Microstructure of Ice Cream and Frozen Dairy Desserts
Samantha R. VanWees
University of Wisconsin-Madison, 1605 Linden Drive, Madison, WI 53706 USA
Search for more papers by this authorRichard W. Hartel
University of Wisconsin-Madison, 1605 Linden Drive, Madison, WI 53706 USA
Search for more papers by this authorSamantha R. VanWees
University of Wisconsin-Madison, 1605 Linden Drive, Madison, WI 53706 USA
Search for more papers by this authorRichard W. Hartel
University of Wisconsin-Madison, 1605 Linden Drive, Madison, WI 53706 USA
Search for more papers by this authorMamdouh Mahmoud Abdel-Rahman El-Bakry
Universitat Autònoma of Barcelona, Barcelona, Spain
Search for more papers by this authorAntoni Sanchez
Universitat Autònoma of Barcelona, Barcelona, Spain
Search for more papers by this authorBhavbhuti M. Mehta
Anand Agricultural University, Gujarat, India
Search for more papers by this authorSummary
Frozen dairy desserts are complex, multiphase systems containing ice, water, air, and fat. These products are frozen using a scraped-surface heat exchanger, which creates ice crystals, a freeze-concentrated serum phase, networks of destabilized fat, and incorporates air cells into the semi-solid product. Most products then continue to develop the final microstructure during hardening and storage. Frozen dairy desserts have a variety of physical, rheological, and sensorial properties depending on the formulation and processing parameters used during formulation, production, and storage.
References
- Adapa, S., Dingeldein, H., Schmidt, K. A. and Herald, T. J. (2000) Rheological properties of ice cream mixes and frozen ice creams containing fat and fat replacers. Journal of Dairy Science, 83(10), 2224–2229. doi: 10.3168/jds.S0022-0302(00)75106-X.
- Aleong, J. M., Frochot, S. and Goff, H. D. (2008) Ice recrystallization inhibition in ice cream by propylene glycol monostearate. Journal of Food Science, 73(9), E463–E468. doi: 10.1111/j.1750-3841.2008.00954.x.
- Amador, J., Hartel, R. W. and Rankin, S. A. (2017) The effects of fat structures and mix viscosity on physical and sensory properties of ice cream. Journal of Food Science, 82(8), 1851–1860.
- Arbuckle, W. S. (1966) Relation of freezing and hardening to the body and texture of ice cream. Ice Cream Field and Trade Journal, 48(6), 34–47.
- Bahram-Parvar, M. and Goff, H. D. (2013) Basil seed gum as a novel stabilizer for structure formation and reduction of ice recrystallization in ice cream. Dairy Science & Technology, 93(3), 273–285. doi: 10.1007/s13594-013-0122-9.
- Ben-Yoseph, E. and Hartel, R. W. (1998) Computer simulation of ice recrystallization in ice cream during storage. Journal of Food Engineering, 38(3), 309–329. doi: 10.1016/S0260-8774(98)00116-2.
- Berger, K. G, Bullimore, B. K., White, G. W. and Wright, W. B. (1972) The structure of ice cream: Part 1. Dairy Industries, 37(8), 419–425.
- Bolliger, S., Goff, H. D. and Tharp, B. W. (2000a) Correlation between colloidal properties of ice cream mix and ice cream. International Dairy Journal, 10(4), 303–309. doi: 10.1016/S0958-6946(00)00044-3.
- Bolliger, S., Wildmoser, H., Goff, H. D. and Tharp, B. W. (2000b) Relationships between ice cream mix viscoelasticity and ice crystal growth in ice cream. International Dairy Journal, 10(11), 791–797. doi: 10.1016/S0958-6946(00)00108-4.
- Caldwell, K. B., Goff, H. D. and Stanley, D. W. (1992) A low-temperature scanning electron microscopy study of ice cream. II. Influence of selected ingredients and processes. Food Structure, 11(1), 11–23.
- Chang, Y. and Hartel, R. W. (2002a) Development of air cells in a batch ice cream freezer. Journal of Food Engineering, 55(1), 71–78. doi: 10.1016/S0260-8774(01)00243-6.
