Reverse vs. Effective Strain in the Ring-Rolling of Superalloy 718
Jon Alkorta
CEIT and TECNUN, University of Navarra, Paseo Manuel de Lardizabal 15, 20018 San Sebastian, Spain
Search for more papers by this authorJose M. Martinez-Esnaola
CEIT and TECNUN, University of Navarra, Paseo Manuel de Lardizabal 15, 20018 San Sebastian, Spain
Search for more papers by this authorIsabel Gutierrez
CEIT and TECNUN, University of Navarra, Paseo Manuel de Lardizabal 15, 20018 San Sebastian, Spain
Search for more papers by this authorDoug Rawson
FORGITAL Italy SpA, Via G. Spezzapria 1, Seghe, 36010 Velo d'Astico, Italy
Search for more papers by this authorMarco Verza
FORGITAL Italy SpA, Via G. Spezzapria 1, Seghe, 36010 Velo d'Astico, Italy
Search for more papers by this authorSamuele Reghellin
FORGITAL Italy SpA, Via G. Spezzapria 1, Seghe, 36010 Velo d'Astico, Italy
Search for more papers by this authorJavier Gil Sevillano
CEIT and TECNUN, University of Navarra, Paseo Manuel de Lardizabal 15, 20018 San Sebastian, Spain
Search for more papers by this authorJon Alkorta
CEIT and TECNUN, University of Navarra, Paseo Manuel de Lardizabal 15, 20018 San Sebastian, Spain
Search for more papers by this authorJose M. Martinez-Esnaola
CEIT and TECNUN, University of Navarra, Paseo Manuel de Lardizabal 15, 20018 San Sebastian, Spain
Search for more papers by this authorIsabel Gutierrez
CEIT and TECNUN, University of Navarra, Paseo Manuel de Lardizabal 15, 20018 San Sebastian, Spain
Search for more papers by this authorDoug Rawson
FORGITAL Italy SpA, Via G. Spezzapria 1, Seghe, 36010 Velo d'Astico, Italy
Search for more papers by this authorMarco Verza
FORGITAL Italy SpA, Via G. Spezzapria 1, Seghe, 36010 Velo d'Astico, Italy
Search for more papers by this authorSamuele Reghellin
FORGITAL Italy SpA, Via G. Spezzapria 1, Seghe, 36010 Velo d'Astico, Italy
Search for more papers by this authorJavier Gil Sevillano
CEIT and TECNUN, University of Navarra, Paseo Manuel de Lardizabal 15, 20018 San Sebastian, Spain
Search for more papers by this authorAnthony Banik
Search for more papers by this authorJoel Andersson
Search for more papers by this authorIan Dempster
Search for more papers by this authorRandy Helmink
Search for more papers by this authorXingbo Liu
Search for more papers by this authorAgnieszka Wusatowska-Sarnek
Search for more papers by this authorSummary
This chapter contains sections titled:
-
Introduction
-
Model and Input parameters
-
Results
-
Discussion
-
Conclusions
-
Acknowledgements
References
- W.A. Backofen, “ Deformation Processing”, Addison-Wesley, New York (1972).
- S.B. Davenport, R.L. Higginson, Strain path effects under hot-working: an introduction, J. Mater. Process. Technol., S.B., 98 (2000) 267.
- D. Jorge-Badiola, I. Gutierrez, Study of the strain reversal effect on the recrystallization and strain-induced precipitation in a Nb-microalloyed steel, Acta Mater., 52 (2004), 333.
- L. Sun, K. Muszka, B.P. Wynne, E.J. Palmière, The effect of strain path reversal on high-angle boundary formation by grain subdivision in a model austenitic steel, Scripta Mater., 64 (2010) 280.
- T. Lim, L. Pillinger, P. Hartley, A finite-element simulation of profile ring rolling using a hybrid mesh model, J. Mater. Proc. Technol., 80-81 (1998), 199.
- Y.K. Hu, W.K. Liu, ALE finite element formulation for ring rolling analysis, Int. J. Num. Methods Eng., 33 (1992), 1217.
- K. Davey, M.J. Ward, An efficient solution method for finite element ring-rolling simulation, Int. J. Num. Methods Eng., 47 (2000), 1997.
- K. Traoré, Simulation thermoméchanique du laminage circulaire. Développement d'une formulation quasi-eulérienne tridimensionnelle sur une architecture parallèle, Doctoral dissertation, ENSMP, France (2001).
- G. Losilla, P. Montmitonnet, M. Bouzaianne, P.E. Clément, Modélisation du laminage circulaire par éléments finis, Actes Conf. Matériaux, Tours (2002).
- D. Chabin, P. Y. Emptas, M. Bouzaiane, Numerical simulation of ring rolling process — Application to superalloy 718 parts, AIP Conf. Proc. 907(2007) 1366.
