Solutions
Htay Htay
Department of Renal Medicine, Singapore General Hospital, Singapore
Search for more papers by this authorDavid W. Johnson
Department of Nephrology, University of Queensland at Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
Search for more papers by this authorGiovanni F.M. Strippoli
Department of Emergency and Organ Transplantation University of Bari, Bari, Italy
School of Public Health University of Sydney, Sydney, NSW, Australia
Search for more papers by this authorJonathan C. Craig
College of Medicine and Public Health Flinders University, Adelaide, Australia
Search for more papers by this authorYeoungjee Cho
Department of Nephrology, University of Queensland at Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
Search for more papers by this authorHtay Htay
Department of Renal Medicine, Singapore General Hospital, Singapore
Search for more papers by this authorDavid W. Johnson
Department of Nephrology, University of Queensland at Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
Search for more papers by this authorGiovanni F.M. Strippoli
Department of Emergency and Organ Transplantation University of Bari, Bari, Italy
School of Public Health University of Sydney, Sydney, NSW, Australia
Search for more papers by this authorJonathan C. Craig
College of Medicine and Public Health Flinders University, Adelaide, Australia
Search for more papers by this authorYeoungjee Cho
Department of Nephrology, University of Queensland at Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
Search for more papers by this authorJonathan C. Craig MBChB, DipCH, MMed(Clin Epi), PhD, FAHMS
Matthew Flinders Distinguished Professor Vice President and Executive Dean
College of Medicine and Public Health, Flinders University, Adelaide, Australia
Search for more papers by this authorDonald A. Molony MD
Professor of Medicine Distinguished Teaching Professor of the University of Texas System
Division of Renal Diseases and Hypertension AND Center for Clinical Research and Evidence-based Medicine, McGovern Medical School University of Texas, Houston, TX, USA
Search for more papers by this authorGiovanni F.M. Strippoli MD, PhD, MPH, MM (Epi)
Professor of Nephrology Adjunct Professor of Epidemiology
Department of Emergency and Organ Transplantation – University of Bari, Bari, Italy
School of Public Health, University of Sydney, Sydney, NSW, Australia
Search for more papers by this authorSummary
Peritoneal dialysis (PD) is a well-established form of kidney replacement therapy, with possible early survival advantage as compared to hemodialysis. This chapter summarizes the published studies available for neutral pH, low glucose degradation product solution, icodextrin, or amino acid-based solutions in the treatment of peritoneal dialysis and provides recommendations for the nephrologist treating patients on peritoneal dialysis. Most available studies on biocompatible solutions have been too small with too short a follow-up duration to have adequate statistical power to examine hard clinical outcomes, including technique failure and mortality. Peritonitis is one of the most common reasons for patients discontinuing PD therapy. Inflow pain can significantly affect the quality of life of patients on peritoneal dialysis. Icodextrin may slightly increase the risk of rash. Based on the available data, it is uncertain whether once-daily amino acid solution improves nutritional indices in malnourished patients.
References
- Vonesh , E.F. and Moran , J. ( 1999 ). Mortality in end-stage renal disease: a reassessment of differences between patients treated with hemodialysis and peritoneal dialysis . J. Am. Soc. Nephrol. 10 ( 2 ): 354 – 365 .
- Mehrotra , R. , Chiu , Y.-W. , Kalantar-Zadeh , K. et al. ( 2011 ). Similar outcomes with hemodialysis and peritoneal dialysis in patients with end-stage renal disease . Arch. Intern. Med. 171 ( 2 ): 110 – 118 .
- Tanna , M.M. , Vonesh , E.F. , and Korbet , S.M. ( 2000 ). Patient survival among incident peritoneal dialysis and hemodialysis patients in an urban setting . Am. J. Kidney Dis. 36 ( 6 ): 1175 – 1182 .
- Fenton , S.S. , Schaubel , D.E. , Desmeules , M. et al. ( 1997 ). Hemodialysis versus peritoneal dialysis: a comparison of adjusted mortality rates . Am. J. Kidney Dis. 30 ( 3 ): 334 – 342 .