- Chang, Y. and Hartel, R. W. (2002b) Measurement of air cell distributions in dairy foams. International Dairy Journal, 12(5), 463–472. doi: 10.1016/S0958-6946(01)00171-6.
- Chang, Y. and Hartel, R. W. (2002c) Stability of air cells in ice cream during hardening and storage. Journal of Food Engineering, 55(1), 59–70. doi: 10.1016/S0260-8774(01)00242-4.
- Clarke, C., Buckley, S. L. and Lindner, N. (2002) Ice structuring proteins – A new name for antifreeze proteins. Cryoletters, 23(2), 89–92.
-
Clarke, C. J. (2004) The Science of Ice Cream. London: Royal Society of Chemistry.
10.1039/9781847552150 Google Scholar
- Cole, W. C. (1940) Factors affecting shrinkage. Ice Cream Field National Trade Journal, 36, 30–32.
- Cook, K. L. and Hartel, R. W. (2010) Mechanisms of ice crystallization in ice cream production. Comprehensive Reviews in Food Science and Food Safety, 9(2), 213–222. doi: 10.1111/j.1541-4337.2009.00101.x.
- Daw, E. and Hartel, R. W. (2015) Fat destabilization and melt-down of ice creams with increased protein content. International Dairy Journal, 43, 33–41. doi: 10.1016/j.idairyj.2014.12.001.
- Dickinson, E. and Gelin, J. L. (1992) Influence of emulsifier on competitive adsorption of αs-casein + β-lactoglobulin in oil-in-water emulsions. Colloids and Surfaces, 63(3–4), 329–335. doi: 10.1016/0166-6622(92)80255-Z.
- Donhowe, D. P. and Hartel, R. W. (1996a) Recrystallization of ice during bulk storage of ice cream. International Dairy Journal, 6(11–12), 1209–1221. doi: 10.1016/S0958-6946(96)00030-1.
- Donhowe, D. P. and Hartel, R. W. (1996b) Recrystallization of ice in ice cream during controlled accelerated storage. International Dairy Journal, 6(11–12), 1191–1208. doi: 10.1016/S0958-6946(96)00029-5.
- Donhowe, D. P., Hartel, R. W. and Bradley, R. L. (1991) Determination of ice crystal size distributions in frozen desserts. Journal of Dairy Science, 74(10), 3334–3344. doi: 10.3168/jds.S0022-0302(91)78521-4.
- Drewett, E. M. and Hartel, R. W. (2007) Ice crystallization in a scraped surface freezer. Journal of Food Engineering, 78(3), 1060–1066. doi: 10.1016/j.jfoodeng.2005.12.018.
- Dubey, U. K. and White, C. H. (1997) Ice cream shrinkage: A problem for the ice cream industry. Journal of Dairy Science, 80(12), 3439–3444.
- Duquenne, B. Vergauwen, B., Capdepon, C., Boone, M. A., De Schryver, T., Van Hoorebeke, L., Van Weyenberg, S., Stevens P. and De Block, J. (2016) Stabilising frozen dairy mousses by low molecular weight gelatin peptides. Food Hydrocolloids, 60, 317–323. doi: 10.1016/j.foodhyd.2016.04.001.
- Eisner, M. D. (1998) Low temperature ice cream extrusion technology and related ice cream properties. European Dairy Magazine, 24–29.
-
Euston, S. R. (2008) Emulsifiers in dairy products and dairy substitutes. In: Food Emulsifiers and Their Applications, Second Edition. New York, New York: Springer US, 195–232.
10.1007/978-0-387-75284-6_7 Google Scholar
- Fennema, O. R. (1973) Low-Temperature Preservation of Foods and Living Matter. New York, New York: Marcel Dekker, Inc.
- Flores, A. A. and Goff, H. D. (1999) Ice crystal size distributions in dynamically frozen model solutions and ice cream as affected by stabilizers. Journal of Dairy Science, 82(7), 1399–1407. doi: 10.3168/jds.S0022-0302(99)75366-X.
- Food and Drug Administration (2016) Frozen Desserts: Section 135. In: Code of Federal Regulations, Title 21.
- Fujimoto, A. T. (1926) Some Factors Influencing the Rate Of Crystallization of Lactose in Ice Cream. Ohio State University.
- Goff, H. D. (1992) Low-temperature stability and the glassy state in frozen foods. Food Research International, 25(4), 317–325. doi: 10.1016/0963-9969(92)90128-R.
- Goff, H. D. (1997a) Colloidal aspects of ice cream – A review. International Dairy Journal, 7(6–7), 363–373. doi: 10.1016/S0958-6946(97)00040-X.
- Goff, H. D. (1997b) Instability and partial coalescence in whippable dairy emulsions. Journal of Dairy Science, 80(10), 2620–2630. doi: 10.3168/jds.S0022-0302(97)76219-2.
- Goff, H. D. (2002) Formation and stabilisation of structure in ice-cream and related products. Current Opinion in Colloid & Interface Science, 7(5–6), 432–437. doi: 10.1016/S1359-0294(02)00076-6.
-
Goff, H. D. and Hartel, R. W. (2013) Ice Cream, 7th Edition. New York, New York: Springer US.
10.1007/978-1-4614-6096-1 Google Scholar
- Goff, H. D. and Jordan, W. K. (1989) Action of emulsifiers in promoting fat destabilization during the manufacture of ice cream. Journal of Dairy Science, 72(1), 18–29. doi: 10.3168/jds.S0022-0302(89)79075-5.
- Goff, H. D., Liboff, M., Jordan, W. K. and Kinsella, J. E. (1987) The effects of polysorbate 80 on the fat emulsion in ice cream mix: Evidence from transmission electron microscopy studies. Food Structure, 6(2).
- Goff, H. D. and Sahagian, M. E. (1996) Glass transitions in aqueous carbohydrate solutions and their relevance to frozen food stability. Thermochimica Acta, 280, 449–464. doi: 10.1016/0040-6031(95)02656-8.
- Goff, H. D., Verespej, E. and Smith, A. K. (1999) A study of fat and air structures in ice cream. International Dairy Journal, 9(11), 817–829. doi: 10.1016/S0958-6946(99)00149-1.
- Guinard, J. X., Zoumas-Morse, C., Mori, L., Uatoni, B., Panyam, D. and Kilara, A. (1997) Sugar and fat effects on sensory properties of ice cream. Journal of Food Science, 62(5), 1087–1094. doi: 10.1111/j.1365-2621.1997.tb15044.x.
- Hagiwara, T. and Hartel, R. W. (1996) Effect of sweetener, stabilizer, and storage temperature on ice recrystallization in ice cream. Journal of Dairy Science, 79(5), 735–744. doi: 10.3168/jds.S0022-0302(96)76420-2.
-
Hagiwara, T., Hartel, R. W. and Matsukawa, S. (2006) Relationship between recrystallization rate of ice crystals in sugar solutions and water mobility in freeze-concentrated matrix. Food Biophysics, 1(2), 74–82. doi: 10.1007/s11483-006-9009-0.
10.1007/s11483-006-9009-0 Google Scholar
- Hartel, R. W. (1996) Ice crystallization during the manufacture of ice cream. Trends in Food Science & Technology, 7(10), 315–321. doi: 10.1016/0924-2244(96)10033-9.
-
Hartel, R. W. (1998) Mechanisms and kinetics of recrystalliztion in ice cream. In: The Properties of Water in Foods: ISOPOW 6, First edition. London: Thomson Science, 287–319.
10.1007/978-1-4613-0311-4_14 Google Scholar
- Hartel, R. W. (2001) Crystallization in Foods. Gaithersburg, MD: Aspen Publishers.
- Hartel, R. W. and Shastry, A. V. (1991) Sugar crystallization in food products. Critical Reviews in Food Science and Nutrition, 30(1), 49–112. doi: 10.1080/10408399109527541.
- Herrera, M. L., M'Cann, J. I., Ferrero, C., Hagiwara, T. Zaritzky, N. E. and Hartel, R. W. (2007) Thermal, mechanical, and molecular relaxation properties of frozen sucrose and fructose solutions containing hydrocolloids. Food Biophysics, 2(1), 20–28. doi: 10.1007/s11483-007-9025-8.
- Hunziker, O. F. (1926) Condensed milk defects, their causes and preventions. In: Condensed Milk and Milk Powder, 4th edition. La Grange, IL: Published by the author, 330–338.
- Livney, Y. D., Donhowe, D. P. and Hartel, R. W. (1995) Influence of temperature on crystallization of lactose in ice-cream. International Journal of Food Science & Technology, 30(3), 311–320. doi: 10.1111/j.1365-2621.1995.tb01380.x.
- Miller-Livney, T. and Hartel, R. W. (1997) Ice recrystallization in ice cream: Interactions between sweeteners and stabilizers. Journal of Dairy Science, 80(3), 447–456. doi: 10.3168/jds.S0022-0302(97)75956-3.
- Muse, M. R. and Hartel, R. W. (2004) Ice cream structural elements that affect melting rate and hardness. Journal of Dairy Science, 87(1), 1–10.
-
Nickerson, T. A. (1956) Lactose crystallization in ice cream. II. Factors affecting rate and quantity. Journal of Dairy Science, 39(10), 1342–1350. doi: 10.3168/jds.S0022-0302(56)94858-5.
10.3168/jds.S0022-0302(56)94858-5 Google Scholar
- Park, S. H., Jo, J. Y., Chun, J. Y., Hong, G. P., Davaatseren, M. and Choi, M. J. (2015) Effect of frozen storage temperature on the quality of premium ice cream. Korean Journal for Food Science of Animal Resources, 35(6), 793–799. doi: 10.5851/kosfa.2015.35.6.793.
- Regand, A. and Goff, H. D. (2002) Effect of biopolymers on structure and ice recrystallization in dynamically frozen ice cream model systems. Journal of Dairy Science, 85(11), 2722–2732. doi: 10.3168/jds.S0022-0302(02)74359-2.
- Regand, A. and Goff, H. D. (2003) Structure and ice recrystallization in frozen stabilized ice cream model systems. Food Hydrocolloids, 17(1), 95–102. doi: 10.1016/S0268-005X(02)00042-5.
- Regand, A. and Goff, H. D. (2006) Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass. Journal of Dairy Science, 89(1), 49–57. doi: 10.3168/jds.S0022-0302(06)72068-9.
- Rohenkohl, H. and Kohlus, R. (1999) Foaming of ice cream and the time stability of its bubble size distribution. In: Bubbles in Food. St. Paul, MN: Eagan Press, 45–53.
- Roland, A. M., Phillips, L. G. and Boor, K. J. (1999) Effects of fat replacers on the sensory properties, color, melting, and hardness of ice cream. Journal of Dairy Science, 82(10), 2094–2100. doi: 10.3168/jds.S0022-0302(99)75451-2.
- Ronteltap, A. D. and Prins, A. (1989) Contribution of drainage, coalescence, and disproportionation to the stability of aerated foodstuffs and the consequences for the bubble size distribution as measured by a newly developed optical glass-fibre technique. In: R. D. Bee, P. Richmond and J. Mingings (Eds) Food Colloids. The Proceedings of an International Symposium Organised by the Food Chemistry Group of the Royal Society of Chemistry. Coloworth, UK.
- Roos, Y. H. (2010) Glass transition temperature and its relevance in food processing. Annual Review of Food Science and Technology, 1, 469–496. doi: 10.1146/annurev.food.102308.124139.
- Russell, A. B., Cheney, P. E. and Wantling, S. D. (1999) Influence of freezing conditions on ice crystallisation in ice cream. Journal of Food Engineering, 39(2), 179–191. doi: 10.1016/S0260-8774(98)00161-7.
-
Sahagian, M. E. and Goff, H. D. (1995) Influence of stabilizers and freezing rate on the stress relaxation behavior of freeze-concentrated sucrose solutions at different temperatures. Food Hydrocolloids, 9(3), 181–188. doi: 10.1016/S0268-005X(09)80214-2.
10.1016/S0268-005X(09)80214-2 Google Scholar
- Sakurai, K., Kokubo, S., Hakamata, K. and Yoshida, S. (1996) Effect of production conditions on ice cream melting resistance and hardness. Milchwissenschaft, 51(8), 451–454.
- Schorsch, C., Jones, M. G. and Norton, I. T. (1999) Thermodynamic incompatibility and microstructure of milk protein/locust bean gum/sucrose systems. Food Hydrocolloids, 13(2), 89–99. doi: 10.1016/S0268-005X(98)00074-5.
-
Segall, K. I. and Goff, H. D. (1999) Determination of protein surface concentration for emulsions containing a partially crystalline dispersed phase. Food Hydrocolloids, 13(4), 291–297. doi: 10.1016/S0268-005X(99)00011-9.
10.1016/S0268-005X(99)00011-9 Google Scholar
- Smith, K. E. and Bradley, R. L. (1983) Effects on freezing point of carbohydrates commonly used in frozen desserts. Journal of Dairy Science, 66(12), 2464–2467. doi: 10.3168/jds.S0022-0302(83)82112-2.
- Sofjan, R. P. and Hartel, R. W. (2004) Effects of overrun on structural and physical characteristics of ice cream. International Dairy Journal, 14(3), 255–262. doi: 10.1016/j.idairyj.2003.08.005.
- Sung, K. K. and Goff, H. D. (2010) Effect of solid fat content on structure in ice creams containing palm kernel oil and high-oleic sunflower oil. Journal of Food Science, 75(3), C274–C279. doi: 10.1111/j.1750-3841.2010.01539.x.
- Thaiudom, S. and Goff, H. D. (2003) Effect of κ-carrageenan on milk protein polysaccharide mixtures. International Dairy Journal, 13(9), 763–771. doi: 10.1016/S0958-6946(03)00097-9.
- Thiel, A. E., Hartel, R. W., Spicer, P. T. and Hendrickson, K. J. (2016) Coalescence behavior of pure and natural fat droplets characterized via micromanipulation. Journal of the American Oil Chemists' Society, 93(11), 1467–1477. doi: 10.1007/s11746-016-2896-4.
- Turan, S., Kirkland, M., Trusty, P. A. and Campbell, I. (1999) Interaction of fat and air in ice cream. Dairy Industry International, 64, 27–31.
- Vega, C., Andrew, R. A. and Goff, H. D. (2004) Serum separation in soft-serve ice cream mixes. Milchwissenschaft, 59(5–6), 284–287.
- Vega, C. and Goff, H. D. (2005) Phase separation in soft-serve ice cream mixes: rheology and microstructure. International Dairy Journal, 15(3), 249–254. doi: 10.1016/j.idairyj.2004.07.007.
- Walstra, P., Wouters, J. T. M. and Geurts, T. J. (2006) Dairy Science and Technology, Second Edition. Boco Ratan, FL: CRC Press.
- Warren, M. M. (2015) Understanding melt behavior of ice cream: Influence of the microstructure and composition on drip-through rate of ice cream products. University of Wisconsin-Madison.
- Warren, M. M. and Hartel, R. W. (2014) Structural, compositional, and sensorial properties of United States commercial ice cream products. Journal of Food Science, 79(10), E2005–2013. doi: 10.1111/1750-3841.12592.
- Wildmoser, H., Scheiwiller, J. and Windhab, E. J. (2004) Impact of disperse microstructure on rheology and quality aspects of ice cream. LWT – Food Science and Technology, 37(8), 881–891. doi: 10.1016/j.lwt.2004.04.006.
- Windhab, E. J. and Bolliger, S. (1995) Combined aerator/freezer for ice cream manufacture. European Dairy Magazine, 7(1), 28–34.
- Windhab, E. J. and Wildmoser, H. (2002) ‘Extrusion: A model technology for the manufacture of ice cream’, Bulletin of the International Dairy Federation, 374, 43–49.
- Yuennan, P., Sajjaanantakul, T. and Goff, H. D. (2014) Effect of okra cell wall and polysaccharide on physical properties and stability of ice cream. Journal of Food Science, 79(8), E1522–E1527. doi: 10.1111/1750-3841.12539.