–169.
- Elzenga, J.T.M. & Volkenburg, V.E. (1994) Characterization of ion channels in the plasma-membrane of epidermal cells of expanding pea (Pisum Sativum Arg) leaves, J. Membr. Biol., 137, 229–235.
- FranklinTong, V.E., Drobak, B.K., Allan, A.C., Watkins, P.A.C. & Trewavas, A.J. (1996) Growth of pollen tubes of Papaver rhoeas is regulated by a slow-moving calcium wave propagated by inositol 1,4,5-trisphosphate, Plant Cell, 8, 1305–1321.
- Garcia-Mata, C., Gay, R., Sokolovski, S., Hills, A., Lamattina, L. & Blatt, M.R. (2003) Nitric oxide regulates K+ and Cl− channels in guard cells through a subset of abscisic acid-evoked signaling pathways, Proc. Natl. Acad. Sci. U.S.A., 100, 11116–11121.
- Garcia-Mata, C. & Lamattina, L. (2003) Abscisic acid, nitric oxide and stomatal closure – is nitrate reductase one of the missing links? Trends Plant Sci., 8, 20–26.
- Gaymard, F., Cerutti, M., Horeau, C., et al. (1996) The baculovirus/insect cell system as an alternative to Xenopus oocytes, J. Biochem., 271, 22863–22870.
- Gilroy, S., Read, N.D. & Trewavas, A.J. (1990) Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure, Nature, 346, 769–771.
- Grabov, A. & Blatt, M.R. (1998) Membrane voltage initiates Ca2+ waves and potentiates Ca2+ increases with abscisic acid in stomatal guard cells, Proc. Natl. Acad. Sci. U.S.A., 95, 4778–4783.
- Grabov, A. & Blatt, M.R. (1999) A steep dependence of inward-rectifying potassium channels on cytosolic free calcium concentration increase evoked by hyperpolarization in guard cells, Plant Physiol., 119, 277–287.
- Hanrahan, C.J., Palladino, M.J., Ganetzky, B. & Reenan, R.A. (2000) RNA editing of the Drosophila para Na+ channel transcript: evolutionary conservation and developmental regulation, Genetics, 155, 1149–1160.
- Hedrich, R., Barbier-Brygoo, H., Felle, H.H., et al. (1988) General mechanisms for solute transport across the tonoplast of plant vacuoles: a patch clamp survey of ion channels and proton pumps, Botanica Acta, 101, 7–13.
- Heilmann, I., Perera, I.Y., Gross, W. & Boss, W.F. (1999) Changes in phosphoinositide metabolism with days in culture affect signal transduction pathways in Galdieria sulphuraria , Plant Physiol., 119, 1331–1339.
-
Hille, B. (2001) Ion Channels of Excitable Membranes, Sinauer Associates, Inc., Sunderland, MA.
10.1111/j.1540-8167.1998.tb01847.x Google Scholar
- Hoshi, T. (1995) Regulation of voltage dependence of the KAT1 channel by intracellular factors, J. Gen. Physiol., 105, 309–328.
- Hsieh, M.H., Lam, H.M., van de Loo, F.J. & Coruzzi, G. (1998) A PII-like protein in Arabidopsis: putative role in nitrogen sensing, Proc. Natl. Acad. Sci. U.S.A., 95, 13965–13970.
- Hua, B.G., Mercier, R.W., Leng, Q. & Berkowitz, G.A. (2003) Plants do it differently. A new basis for potassium/sodium selectivity in the pore of an ion channel, Plant Physiol., 132, 1353–1361.
- Jeschke, W.D. & Hartung, W. (2000) Root–shoot interactions in mineral nutrition, Plant Soil, 226, 57–69.
- Jones, S., Sudweeks, S. & Yakel, J.L. (1999) Nicotinic receptors in the brain: correlating physiology with function, Trends Neurosci., 22, 555–561.
- Kang, J.M. & Turano, F.J. (2003) The putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana , Proc. Natl. Acad. Sci. U.S.A., 100, 6872–6877.