- J. Huez, J.L. Noyes, J. Coupu, Three-dimensional finite element simulation of hot ring Rolling, “ Superalloys 718. 625. 706 and Various Derivatives”, E. Loria, ed., The Minerals, Metals and Materials Society (2001), p. 249.
10.7449/2001/Superalloys_2001_249_258 Google Scholar
- J.-T. Yeom, J.H. Kim, N.-K. Park, S.S. Choi, C. S. Lee, Ring-rolling design for a large-scale ring product of Ti-6Al 4V alloy, J. Mater. Proc. Technol., 187-188 (2007), 747.
- Z. Sun, H. Yang, X. Ou, Thermo-mechanical coupled analysis of hot ring rolling process, Trans. Nonferrous Met. Soc. China, 18 (2008), 1216
- J.-T. Yeom, J.H. Kim, J.-K. Hong, N.-K. Park, C.S. Lee, FE Analysis of Microstructure Evolution during Ring Rolling Process of a Large-Scale Ti-6Al-4V Alloy Ring, Mater. Sci. Forum, 638-642 (2010), 223.
- J. Yeom, E. Jung, J. Kim, J. Hong, N. Park, K. Kim, J. Lee, and S. Choi, FE Simulation of Microstructure Evolution during Ring Rolling Process of INCONEL Alloy, Proc. 7th Int. Symp. “Superalloy 718 and Derivatives”, p. 783, E.A. Ott, J.R. Groh, A. Banik, I. Dempster, T.P. Gabb, R. Helmink, X. Liu, A. Mitchell, G.P. Sjöberg, A. Wussatowska-Sarnek, eds., TMS, Wiley, New York (2010).
- Z.W. Wang, J.P. Fan, D.P. Hu, C.Y. Tang, C.P. Tsui, Complete modeling and parameter optimization for virtual ring rolling, Int J. Mech. Sci., 52 (2010), 1325.
- J. Zhou, F. Wang, M. Wang, W. Xu, Study on forming defects in the rolling process of large aluminum alloy ring via adaptive controlled simulation, Int. J. Adv. Manuf. Technol, 55 (2011), 95.
- L. Guo, H. Yang, Numerical Modelling and Simulation of Radial-Axial Ring Rolling Process, Chapter 17th in “Numerical Analysis. Theory and Application, J. Awrejcewicz, ed., In Tech, 2011.
- V. Jenkouk, G. Hirt, M. Franztke, T Zhang, Finite element modelling with integrated closed-loop control, CIRP Annals-Manufacturing Technology, 61 (2012), 267.
- Abaqus, Dassault Systemes.
- H.Y. Zhang, S.H. Zhang, Z.X. Li, and M. Cheng, Hot die forging process optimization of superalloy IN718 turbine disk using processing map and finite element method, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 224 (2010), 103.
- G.A. Greene, C.C. Finfrock, T.F. Irvine Jr., Total hemispherical emissivity of oxidized Inconel 718 in the temperature range 300-1000d̀C, Experimental Thermal and Fluid Science, 22 (2000), 145.
- J.L. Song, AL. Dowson, M.H. Jacobs, J. Brooks, I. Beden, Coupled thermo-mechanical finite-element modeling of hot ring rolling process, J. Mater. Processing Technol., 121 (2002), 332.
- D. Fournier, A. Pineau, Low cycle behaviour of Inconel 718 at 298 K and 823 K, Metall. Trans. A, 8A (1977) 1095.
- M. Clavel, A. Pineau, Fatigue Behaviour of Two Nickel-base Alloys. I: Experimental Results on Low Cycle Fatigue, Fatigue Crack Propagation and Substructures, Mater. Sci. Eng., 55 (1982), 157.
- J.L. Chaboche, Modeling of the cyclic response and ratchetting eects on inconel-718 alloy, European Journal of Mechanics, A/Solids, 10 (1991), 101.
- F. Taina, M. Pasqualon, V. Velay, D. Delagnes, P. Lours, Effetc of the LCF loading cycle characteristics on the fatigue life of Inconel 718 at high temperature, Proc. 7th. Int. Symp. On Superalloy 718 and Derivatives, p. 893. E.A. Ott et al., eds., TMS, 2010.
- H. Kim, K.S. Kim, H. Park, Ratcheting behavior of Inconel 718 under multiaxial loading, J. Solid Mech. Mater. Eng., 4 (2010), 39.
- D. Gustafsson, J. J. Moverare, K. Simonsson, S. Sjöström, Modeling of the Constitutive Behavior of Inconel 718 at Intermediate Temperatures, J. Eng. Gas Turbines Power, 133 (2011), 094501.
- K. Prasad, R. Sarkar, P. Ghosal, V. Kumar, M. Sundararaman, High temperature low cycle fatigue deformation behaviour of forged IN 718 superalloy turbine disc, Mater. Sci. Eng. A, 568 (2013), 239.