Acetobacterium †,‡
Maria V. Simankova
Russian Academy of Sciences, Winogradsky Institute of Microbiology, 7/2, Prospekt 60-letiya Oktyabrya, Moscow, 117312 Russia
Search for more papers by this authorOleg R. Kotsyurbenko
Helmholtz Centre for Infection Research, Environmental Microbiology Laboratory, Inhoffenstrasse 7, Braunschweig, D-38124 Germany
Search for more papers by this authorMaria V. Simankova
Russian Academy of Sciences, Winogradsky Institute of Microbiology, 7/2, Prospekt 60-letiya Oktyabrya, Moscow, 117312 Russia
Search for more papers by this authorOleg R. Kotsyurbenko
Helmholtz Centre for Infection Research, Environmental Microbiology Laboratory, Inhoffenstrasse 7, Braunschweig, D-38124 Germany
Search for more papers by this authorAbstract
A.ce.to.bac.te'ri.um. L. n. acetum vinegar; Gr. neut. n. bakterion a small rod; N.L. neut. n. Acetobacterium vinegar rod.
Firmicutes / “Clostridia” / Clostridiales / “Eubacteriaceae” / Acetobacterium
Oval-shaped, short rods. Gram-stain-positive. Motile. Endospores not formed. Strictly anaerobic. Optimal temperature 27–30°C for mesophilic species, 20–30°C for psychrotolerant species. Optimal pH 7.0–8.0. Colonies are convex, white, slightly yellow, or brownish, 0.6–1.0 mm in diameter. Autotrophic growth occurs by anaerobic oxidation of H2 and reduction of CO2 to acetic acid. Chemo-organotrophic, carrying out homoacetogenic fermentation of reduced substrates, such as fructose and some other monomeric sugars, as well as pyruvate, lactate, glycerol, and methanol; methyl groups of phenyl methyl ethers and betaine are converted to acetate. The acetyl-CoM pathway serves as an energy-conserving process and as a mechanism for autotrophic assimilation of carbon. Cytochromes have not been detected.
DNA G + C content (mol%): 39–45.8.
Type species: Acetobacterium woodii Balch, Schoberth, Tanner and Wolfe 1977, 360.
References
- Aufurch, S., H. Schagger and V. Müller. 2000. Identification of subunits a, b, and c1 from Acetobacterium woodii Na+-F1 F0-ATPase subunits c1, c2, and c3 constitute a mixed c-oligomer. J. Biol. Chem. 275: 33397–33301.
- Bache, R. and N. Pfennig. 1981. Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch. Microbiol. 130: 255–261.
- Balch, W.E., S. Schoberth, R.S. Tanner and R.S. Wolfe. 1977. Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int. J. Syst. Bacteriol. 27: 355–361.
- Braun, M. and G. Gottschalk. 1982. Acetobacterium wieringae sp. nov., a new species producing acetic acid from molecular hydrogen and carbon dioxide. Zentbl. Bakteriol. Mikrobiol. Hyg. I Abt. Orig. C 3: 368–376.
-
Braun, M. and G. Gottschalk. 1983.
In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 10. Int. J. Syst. Bacteriol.
33: 438–440.
10.1099/00207713-33-2-438 Google Scholar
- Brioukhanov, A.L., R.K. Thauer and A. Netrusov. 2002. Catalase and superoxide dismutase in the cells of strictly anaerobic microorga-nisms. Microbiology (En. transl. from Mikrobiologiya) 71: 281–285.
- Buschhorn, H., P. Durre and G. Gottschalk. 1989. Production and utilization of ethanol by the homoacetogen Acetobacterium woodii . Appl. Environ. Microbiol. 55: 1835–1840.
- Conrad, R., F. Bak, H.J. Seitz, B. Thebrath, H.P. Mayer and H. Schutz. 1989. Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment. FEMS Microbiol. Ecol. 62: 285–294.
- Dorner, C. and B. Schink. 1991. Fermentation of mandelate to benzoate and acetate by a homoacetogenic bacterium. Arch. Microbiol. 156: 302–306.
- Egli, C., T. Tschan, R. Scholtz, A.M. Cook and T. Leisinger. 1988. Transformation of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacterium woodii . Appl. Environ. Microbiol. 54: 2819–2824.
- Eichler, B. and B. Schink. 1984. Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe. Arch. Microbiol. 140: 147–152.
-
Eichler, B. and B. Schink. 1985.