- Katagiri, F., Lam, E. & Chua, N.H. (1989) Two tobacco DNA-binding proteins with homology to the nuclear factor CREB, Nature, 340, 727–730.
- Kaupp, U.B. & Seifert, R. (2002) Cyclic nucleotide-gated ion channels, Physiol. Rev., 82, 769–824.
- Kim, S.A., Kwak, J.M., Jae, S.K., Wang, M.H. & Nam, H.G. (2001) Overexpression of the AtGluR2 gene encoding an Arabidopsis homolog of mammalian glutamate receptors impairs calcium utilization and sensitivity to ionic stress in transgenic plants, Plant Cell Physiol., 42, 74–84.
- Koehler, C. & Neuhaus, G. (2000) Characterisation of calmodulin binding to cyclic nucleotide-gated ion channels from Arabidopsis thaliana , FEBS Lett., 471, 133–136.
- Kubis, S., Baldwin, A., Patel, R., et al. (2003) The Arabidopsis ppi1 mutant is specifically defective in the expression, chloroplast import, and accumulation of photosynthetic proteins, Plant Cell, 15, 1859–1871.
- Lam, H.M., Chiu, J., Hsieh, M.H., et al. (1998) Glutamate-receptor genes in plants, Nature, 396, 125–126.
- Lemtiri-Chlieh, F., MacRobbie, E.A. & Brearley, C.A. (2000) Inositol hexakisphosphate is a physiological signal regulating the K+-inward rectifying conductance in guard cells, Proc. Natl. Acad. Sci. U.S.A., 97, 8687–8692.
- Lemtiri-Chlieh, F., MacRobbie, E.A., Webb, A.A., et al. (2003) Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells, Proc. Natl. Acad. Sci. U.S.A., 100, 10091–10095.
- Leng, Q., Mercier, R.W., Hua, B.G., Fromm, H. & Berkowitz, G.A. (2002) Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels, Plant Physiol., 128, 400–410.
- Leng, Q., Mercier, R.W., Yao, W.Z. & Berkowitz, G.A. (1999) Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel, Plant Physiol., 121, 753–761.
- Li, W., Luan, S., Schreiber, S.L. & Assmann, S.M. (1994) Cyclic AMP stimulates K+ channel activity in mesophyll cells of Vicia faba L., Plant Physiol., 106, 957–961.
- Ludidi, N. & Gehring, C. (2003) Identification of a novel protein with guanylyl cyclase activity in Arabidopsis thaliana , J. Biol. Chem., 278, 6490–6494.
- Maathuis, F.J.M. & Sanders, D. (2001) Sodium uptake in Arabidopsis thaliana roots is regulated by cyclic nucleotides, Plant Physiol., 127, 1617–1625.
- Martinec, J., Feltl, T., Scanlon, C.H., Lumsden, P.J. & Machackova, I. (2000) Subcellular localization of a high affinity binding site for D-myo-inositol 1,4,5-trisphosphate from Chenopodium rubrum , Plant Physiol., 124, 475–483.
- Miyazawa, A., Fujiyoshi, Y. & Unwin, N. (2003) Structure and gating mechanism of the acetylcholine receptor pore, Nature, 423, 949–955.
- Moutinho, A., Hussey, P.J., Trewavas, A.J. & Malho, R. (2001) cAMP acts as a second messenger in pollen tube growth and reorientation, Proc. Natl. Acad. Sci. U.S.A., 98, 10481–10486.
- Moyen, C., Hammond-Kosack, K.E., Jones, J., Knight, M.R. & Johannes, E. (1998) Systemin triggers an increase of cytoplasmic calcium in tomato mesophyll cells: Ca2+ mobilization from intra- and extracellular compartments, Plant Cell Environ., 21, 1101–1111.
- Muir, S.R. & Sanders, D. (1997) Inositol 1,4,5-trisphosphate-sensitive Ca2+ release across nonvacuolar membranes in cauliflower, Plant Physiol., 114, 1511–1521.