- Liem , Y.S. , Wong , J.B. , Hunink , M.G.M. et al. ( 2007 ). Comparison of hemodialysis and peritoneal dialysis survival in the Netherlands . Kidney Int. 71 ( 2 ): 153 – 158 .
- Bargman , J.M. , Thorpe , K.E. , and Churchill , D.N. ( 2001 ). Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study . J. Am. Soc. Nephrol. 12 ( 10 ): 2158 – 2162 .
- Shostak , A. , Wajsbrot , V. , and Gotloib , L. ( 2000 ). High glucose accelerates the life cycle of the in vivo exposed mesothelium . Kidney Int. 58 ( 5 ): 2044 – 2052 .
- Liberek , T. , Topley , N. , Jörres , A. et al. ( 1993 ). Peritoneal dialysis fluid inhibition of polymorphonuclear leukocyte respiratory burst activation is related to the lowering of intracellular pH . Nephron 65 ( 2 ): 260 – 265 .
- Plum , J. , Razeghi , P. , Lordnejad , R.M. et al. ( 2001 ). Peritoneal dialysis fluids with a physiologic pH based on either lactate or bicarbonate buffer-effects on human mesothelial cells . Am. J. Kidney Dis. 38 ( 4 ): 867 – 875 .
- Morgan , L.W. , Wieslander , A. , Davies , M. et al. ( 2003 ). Glucose degradation products (GDP) retard remesothelialization independently of d-glucose concentration . Kidney Int. 64 ( 5 ): 1854 – 1866 .
- Ishibashi , Y. , Sugimoto , T. , Ichikawa , Y. et al. ( 2002 ). Glucose dialysate induces mitochondrial DNA damage in peritoneal mesothelial cells . Perit. Dial. Int. 22 ( 1 ): 11 – 21 .
- Breborowicz , A. , Polubinska , A. , and Oreopoulos , D.G. ( 1999 ). Changes in volume of peritoneal mesothelial cells exposed to osmotic stress . Perit. Dial. Int. 19 ( 2 ): 119 – 123 .
- Gotloib , L. , Shostak , A. , Wajsbrot , V. , and Kushnier , R. ( 1999 ). High glucose induces a hypertrophic, senescent mesothelial cell phenotype after long in vivo exposure . Nephron 82 ( 2 ): 164 – 173 .
- Gotloib , L. , Waisbrut , V. , Shostak , A. , and Kushnier , R. ( 1995 ). Acute and long-term changes observed in imprints of mouse mesothelium exposed to glucose-enriched, lactated, buffered dialysis solutions . Nephron 70 ( 4 ): 466 – 477 .
- Justo , P. , Sanz , A.B. , Egido , J. , and Ortiz , A. ( 2005 ). 3,4-Dideoxyglucosone-3-ene induces apoptosis in renal tubular epithelial cells . Diabetes 54 ( 8 ): 2424 – 2429 .
- Qayyum , A. , Oei , E.L. , Paudel , K. , and Fan , S.L. ( 2015 ). Increasing the use of biocompatible, glucose-free peritoneal dialysis solutions . World J. Nephrol. 4 ( 1 ): 92 – 97 .
- Rippe , B. , Simonsen , O. , Heimbürger , O. et al. ( 2001 ). Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products . Kidney Int. 59 ( 1 ): 348 – 357 .
- Dobbie , J.W. , Anderson , J.D. , and Hind , C. ( 1994 ). Long-term effects of peritoneal dialysis on peritoneal morphology . Perit. Dial. Int. 14 ( Suppl 3 ): S16 – S20 .
- Williams , J.D. , Craig , K.J. , Topley , N. et al. ( 2002 ). Morphologic changes in the peritoneal membrane of patients with renal disease . J. Am. Soc. Nephrol. 13 ( 2 ): 470 – 479 .
- Bajo , M.A. , Perez-Lozano , M.L. , Albar-Vizcaino , P. et al. ( 2011 ). Low-GDP peritoneal dialysis fluid (‘balance’) has less impact in vitro and ex vivo on epithelial-to-mesenchymal transition (EMT) of mesothelial cells than a standard fluid . Nephrol. Dial. Transplant. 26 ( 1 ): 282 – 291 .
- Htay , H. , Johnson , D.W. , Wiggins , K.J. et al. ( 2018 ). Biocompatible dialysis fluids for peritoneal dialysis . Cochrane Database Syst Rev. 1 ( 10 ) https://doi.org/10.1002/14651858.CD007554.pub3 .
- Hultcrantz , M. , Rind , D. , Akl , E.A. et al. ( 2017 ). The GRADE Working Group clarifies the construct of certainty of evidence . J. Clin. Epidemiol. 87 : 4 – 13 .
- Bello , A.K. , Levin , A. , Lunney , M. et al. ( 2019 ). Global Kidney Health Atlas: A report by the International Society of Nephrology on Global Burden of End stage Kidney Disease and Capacity for Kidney Replacement Therapy across World Countries and Regions , 2e . Brussels, Belgium : International Society of Nephrology https://www.theisn.org/news/item/3421-second-edition-of-isn-global-kidney-health-atlas-now-available-for-download .
- Reddy , Y.N.V. , Abraham , G. , Mathew , M. et al. ( 2011 ). An Indian model for cost-effective CAPD with minimal man power and economic resources . Nephrol. Dial. Transplant. 26 ( 10 ): 3089 – 3091 .
- Erixon , M. , Wieslander , A. , Lindén , T. et al. ( 2006 ). How to avoid glucose degradation products in peritoneal dialysis fluids . Perit. Dial. Int. 26 ( 4 ): 490 – 497 .
- Choi , H.Y. , Kim , D.K. , Lee , T.H. et al. ( 2008 ). The clinical usefulness of peritoneal dialysis fluids with neutral pH and low glucose degradation product concentration: an open randomized prospective trial . Perit. Dial. Int. 28 ( 2 ): 174 – 182 .
- Johnson , D.W. , Brown , F.G. , Clarke , M. et al. ( 2012 ). Effects of biocompatible versus standard fluid on peritoneal dialysis outcomes . J. Am. Soc. Nephrol. 23 ( 6 ): 1097 – 1107 .
- Park , S.-H. , Do , J.-Y. , Kim , Y.H. et al. ( 2012 ). Effects of neutral pH and low-glucose degradation product-containing peritoneal dialysis fluid on systemic markers of inflammation and endothelial dysfunction: a randomized controlled 1-year follow-up study . Nephrol. Dial. Transplant. 27 ( 3 ): 1191 – 1199 .
- Szeto , C.-C. , Kwan , B.C.H. , Chow , K.-M. et al. ( 2015 ). The effect of neutral peritoneal dialysis solution with low glucose-degradation-product on the fluid status and body composition – a randomized control trial . PLoS One 10 ( 10 ): e0141425 .
- Sikaneta , T. , Wu , G. , Abdolell , M. et al. ( 2016 ). The trio trial – a randomized controlled clinical trial evaluating the effect of a biocompatible peritoneal dialysis solution on residual renal function . Perit. Dial. Int. 36 ( 5 ): 526 – 532 .
- Cho , K.-H. , Do , J.-Y. , Park , J.-W. et al. ( 2013 ). The effect of low-GDP solution on ultrafiltration and solute transport in continuous ambulatory peritoneal dialysis patients . Perit. Dial. Int. 33 ( 4 ): 382 – 390 .
- Kim , S. , Oh , J. , Kim , S. et al. ( 2009 ). Benefits of biocompatible PD fluid for preservation of residual renal function in incident CAPD patients: a 1-year study . Nephrol. Dial. Transplant. 24 ( 9 ): 2899 – 2908 .
- Fan , S.L.S. , Pile , T. , Punzalan , S. et al. ( 2008 ). Randomized controlled study of biocompatible peritoneal dialysis solutions: effect on residual renal function . Kidney Int. 73 ( 2 ): 200 – 206 .
- Lai , K.N. , Lam , M.F. , Leung , J.C.K. et al. ( 2012 ). A study of the clinical and biochemical profile of peritoneal dialysis fluid low in glucose degradation products . Perit. Dial. Int. 32 ( 3 ): 280 – 291 .
- Davies , S.J. , Phillips , L. , Griffiths , A.M. et al. ( 1998 ). What really happens to people on long-term peritoneal dialysis? Kidney Int. 54 ( 6 ): 2207 – 2217 .
- Davies , S. , Phillips , L. , Naish , P.F. , and Russell , G.I. ( 2001 ). Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal dialysis . J. Am. Soc. Nephrol. 12 ( 5 ): 1046 – 1051 .
- Kjellstrand , P. , Martinson , E. , Wieslander , A. , and Holmquist , B. ( 1995 ). Development of toxic degradation products during heat sterilization of glucose-containing fluids for peritoneal dialysis: influence of time and temperature . Perit. Dial. Int. 15 ( 1 ): 26 – 32 .
- Wieslander , A.P. , Kjellstrand , P.T. , and Rippe , B. ( 1995 ). Heat sterilization of glucose-containing fluids for peritoneal dialysis: biological consequences of chemical alterations . Perit. Dial. Int. 15 ( 7 Suppl ): S52 – S59 ; discussion S59–S60.
- Finkelstein , F. , Healy , H. , Abu-Alfa , A. et al. ( 2005 ). Superiority of icodextrin compared with 4.25% dextrose for peritoneal ultrafiltration . J. Am. Soc. Nephrol. 16 ( 2 ): 546 – 554 .
- Plum , J. , Gentile , S. , Verger , C. et al. ( 2002 ). Efficacy and safety of a 7.5% icodextrin peritoneal dialysis solution in patients treated with automated peritoneal dialysis . Am. J. Kidney Dis. 39 ( 4 ): 862 – 871 .
- Posthuma , N. , ter Wee , P.M. , Verbrugh , H.A. et al. ( 1997 ). Icodextrin instead of glucose during the daytime dwell in CCPD increases ultrafiltration and 24-h dialysate creatinine clearance . Nephrol. Dial. Transplant. 12 ( 3 ): 550 – 553 .
- Mistry , C.D. , Gokal , R. , and Peers , E. ( 1994 ). A randomized multicenter clinical trial comparing isosmolar icodextrin with hyperosmolar glucose solutions in CAPD. MIDAS Study Group. Multicenter investigation of icodextrin in ambulatory peritoneal dialysis . Kidney Int. 46 ( 2 ): 496 – 503 .
- Wolfson , M. , Piraino , B. , Hamburger , R.J. et al. ( 2002 ). A randomized controlled trial to evaluate the efficacy and safety of icodextrin in peritoneal dialysis . Am. J. Kidney Dis. 40 ( 5 ): 1055 – 1065 .
- Gjessing , J. ( 1968 ). Addition of aminoacids to peritoneal-dialysis fluid . Lancet 2 ( 7572 ): 812 .
- Faller , B. , Aparicio , M. , Faict , D. et al. ( 1995 ). Clinical evaluation of an optimized 1.1% amino-acid solution for peritoneal dialysis . Nephrol. Dial. Transplant. 10 ( 8 ): 1432 – 1437 .
- Li , F.K. , Chan , L.Y.Y. , Woo , J.C.Y. et al. ( 2003 ). A 3-year, prospective, randomized, controlled study on amino acid dialysate in patients on CAPD . Am. J. Kidney Dis. 42 ( 1 ): 173 – 183 .
- Kopple , J.D. , Bernard , D. , Messana , J. et al. ( 1995 ). Treatment of malnourished CAPD patients with an amino acid based dialysate . Kidney Int. 47 ( 4 ): 1148 – 1157 .
- Jones , M.R. , Gehr , T.W. , Burkart , J.M. et al. Replacement of amino acid and protein losses with 1.1% amino acid peritoneal dialysis solution . Perit. Dial. Int. 18 ( 2 ): 210 – 216 .
- Htay , H. , Cho , Y. , Pascoe , E.M. et al. ( 2017 ). Predictors of residual renal function decline in peritoneal dialysis patients: the balANZ trial . Perit. Dial. Int. 37 ( 3 ): 283 – 289 .
- Cho , Y. , Johnson , D.W. , Craig , J.C. et al. ( 2014 ). Biocompatible dialysis fluids for peritoneal dialysis . Cochrane Database of Systematic Reviews 50 ( 3 ): CD007554. https://doi.org/10.1002/14651858.CD007554.pub2 .
- Yohanna , S. , Alkatheeri , A.M.A. , Brimble , S.K. et al. ( 2015 ). Effect of neutral-pH, low-glucose degradation product peritoneal dialysis solutions on residual renal function, urine volume, and ultrafiltration: a systematic review and meta-analysis . Clin. J. Am. Soc. Nephrol. 10 ( 8 ): 1380 – 1388 .
- Johnson , D.W. , Brown , F.G. , Clarke , M. et al. ( 2012 ). The effect of low glucose degradation product, neutral pH versus standard peritoneal dialysis solutions on peritoneal membrane function: the balANZ trial . Nephrol. Dial. Transplant. 27 ( 12 ): 4445 – 4453 .
- Woodrow , G. , Turney , J.H. , and Brownjohn , A.M. ( 1997 ). Technique failure in peritoneal dialysis and its impact on patient survival . Perit. Dial. Int. 17 ( 4 ): 360 – 364 .
- Htay , H. , Cho , Y. , Pascoe , E.M. et al. ( 2017 ). Multicenter registry analysis of Center characteristics associated with technique failure in patients on incident peritoneal dialysis . Clin. J. Am. Soc. Nephrol. 12 ( 7 ): 1090 – 1099 .
- Mactier , R.A. , Sprosen , T.S. , Gokal , R. et al. ( 1998 ). Bicarbonate and bicarbonate/lactate peritoneal dialysis solutions for the treatment of infusion pain . Kidney Int. 53 ( 4 ): 1061 – 1067 .
- Haas , S. , Schmitt , C.P. , Arbeiter , K. et al. ( 2003 ). Improved acidosis correction and recovery of mesothelial cell mass with neutral-pH bicarbonate dialysis solution among children undergoing automated peritoneal dialysis . J. Am. Soc. Nephrol. 14 ( 10 ): 2632 – 2638 .
- Jones , S. , Holmes , C.J. , Krediet , R.T. et al. ( 2001 ). Bicarbonate/lactate-based peritoneal dialysis solution increases cancer antigen 125 and decreases hyaluronic acid levels . Kidney Int. 59 ( 4 ): 1529 – 1538 .
- Fusshoeller , A. , Plail , M. , Grabensee , B. , and Plum , J. ( 2004 ). Biocompatibility pattern of a bicarbonate/lactate-buffered peritoneal dialysis fluid in APD: a prospective, randomized study . Nephrol. Dial. Transplant. 19 ( 8 ): 2101 – 2106 .
- Montenegro , J. , Saracho , R.M. , Martínez , I.M. et al. ( 2006 ). Long-term clinical experience with pure bicarbonate peritoneal dialysis solutions . Perit. Dial. Int. 26 ( 1 ): 89 – 94 .
- Carrasco , A.M. , Rubio , M.A. , Sanchez Tommero , J.A. et al. Acidosis correction with a new 25 mmol/l bicarbonate/15 mmol/l lactate peritoneal dialysis solution . Perit. Dial. Int. 21 ( 6 ): 546 – 553 .
- Feriani , M. , Kirchgessner , J. , La Greca , G. et al. ( 1998 ). Cooperative group. Randomized long-term evaluation of bicarbonate-buffered CAPD solution . Kidney Int. 54 ( 5 ): 1731 – 1738 .
- Mistry , C.D. , Mallick , N.P. , and Gokal , R. ( 1987 ). Ultrafiltration with an isosmotic solution during long peritoneal dialysis exchanges . Lancet 2 ( 8552 ): 178 – 182 .
- Ho-Dac-Pannekeet , M.M. , Schouten , N. , Langendijk , M.J. et al. ( 1996 ). Peritoneal transport characteristics with glucose polymer based dialysate . Kidney Int. 50 : 979 – 986 .
- Imholz , A.L. , Brown , C.B. , Koomen , G.C. et al. ( 1993 ). The effect of glucose polymers on water removal and protein clearances during CAPD . Adv. Perit. Dial. 9 : 25 – 30 .
- Mujais , S. and Vonesh , E. ( 2002 ). Profiling of peritoneal ultrafiltration the net clinical effect of the operation of these opposing forces governing peritoneal fluid movement depends S-17 S-18 . Kidney Int. 62 ( 81 ): S17 – S22 .
- Paniagua , R. , Ventura , M.-J. , Avila-Díaz , M. et al. ( 2009 ). Icodextrin improves metabolic and fluid management in high and high-average transport diabetic patients . Perit. Dial. Int. 29 ( 4 ): 422 – 432 .
- Takatori , Y. , Akagi , S. , Sugiyama , H. et al. ( 2011 ). Icodextrin increases technique survival rate in peritoneal dialysis patients with diabetic nephropathy by improving body fluid management: a randomized controlled trial . Clin. J. Am. Soc. Nephrol. 6 ( 6 ): 1337 – 1344 .
- Konings , C.J.A.M. , Kooman , J.P. , Schonck , M. et al. ( 2003 ). Warmold van den wall bake a, et al. effect of icodextrin on volume status, blood pressure and echocardiographic parameters: a randomized study . Kidney Int. 63 ( 4 ): 1556 – 1563 .
- Davies , S.J. , Woodrow , G. , Donovan , K. et al. ( 2003 ). Icodextrin improves the fluid status of peritoneal dialysis patients: results of a double-blind randomized controlled trial . J. Am. Soc. Nephrol. 14 ( 9 ): 2338 – 2344 .
- Goldsmith , D. , Jayawardene , S. , Sabharwal , N. , and Cooney , K. ( 2000 ). Allergic reactions to the polymeric glucose-based peritoneal dialysis fluid icodextrin in patients with renal failure . Lancet 355 : 897 .
- Lam-Po-Tang , M.K. , Bending , M.R. , and Kwan , J.T. ( 1997 ). Icodextrin hypersensitivity in a CAPD patient . Perit. Dial. Int. 17 : 82 – 84 .
- Fletcher , S. , Stables , G.A. , and Turney , J.H. ( 1998 ). Icodextrin allergy in a peritoneal dialysis patient . Nephrol. Dial. Transplant. 13 : 2656 – 2658 .
- Floré , K.M.J. and Delanghe , J.R. ( 2009 ). Analytical interferences in point-of-care testing glucometers by icodextrin and its metabolites: an overview . Perit. Dial. Int. 29 ( 4 ): 377 – 383 .
- Wens , R. , Taminne , M. , Devriendt , J. et al. ( 1998 ). A previously undescribed side effect of icodextrin: overestimation of glycemia by glucose analyzer . Perit. Dial. Int. 18 ( 6 ): 603 – 609 .
- Young , G.A. , Kopple , J.D. , Lindholm , B. et al. ( 1991 ). Nutritional assessment of continuous ambulatory peritoneal dialysis patients: an international study . Am. J. Kidney Dis. 17 ( 4 ): 462 – 471 .
- Chung , S.H. , Lindholm , B. , and Lee , H.B. ( 2003 ). Is malnutrition an independent predictor of mortality in peritoneal dialysis patients? Nephrol. Dial. Transplant. 18 ( 10 ): 2134 – 2140 .
- Jörres , A. ( 2012 ). Novel peritoneal dialysis solutions – what are the clinical implications? Blood Purif. 33 ( 1–3 ): 153 – 159 .