In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 18. Int. J. Syst. Bacteriol.
35: 375–376.
10.1099/00207713-35-3-375 Google Scholar
- Hansen, B., M. Bokranz, P. Schonheit and A. Kroger. 1988. ATP formation coupled to caffeate reduction by H2 in Acetobacterium woodii NZVA16. Arch. Microbiol. 150: 447–451.
- Heise, R., V. Müller and G. Gottschalk. 1992. Presence of a sodium-translocating ATPase in membrane vesicles of the homoacetogenic bacterium Acetobacterium woodii . Eur. J. Biochem. 206: 553–557.
- Hippe, H. 1991. Maintenance of methanogenic bacteria. In Kirsop and Doyle (Editors), Maintenance of microorganisms and cultured cells, 2nd edn. Academic Press, London, pp. 101–113.
- Imkamp, F. and V. Müller. 2002. Chemiosmotic energy conservation with Na(+) as the coupling ion during hydrogen-dependent caffeate reduction by Acetobacterium woodii . J. Bacteriol. 184: 1947–1951.
- Kandler, O. and S. Schoberth. 1979. Murein structure of Acetobacterium woodii . Arch. Microbiol. 120: 181–183.
- Kaufmann, F., G. Wohlfarth and G. Diekert. 1997. Isolation of O-demethylase, an ether-cleaving enzyme system of the homoacetogenic strain MC. Arch. Microbiol. 168: 136–142.
- Kotsyurbenko, O.R., A.N. Nozhevnikova, S.V. Kalyuzhny and G.A. Zavarzin. 1993a. Methanogenic digestion of cattle manure under psychrophilic conditions. Microbiology (En. transl. from Mikrobiologiya) 62: 462–467.
- Kotsyurbenko, O.R., A.N. Nozhevnikova and G.A. Zavarzin. 1993b. Methanogenic degradation of organic matter by anaerobic bacteria at low temperature. Chemosphere 27: 1745–1761.
- Kotsyurbenko, O.R., M.V. Simankova, A.N. Nozhevnikova, T.N. Zhilina, N.P. Bolotina, A.M. Lysenko and G.A. Osipov. 1995. New species of psychrophilic acetogens Acetobacterium bakii sp. nov., A. paludosum sp.nov., A. fimetarium sp. nov. Arch. Microbiol. 163: 29–34.
- Kotsyurbenko, O.R., A.N. Nozhevnikova, T.I. Soloviova and G.A. Zavarzin. 1996. Methanogenesis at low temperatures by microflora of tundra wetland soil. Antonie van Leeuwenhoek 69: 75–86.
- Kotsyurbenko, O.R., M.V. Simankova, A.N. Nozhevnikova, T.N. Zhilina, N.P. Bolotina, A.M. Lysenko and G.A. Osipov. 1997. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 60. Int. J. Syst. Bacteriol. 47: 242.
- Kotsyurbenko, O.R., M.V. Glagolev, A.N. Nozhevnikova and R. Conrad. 2001. Competition between homoacetogenic bacteria and methanogenic archaea for hydrogen at low temperature. FEMS Microbiol. Ecol. 38: 153–159.
- Krumholz, L.R., S.H. Harris, S.T. Tay and J.M. Suflita. 1999. Characterization of two subsurface H2-utilizing bacteria, Desulfomicrobium hypogeium sp. nov. and Acetobacterium psammolithicum sp. nov., and their ecological roles. Appl. Environ. Microbiol. 65: 2300–2306.
- Messmer, M., G. Wohlfarth and G. Diekert. 1993. Methyl chloride metabolism of the strictly anaerobic, methyl chloride-utilizing homoacetogen strain MC. Arch. Microbiol. 160: 383–387.
- Messmer, M., S. Reinhardt, G. Wohlfarth and G. Diekert. 1996. Studies on methyl chloride dehalogenase and O-demethylase in cell extracts of the homoacetogen strain MC based on a newly developed coupled enzyme assay. Arch. Microbiol. 165: 18–25.
- Müller, V., S. Aufurth and S. Rahlfs. 2001. The Na+ cycle in Acetobacterium woodii: identification and characterization of a Na+ translocating F1F0-ATPase with a mixed oligomer of 8 and 16 kDa proteolipids. Biochim. Biophys. Acta 1505: 108–120.
- Nozhevnikova, A.N., O.R. Kotsyurbenko and M.V. Simankova. 1994. Acetogenesis at low temperature. In Drake (Editor), Acetogenesis. Chapman & Hall, New York and London, pp. 416–431.