- Navazio, L., Bewell, M.A., Siddiqua, A., Dickinson, G.D., Galione, A. & Sanders, D. (2000) Calcium release from the endoplasmic reticulum of higher plants elicited by the NADP metabolite nicotinic acid adenine dinucleotide phosphate, Proc. Natl. Acad. Sci. U.S.A., 97, 8693–8698.
- Navazio, L., Mariani, P. & Sanders, D. (2001) Mobilization of Ca2+ by cyclic ADP-ribose from the endoplasmic reticulum of cauliflower florets, Plant Physiol., 125, 2129–2138.
- Newton, R.P., Roef, L., Witters, E. & VanOnckelen, H. (1999) Tansley review no. 106–cyclic nucleotides in higher plants: the enduring paradox, New Phytol., 143, 427–455.
- Ng, C.K.Y., McAinsh, M.R., Gray, J.E., et al. (2001) Calcium-based signalling systems in guard cells, New Phytol., 151, 109–120.
- O'Boyle, M.P., Do, V., Derrick, B.E. & Claiborne, B.J. (2003) In vivo recordings of long-term potentiation and long-term depression in the dentate gyrus of the neonatal rat, J. Neurophysiol., 91, 613–622.
- Paynel, F., Murray, P.J. & Cliquet, J.B. (2001) Root exudates: a pathway for short-term N transfer from clover and ryegrass, Plant Soil, 229, 235–243.
- Penson, S.P., Schuurink, R.C., Fath, A., Gubler, F., Jacobsen, J.V. & Jones, R.L. (1996) cGMP is required for gibberellic acid-induced gene expression in barley aleurone, Plant Cell, 8, 2325–2333.
- Perera, I., Heilmann, I. & Boss, W.F. (1999) Transient and sustained increases in inositol 1,4,5-bisphosphate precede the differential growth response in gravistimulated maize pulvini, Proc. Natl. Acad. Sci. U.S.A., 96, 5838–5843.
- Ranjeva, R., Carrasco, A. & Boudet, A.M. (1988) Inositol trisphosphate stimulates the release of calcium from intact vacuoles isolated from acer cells, FEBS Lett., 230, 137–141.
- Salpeter, M.M. & Loring, R.H. (1985) Nicotinic acetylcholine-receptors in vertebrate muscle – properties, distribution and neural control, Prog. Neurobiol., 25, 297–325.
- Sanders, D., Pelloux, J., Brownlee, C. & Harper, J.F. (2002) Calcium at the crossroads of signaling, Plant Cell, 14, S401–S417.
- Sangwan, V., Foulds, I., Singh, J. & Dhindsa, R.S. (2001) Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx, Plant J., 27, 1–12.
- Schachtman, D.P., Reid, J.D. & Ayling, S.M. (1998) Phosphorus uptake by plants: from soil to cell, Plant Physiol., 116, 447–453.
- Schachtman, D.P., Tyerman, S.D. & Yerry, B.R. (1991) The K+/Na+ selectivity of a cation channel in the plasma membrane of root cells does not differ in salt-tolerant and salt-sensitive wheat species, Plant Physiol., 97, 598–605.
- Schuurink, R.C., Shartzer, S.F., Fath, A. & Jones, R.L. (1998) Characterization of a calmodulin-binding transporter from the plasma membrane of barley aleurone, Proc. Natl. Acad. Sci. U.S.A., 95, 1944–1949.
- Sivaguru, M., Pike, S., Gassmann, W. & Baskin, T.I. (2003) Aluminum rapidly depolymerizes cortical microtubules and depolarizes the plasma membrane: evidence that these responses are mediated by a glutamate receptor, Plant Cell Physiol., 44, 667–675.
- Stokes, D.L. & Wagenknecht, T. (2000) Calcium transport across the sarcoplasmic reticulum – Structure and function of Ca2+-ATPase and the ryanodine receptor, Eur. J. Biochem., 267, 5274–5279.
- Sunkar, R., Kaplan, B., Bouche, N., et al. (2000) Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance, Plant J., 24, 533–542.
