Microtesting and Crystal Plasticity Modelling of IN718 Superalloy Grains
A. Cruzado
IMDEA Materials Institute; C/Eric Kandel 2; Getafe, Madrid, 28906, Spain
Search for more papers by this authorB. Gan
IMDEA Materials Institute; C/Eric Kandel 2; Getafe, Madrid, 28906, Spain
Search for more papers by this authorH. Chang
IMDEA Materials Institute; C/Eric Kandel 2; Getafe, Madrid, 28906, Spain
Search for more papers by this authorK. Ostolaza
Industria de Turbo Propulsores, ITP AS; Technological center Zamudio; Zamudio, Bizkaia, 48170, Spain
Search for more papers by this authorA. Linaza
Industria de Turbo Propulsores, ITP AS; Technological center Zamudio; Zamudio, Bizkaia, 48170, Spain
Search for more papers by this authorS. Milenkovic
IMDEA Materials Institute; C/Eric Kandel 2; Getafe, Madrid, 28906, Spain
Search for more papers by this authorJ. M. Molina-Aldareguia
IMDEA Materials Institute; C/Eric Kandel 2; Getafe, Madrid, 28906, Spain
Search for more papers by this authorJ. Llorca
IMDEA Materials Institute; C/Eric Kandel 2; Getafe, Madrid, 28906, Spain
Search for more papers by this authorJ. Segurado
IMDEA Materials Institute; C/Eric Kandel 2; Getafe, Madrid, 28906, Spain
Search for more papers by this authorA. Cruzado
IMDEA Materials Institute; C/Eric Kandel 2; Getafe, Madrid, 28906, Spain
Search for more papers by this authorB. Gan
IMDEA Materials Institute; C/Eric Kandel 2; Getafe, Madrid, 28906, Spain
Search for more papers by this authorH. Chang
IMDEA Materials Institute; C/Eric Kandel 2; Getafe, Madrid, 28906, Spain
Search for more papers by this authorK. Ostolaza
Industria de Turbo Propulsores, ITP AS; Technological center Zamudio; Zamudio, Bizkaia, 48170, Spain
Search for more papers by this authorA. Linaza
Industria de Turbo Propulsores, ITP AS; Technological center Zamudio; Zamudio, Bizkaia, 48170, Spain
Search for more papers by this authorS. Milenkovic
IMDEA Materials Institute; C/Eric Kandel 2; Getafe, Madrid, 28906, Spain
Search for more papers by this authorJ. M. Molina-Aldareguia
IMDEA Materials Institute; C/Eric Kandel 2; Getafe, Madrid, 28906, Spain
Search for more papers by this authorJ. Llorca
IMDEA Materials Institute; C/Eric Kandel 2; Getafe, Madrid, 28906, Spain
Search for more papers by this authorJ. Segurado
IMDEA Materials Institute; C/Eric Kandel 2; Getafe, Madrid, 28906, Spain
Search for more papers by this authorAnthony Banik
Search for more papers by this authorJoel Andersson
Search for more papers by this authorIan Dempster
Search for more papers by this authorRandy Helmink
Search for more papers by this authorXingbo Liu
Search for more papers by this authorAgnieszka Wusatowska-Sarnek
Search for more papers by this authorSummary
This chapter contains sections titled:
-
Introduction
-
Experimental Characterization
-
Crystal Plasticity Model
-
Numerical Analysis of Micro-Compression Test Rig
-
Conclusions
-
Acknowledgements
References
- H.J. Wagner, A.M. Hall, “ Physical metallurgy of alloy 718”. DMIC Report 217, Battelle Memorial Institute, Columbus, June 1, 1965.
- J. F. Radavich, “ The Physical Metallurgy of Cast and Wrought Alloy 718”, in Superalloy 718-Metallurgy and Applications, E. A. Loria, Ed., TMS, 229-240, 1989.
- H.E. Jianjong, “γ” Precipitate in Inconel 718,” Journal of Material Science and Technology, 10 (1994), 293-303.
- J. Dong, X. Xie, Z. Xu, S. Zhang, M. Chen, J. F. Radavich, TEM study on microstructure behaviour of alloy 718 after long time exposure at high temperatures, in Superalloys 718, 625, 706 and Various Derivatives 1994, E. A. Loria, Ed., TMS, 649-658, 1994.
- S. K. Iyer, C. J. Lissenden, “Multiaxial constitutive model accounting for the strength-diferential in Inconel 718,” International Journal of plasticity, 19 (2003), 2055-2081.
- D. Gustafsson, J.J. Moverare, K. Simonsson, S. Sjöström, “Modeling of the Constitutive behaviour of Inconel 718 at Intemediate temperatures,” Journal of Engineering for Gas Turbines and Power, 133 (2011), 1-4.
- Y.S. Song, M.R. Lee, J.T. Kim, Effect of grain size for the tensile strength and the low cycle fatigue at elevated temperature of alloy 718 cogged by open die forging press, in Superalloys 718, 625, 706 and Derivatives 2005, E. A. Loria, Ed., TMS, 539–549, 2005.
- C. Ruiz, A. Obabueki, K. Gillespie, Evaluation of the microstructure and mechanical properties of delta processed alloy 718, in Superalloys 1992, S.D. Antolovich et al., Ed., TMS, 33-42, 1992.
- P.E. McHugh, R. Mohrmann, “Modelling of creep in a Ni base superalloy using a single crystal plasticity model”, Computational Materials Science, 9 (1997), 134-140.
- E.N, Tedj aseputra, “ Numerical simulation of microstructure-based crystal plasticity finite element model for titanium and nickel alloys” (Ph.D. thesis, The Ohio State University, 2012).
- U.S. Keshavarz, S. Ghosh, “Multi-scale plasticity finit element model approach to modelling nickel-based superalloys”, Acta Materiala, 61 (2013), 6549-6561.
- M. Shenoy, J. Zhang, D. L. McDowell, “Estimating fatigue sensitivity to polycrystalline Ni-base superalloy microstructures using a computational approach”, Fatigue and fracture of enginering materials and structures, 30 (2007), 889-904.
- R.J. Asaro, A. Needleman, “Overview no. 42 Texture development and strain hardening in rate dependent polycrystals”, Acta metallurgical, 33 (1985), 923-953.
- G. Martin, N. Ochoa, K. Sai, E. Hervé-Luanco, G. Cailletaud, “A multiscale model for the elastoviscoplastic behavior of Directionally Solidified alloys: Application to FE structural computations”, International Journal of Solids and Structures, 51 (2014), 1175-1187.