- Pfennig, N. and K.D. Lippert. 1966. Über das Vitamin B12-Bedurfnis phototropher Schwefelbakterien. Arch. Mikrobiol. 55: 245–246.
- Prüsse, E., C. Quast, K. Knittel, B. Fuchs, W. Ludwig, J. Peplies and F.O. Glöckner. 2007. SILVA: a comprehensive online resource for quality checked and aligned rRNA sequence data compatible with ARB. Nucleic Acids Res 35: 7188–7196.
- Schink, B. and M. Bomar. 1992. The genera Acetobacterium, Acetogenium, Acetoanaerobium, and Acetitomaculum . In Dworkin Trüper, Harder and Schleifer (Editors), The Prokaryotes, 2nd edn, Vol. 2. Springer-Verlag, New York, pp. 1925–1936.
- Schink, B. 1994. Diversity, ecology, and isolation of acetogenic bacteria. In Drake (Editor), Acetogenesis. Chapman & Hall, New York, pp. 197–235.
- Simankova, M.V., O.R. Kotsyurbenko, E. Stackebrandt, N.A. Kostrikina, A.M. Lysenko, G.A. Osipov and A.N. Nozhevnikova. 2000. Acetobacterium tundrae sp. nov., a new psychrophilic acetogenic bacterium from tundra soil. Arch. Microbiol. 174: 440–447.
- Smith, M.R. and A.R. Mah. 1981. 2-Bromoethanesulfonate: a selective agent for isolating resistant Methanosarcina mutant. Curr. Microbiol. 6: 321–326.
- Speranza, G., B. Mueller, M. Orlandi, C.F. Morelli, P. Manitto and B. Schink. 2003. Stereochemistry of the conversion of 2-phenoxyethanol into phenol and acetaldehyde by Acetobacterium sp. Helvetica Chimica Acta 86: 2629–2636.
- Stromeyer, S.A., W. Winkelbauer, H. Kohler, A.M. Cook and T. Leisinger. 1991. Dichloromethane utilized by an anaerobic mixed culture: acetogenesis and methanogenesis. Biodegradation 2: 129–137.
- Stromeyer, S.A., W. Winkelbauer, H. Kohler, A.M. Cook and T. Leisinger. 1992. Anaerobic degradation of tetrachloromethane by Acetobacterium woodii . Biodegradation 3: 113–123.
- Tanaka, K. and N. Pfennig. 1988. Fermentation of 2-methoxyethanol by Acetobacterium malicum sp. nov. and Pelobacter venetianus . Arch. Microbiol. 149: 181–187.
-
Tanaka, K. and N. Pfennig. 1990.
In Validation of publication of new names and new combinations previously effectively published outside the IJSEM. List no. 35. Int. J. Syst. Bacteriol.
40: 470–471.
10.1099/00207713-40-4-470 Google Scholar
- Traunecker, J., A. Preuß, G. Diekert and A. Preuß. 1991. Isolation and characterization of a methyl chloride utilizing, strictly anaerobic bacterium. Arch. Microbiol. 156: 416–421.
- Tschech, A. and N. Pfennig. 1984. Growthyield increase linked to caffeate reduction in Acetobacterium woodii . Arch. Microbiol. 137: 163–167.
- Willems, A. and M.D. Collins. 1996. Phylogenetic relationships of the genera Acetobacterium and Eubacterium sensu stricto and reclassification of Eubacterium alactolyticum as Pseudoramibacter alactolyticus gen. nov., comb. nov. Int. J. Syst. Bacteriol. 46: 1083–1087.
- Wolin, E.A., M.G. Wolin and R.S. Wolfe. 1963. Formation of methane by bacterial extracts. J. Biol. Chem. 238: 2882–2886.
Further reading
- Dierert, G. and G. Wohlfarth. 1994. Metabolism of homoaceto gens. Antonie van Leeuwenhoek. 66: 209–221.
- Drake, H.L. 1994. Acetogenesis, acetogenic bacteria, and the Acethyl-CoA “Wood/Ljungdahl” pathway: past and current perspectives. In Drake (Editor), Acetogenesis, Chapman & Hall, New York, London, pp. 3–60.
- Schuppert, B. and B. Schink. 1990. Fermentation of methoxyac etate to glycolate and acetate by newly isolated strains of Ace tobacterium sp. Arch. Microbiol. 153: 200–204.