Acidithiobacillus †,‡
Rich Boden
School of Biological and Marine Sciences, University of Plymouth, Plymouth, Devon, UK
Sustainable Earth Institute, University of Plymouth, Plymouth, Devon, UK
Search for more papers by this authorLee P. Hutt
School of Biological and Marine Sciences, University of Plymouth, Plymouth, Devon, UK
Search for more papers by this authorRich Boden
School of Biological and Marine Sciences, University of Plymouth, Plymouth, Devon, UK
Sustainable Earth Institute, University of Plymouth, Plymouth, Devon, UK
Search for more papers by this authorLee P. Hutt
School of Biological and Marine Sciences, University of Plymouth, Plymouth, Devon, UK
Search for more papers by this authorAbstract
A.ci.di.thi.o.ba.cil'lus. L. masc. adj. acidus sour, tart; Gr. neut. n. theîon sulfur, brimstone (transliterated to L. neut. n. thium); L. masc. n. bacillus a short rod, a short wand; N.L. masc. n. Acidithiobacillus acid-loving sulfur rodlet.
Proteobacteria / Acidithiobacillia / Acidithiobacillales / Acidithiobacillaceae / Acidithiobacillus
Cells are short, motile rods with a single polar flagellum. Some strains have an obvious glycocalyx. Gram-stain-negative. Endospores, exospores, and cysts are not produced. Obligate chemolithoautotrophs, with electron donors including reduced inorganic sulfur species such as thiosulfate, tetrathionate, and elementary sulfur (viz. α-S8 and μ-S∞). Some species can also use molecular hydrogen, ferrous iron, or metal sulfides such as pyrite (FeS2) as electron donors. Some species are diazotrophic. Heterotrophy, methylotrophy, and the so-called C1 autotrophy are not observed. Carbon assimilated from CO2 via the transaldolase variant of the Calvin–Benson–Bassham cycle. Carboxysomes are used for CO2 concentration. Obligately respiratory, with molecular oxygen, ferric iron, or elementary sulfur as terminal electron acceptors, varying by species. Most strains grow in the range of 20–37°C, though some have a narrower range, and one species is thermophilic. Optimal growth from pH 2.0 to 5.8 and an overall range of pH −0.6 to 6.0. The major respiratory quinone is ubiquinone-8 (UQ-8), and traces of ubiquinone-9 (UQ-9), ubiquinone-7 (UQ-7), and menaquinones (MK) are found in some species. The dominant fatty acids are palmitic acid (C16:0), vaccenic acid (C18:1), cis-11-cyclopropyl-nonadecanoic acid (C19:0 cyclo ω8c), palmitoleic acid (C16:1), myristic acid (C14:0), and lauric acid (C12:0). The dominant polar lipids are cardiolipin, aminolipids, phospholipid, phosphatidylglycerol, and phosphatidylethanolamine. The G + C fraction of genomic DNA is around 52.0–63.9 mol%. Form IAc (carboxysomal) and Form II (cytoplasmic) d-ribulose 1,5-bisphosphate carboxylase/oxygenase are used, as are forms bo 3 and bd-I ubiquinol oxidases and, in the iron-oxidizing species, the aa 3-type cytochrome c oxidase. A description of Acidithiobacillus concretivorus comb. nov. is also given.
DNA G + C content (mol%): 52.0–63.9.
Type species: Acidithiobacillus thiooxidans Kelly and Wood 2000VP (Thiobacillus thiooxidans Waksman and Joffe 1922AL).
References
- Akaike H (1973) Information theory and extension of the maximum likelihood principle. In Second International Symposium on Information Theory, Tsahkadsor, Armenia, USSR, September 2–8, 1971, vol. 267–281, BN Petrov & F Csáki (Eds). Akadémiai Kladó, Budapest.
-
Boden R & Hutt LP (2018) Determination of kinetic parameters and metabolic modes using the chemostat. In Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation. Handbook of Hydrocarbon and Lipid Microbiology, R Steffan (Ed). Springer Nature, Cham, Switzerland; pp 1–42.
10.1007/978-3-319-44535-9_24-1 Google Scholar
- Boden R, Hutt LP, & Rae AW (2017a) Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the ‘Proteobacteria’, and four new families within the orders Nitrosomonadales and Rhodocyclales . Int J Syst Evol Microbiol 67: 1191–1205.
- Boden R, Scott KM, Williams J, Russel S, Antonen K, Rae AW et al. (2017b) An evaluation of Thiomicrospira, Hydrogenovibrio and Thioalkalimicrobium: reclassification of four species of Thiomicrospira to each Thiomicrorhabdus gen. nov. and Hydrogenovibrio, and reclassification of all four species of Thioalkalimicrobium to Thiomicrospira . Int J Syst Evol Microbiol 67: 1140–1151.
- Booth GH & Sefton GV (1970) Vapour phase inhibition of Thiobacilli and Ferrobacilli: a potential preservative for pyritic museum specimens. Nature 226: 185–186.
- Brock TD (1975) Effect of water potential on growth and iron oxidation by Thiobacillus ferrooxidans . Appl Microbiol 29: 495–501.
- Bryant RD, McGroarty KM, Costerton JW, & Laishley EJ (1983) Isolation and characterization of a new acidophilic Thiobacillus species (T. albertis). Can J Microbiol 29: 1159–1170.
-
Da Costa MS, Albuquerque L, Nobre MF, & Wait R (2011) The identification of fatty acids in bacteria. In Taxonomy of Prokaryotes, Methods in Microbiology, vol. 38, F Rainey & A Oren (Eds). Elsevier, London; pp 183–196.
10.1016/B978-0-12-387730-7.00008-5 Google Scholar
- Debye P & Hückel E (1923) Zur Theorie der Elektrolyte I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Phys Z 24: 185–206.
- Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797.
- Garcia O Jr & da Silva LL (1991) Differences in growth and iron oxidation among Thiobacillus ferrooxidans cultures in the presence of toxic metals. Biotechnol Lett 13: 567–570.
- Gupta SG & Agate AD (1986) Preservation of Thiobacillus ferrooxidans and Thiobacillus thiooxidans with activity check. Antonie van Leeuwenhoek 52: 121–127.
- Haines TH & Dencher NA (2002) Cardiolipin: a proton trap for oxidative phosphorylation. FEBS Lett 528: 35–39.
- Hallberg KB & Lindström EB (1994) Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile. Microbiology (UK) 140: 3451–3456.
- Hallberg KB, González-Toril E, & Johnson DB (2010) Acidithiobacillus ferrivorans sp. nov.: facultatively anaerobic, psychrotolerant iron- and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles 14: 9–19.
- He H, Xia J-L, Huang G-H, Jiang H-C, Tao X-X, Zhao Y-D et al. (2011) Analysis of the elemental sulfur biooxidation by Acidithiobacillus ferrooxidans with sulfur K-edge XANES. World J Microbiol Biotechnol 27: 1927–1931.
- Hedrich S & Johnson DB (2013a) Acidithiobacillus ferridurans sp. nov., an acidophilic iron-, sulfur- and hydrogen-metabolizing chemolithoautotrophic gammaproteobacterium. Int J Syst Evol Microbiol 63: 4018–4025.
- Hedrich S & Johnson DB (2013b) Aerobic and anaerobic oxidation of hydrogen by acidophilic bacteria. FEMS Microbiol Lett 349: 40–45.
- Hedrich S, Schlömann M, & Johnson DB (2011) The iron-oxidizing proteobacteria. Microbiology (UK) 157: 1551–1564.
- Hoffman LE & Hendrix JL (1976) Inhibition of Thiobacillus ferrooxidans by soluble silver. Biotechnol Bioeng 18: 1161–1165.
- Hurvich CM & Tsai C-L (1989) Regression and time series model selection in small samples. Biometrika 76: 297–307.
- Imai K, Sugio T, Tsuchida T, & Tano T (1975) Effect of heavy metal ions on the growth and iron-oxidizing activity of Thiobacillus ferrooxidans . Agric Biol Chem 39: 1349–1354.
- Ingledew WJ (1982) Thiobacillus ferrooxidans: the bioenergetics of an acidophilic chemolithotroph. Biochim Biophys Acta 683: 89–117.
- Jack TR, Sullivan EA, & Zajic JE (1980) Growth inhibition of Thiobacillus thiooxidans by metals and reductive detoxification of vanadium (V). Eur J Appl Microbiol Biotechnol 9: 21–30.
- Johnson DB (1995) Selective solid media for isolating and enumerating acidophilic bacteria. J Microbiol Methods 23: 205–218.
- Jones GE & Benson AA (1965) Phosphatidyl glycerol in Thiobacillus thiooxidans . J Bacteriol 89: 260–261.
- Katayama-Fujimura Y, Tsuzaki N, & Kuraishi H (1982) Ubiquinone, fatty acid and DNA base composition determination as a guide to the taxonomy of the genus Thiobacillus . J Gen Microbiol 128: 1599–1611.
-
Kelly DP (1990) Energetics of chemolithotrophs. In Bacterial Energetics, T Krulwich (Ed). Academic Press, San Diego; pp 479–503.
10.1016/B978-0-12-307212-2.50020-X Google Scholar
- Kelly DP & Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50: 511–516.
- Kelly DP, Chambers LA, & Trudinger PA (1969) Cyanolysis and spectrophotometric estimation of trithionate in mixture with thiosulfate and tetrathionate. Anal Chem 41: 898–901.
-
Kelly DP, Mason J, & Wood AP (1987) Energy metabolism in chemolithotrophs. In Microbial Growth on C
1
Compounds, Proceedings of the 5th International Symposium, HW Verseveld & JA Duine (Eds). Martinus Nijhoff, Dordrecht; pp 186–194.
10.1007/978-94-009-3539-6_23 Google Scholar
- Kingsbury JM & Barghoorn ES (1954) Silica gel as a microbiological medium: potentialities and a new method of preparation. Appl Microbiol 2: 5–8.
- Kumar S, Stecher G, Li M, Knyaz C, & Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35: 1547–1549.
- LaCombe Barron J & Lueking DR (1990) Growth and maintenance of Thiobacillus ferrooxidans cells. Appl Environ Microbiol 56: 2801–2806.
- Le SQ & Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25: 1307–1320.
- Lesté-Lasserre P (2001) Sulfur allotrope chemistry. Ph.D. Thesis, McGill University, Montreal, Canada.
- Lusty JR, Hughes MN, & Kelly DP (2006) Inhibitory effects of sulfamic acid on three thiosulfate-oxidizing chemolithotrophs. FEMS Microbiol Lett 264: 70–73.
- Mahapatra SSR & Mishra AK (1984) Inhibition of iron oxidation by Thiobacillus ferrooxidans by toxic metals and its alleviation by EDTA. Curr Microbiol 11: 1–6.
- Mangold S, Rao Jonna V, & Dopson M (2013) Response of Acidithiobacillus caldus toward suboptimal pH conditions. Extremophiles 17: 689–696.
- Ňancucheo I, Rowe OF, Hedrich S, & Johnson DB (2016) Solid and liquid media for isolating and cultivating acidophilic and acid-tolerant sulfate-reducing bacteria. FEMS Microbiol Lett 363: fnw083.
- Negishi A, Muraoka T, Maeda T, Takeuchi F, Kanao T, Kamimura K et al. (2005) Growth inhibition by tungsten in the sulfur-oxidizing bacterium Acidithiobacillus thiooxidans . Biosci Biotechnol Biochem 69: 2073–2080.
- Onysko SJ, Kleinmann RLP, & Erickson PM (1984) Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid, and sodium lauryl sulfate. Appl Environ Microbiol 48: 229–231.
- Parker CD (1945) The corrosion of concrete. 1. The isolation of a species of bacterium associated with the corrosion of concrete exposed to atmospheres containing hydrogen sulphide. Aust J Exp Biol Med Sci 23: 81–90.
- Parker CD & Temple KL (1957) Genus V. Thiobacillus Beijerinck, 1904. In Bergey's Manual of Determinative Bacteriology, RS Breed, EGD Murray, & NR Smith (Eds). Baltimore, Williams & Wilkins Co; pp 83–88.
- Parker CT, Tindall BJ, & Garrity GM (2019) International code of nomenclature of prokaryotes. Int J Syst Evol Microbiol 69: S1–S111.
- Pirt SJ (1975) Principles of Microbe and Cell Cultivation. Blackwell Scientific Publications, London.
- Schaeffer WI & Umbreit WW (1963) Phosphatidylinositol as a wetting agent in sulfur oxidation by Thiobacillus thiooxidans . J Bacteriol 85: 492–493.
- Silver M & Lundgren DG (1968) The thiosulfate-oxidizing enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). Can J Biochem 46: 1215–1220.
- Silverman MP & Lundgren DG (1959) Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. I. An improved medium and a harvesting procedure for securing high cell yields. J Bacteriol 77: 642–647.
- Sisti F, Allegretti P, & Donati E (1996) Reduction of dichromate by Thiobacillus ferrooxidans . Biotechnol Lett 18: 1477–1480.
- Starkey RL, Jones GE, & Frederick LR (1956) Effects of medium agitation and wetting agents on oxidation of sulphur by Thiobacillus thiooxidans . J Gen Microbiol 15: 329–334.
- Steudel R & Eckert B (2003) Solid sulfur allotropes. Top Curr Chem 230: 1–79.
- Temple KL & Colmer AR (1951) The autotrophic oxidation of iron by a new bacterium, Thiobacillus ferrooxidans . J Bacteriol 62: 605–611.
-
Trüper HG & Madigan MT (1999) International committee on systematic bacteriology – subcommittee on the taxonomy of phototrophic bacteria. Minutes of the meetings, 10 September 1997, Vienna, Austria. Int J Syst Bacteriol 49: 925–926.
10.1099/00207713-49-2-925 Google Scholar
- Tu Z, Guo C, Zhang T, Lu G, Wan J, Liao C et al. (2017) Investigation of intermediate sulfur species during pyrite oxidation in the presence and absence of Acidithiobacillus ferrooxidans . Hydrometallurgy 167: 58–65.
- Tuovinen OH & Kelly DP (1973) Studies on the growth of Thiobacillus ferrooxidans: I. Use of membrane filters and ferrous iron agar to determine viable numbers, and comparison with 14CO2-fixation and iron oxidation as measures of growth. Arch Mikrobiol 88: 285–298.
- Tuovinen OH, Niemelä SI, & Gyllenberg HG (1971) Tolerance of Thiobacillus ferrooxidans to some metals. Antonie van Leeuwenhoek 37: 489–496.
- Tuovinen OH, Puhakka J, Hiltunen P, & Dolan KM (1985) Silver toxicity to ferrous iron and pyrite oxidation and its alleviation by yeast extract in cultures of Thiobacillus ferrooxidans . Biotechnol Lett 7: 389–394.
- Tuttle JH & Dugan PR (1976) Inhibition of growth, iron, and sulfur oxidation in Thiobacillus ferrooxidans by simple organic compounds. Can J Microbiol 22: 719–730.
- Umbreit WW, Vogel HR, & Vogler KG (1942) The significance of fat in sulfur oxidation by Thiobacillus thiooxidans . J Bacteriol 43: 141–148.
- Valdés J, Pedroso I, Quatrini R, Dodson RJ, Tettelin H, Blake IIR et al. (2008) Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics 9: 597.
-
Validation List no. 132 (2010) Int J Syst Evol Microbiol 60: 469–472.
10.1099/ijs.0.022855-0 Google Scholar
- Vignais PM, Billoud B, & Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25: 455–501.
- Waksman SA & Joffe JS (1922) Microorganisms concerned in the oxidation of sulfur in the soil. II. The Thiobacillus thiooxidans a new sulfur oxidizing organism isolated from the soil. J Bacteriol 7: 239–256.
- Wang R, Lin J-Q, Liu X-M, Pang X, Zhang C-J, Yang C-L et al. (2019) Sulfur oxidation in the acidophilic autotrophic Acidithiobacillus spp. Front Microbiol 9: 3290.
- Wood AP & Kelly DP (1986) Chemolithotrophic metabolism of the newly-isolated moderately thermophilic, obligately autotrophic Thiobacillus tepidarius . Arch Microbiol 144: 71–77.