- Talke, I.N., Blaudez, D., Maathuis, F.J.M. & Sanders, D. (2003) CNGCs: prime targets of plant cyclic nucleotide signalling? Trends Plant Sci., 8, 286–293.
- Turano, F.J., Muhitch, M.J., Felker, F.C. & McMahon, M.B. (2002) The putative glutamate receptor 3.2 from Arabidopsis thaliana (AtGLR3.2) is an integral membrane peptide that accumulates in rapidly growing tissues and persists in vascular-associated tissues, Plant Sci., 163, 43–51.
- Tyerman, S.D. & Skerrett, I.M. (1999) Root ion channels and salinity, Sci. Horticulturae, 78, 175–235.
- Tyerman, S.D., Skerrett, M., Garrill, A., Findlay, G.P. & Leigh, R.A. (1997) Pathways for the permeation of Na+ and Cl− into protoplasts derived from the cortex of wheat roots, J. Exp. Bot., 48, 459–480.
- Very, A.A. & Davies, J.M. (2000) Hyperpolarization-activated calcium channels at the tip of Arabidopsis root hairs, Proc. Natl. Acad. Sci. U.S.A., 97, 9801–9806.
- Very, A.A. & Sentenac, H. (2002) Cation channels in the Arabidopsis plasma membrane, Trends Plant Sci., 7, 168–175.
- Volotovski, I.D., Sokolovski, S.G., Molchan, O.V. & Knight, M.R. (1998) Second messengers mediate increases in cytosolic calcium in tobacco protoplasts, Plant Physiol., 117, 1023–1030.
- Walker, D.J., Leigh, R.A. & Miller, A.J. (1996) Potassium homeostasis in vacuolate plant cells, Proc. Natl. Acad. Sci. U.S.A., 93, 10510–10514.
- Walseth, T.F., Aarhus, R., Kerr, J.A. & Lee, H.C. (1993) Identification of cyclic ADP-ribose-binding proteins by photoaffinity-labeling, J. Biol. Chem., 268, 26686–26691.
- Ward, J.M. & Schroeder, J.I. (1994) Calcium activated K+ channels and calcium-induced calcium release by slow vacuolar ion channels in guard cell vacuoles implicated in the control of stomatal closure, Plant Cell, 6, 669–683.
- White, P.J. (1993) Characterization of a high-conductance, voltage-dependent cation channel from the plasma membrane of rye roots in planar lipid bilayers, Planta, 191, 541–551.
- White, P.J. (2000) Calcium channels in higher plants, Biochim. Biophys. Acta, 1465, 171–189.
- Wu, Y., Kuzma, J., Marechal, E., et al. (1997) Abscisic acid signaling through cyclic ADP-ribose in plants, Science, 278, 2126–2130.
- Wu, Y., Sanchez, J.P., Lopez-Molina, L., Himmelbach, A., Grill, E. & Chua, N.H. (2003) The abi1-1 mutation blocks ABA signaling downstream of cADPR action, Plant J., 34, 307–315.
- Yamamori, E., Iwasaki, Y., Oki, Y., et al. (2004) Possible involvement of ryanodine receptor-mediated intracellular calcium release in the effect of corticotropin-releasing factor on adrenocorticotropin secretion, Endocrinology, 145, 36–38.
- Zagotta, W.N. & Siegelbaum, S.A. (1996) Structure and function of cyclic nucleotide-gated channels, Annu. Rev. Neurosci., 19, 235–263.
- Zimmermann, S., Nurnberger, T., Frachisse, J.M., et al. (1997) Receptor-mediated activation of a plant Ca2+-permeable ion channel involved in pathogen defense, Proc. Natl. Acad. Sci. U.S.A., 94, 2751–2755.
- Zucchi, R. & Ronca-Testoni, S. (1997) The sarcoplasmic reticulum Ca2+ channel/ryanodine receptor: modulation by endogenous effectors, drugs and disease states, Pharmacol. Rev., 49, 1–51.
Citing Literature
Browse other articles of this reference work: