Future focal treatment approaches to epilepsy
Simon Shorvon MA MB BChir MD FRCP
Professor in Clinical Neurology and Consultant Neurologist
UCL Institute of Neurology, University College London, National Hospital for Neurology and Neurosurgery, London, UK
Search for more papers by this authorEmilio Perucca MD PhD FRCP(Edin)
Professor of Medical Pharmacology and Director, Clinical Trial Center
Clinical Pharmacology Unit, Department of Internal Medicine and Therapeutics University of Pavia, C. Mondino National Neurological Institute Pavia, Italy
Search for more papers by this authorJerome Engel Jr. MD PhD
Jonathan Sinay Distinguished Professor of Neurology and Director UCLA Seizure Disorder Center
Neurobiology, and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, USA
Search for more papers by this authorSummary
There have been considerable advances in antiepileptic drug (AED) therapy in recent years. More recently, a series of revolutionary technologies combining optics or organic compounds with genetics have been used to suppress seizures on demand. These results suggest new treatment approaches and provide a good basis from which future clinical studies might be developed. This chapter considers the principles behind novel focal treatment strategies, critically reviews the work to date and discusses the potential for translation of these advances into new treatment options for patients with currently intractable disease. Neuronal grafting holds the promise of effecting potentially permanent local change and initial studies demonstrate the feasibility of restoring neuronal loss, altering circuitry or increasing local neurochemical concentrations. Viral vectors are important tools for gene therapy of terminally differentiated cells. Focal treatment techniques in epilepsy offer a novel approach to help more patients lead seizure-free lives in the years to come.
References
- Lüders HO, Engel J Jr, Munari C. General principles. In: J Engel (ed.). Surgical Treatment of the Epilepsies, 2nd edn. New York, NY: Raven Press, 1993: 137–153.
- Dycke AV, Raedt R, Dauwe I, et al. Continuous local intrahippocampal delivery of adenosine reduces seizure frequency in rats with spontaneous seizures. Epilepsia 2010; 51: 1721–1728.
- Boison D. Adenosine augmentation therapies (AATs) for epilepsy: prospect of cell and gene therapies. Epilepsy Res 2009; 85: 131–141.
- Eder HG, Jones DB, Fisher RS. Local perfusion of diazepam attenuates interictal and ictal events in the bicuculline model of epilepsy in rats. Epilepsia 1997; 38: 516–521.
- Gasior M, Tang R, Rogawski MA. Long-lasting attenuation of amygdala-kindled seizures after convection-enhanced delivery of botulinum neurotoxins a and B into the amygdala in rats. J Pharmacol Exp Ther 2013; 346: 528–534.
- Nilsen KE, Walker MC, Cock HR. Characterization of the tetanus toxin model of refractory focal neocortical epilepsy in the rat. Epilepsia 2005; 46: 179–187.
- Kelso ARC, Cock HR, Nilsen KE. Focal delivery of standard antiepileptic drugs in the tetanus toxin model of epilepsy in rats. J Neurol 2005; 252 (Suppl. 2): 17.
- Nilsen KE, Kelso ARC, Cock HR. Antiepileptic effect of gap-junction blockers in a rat model of refractory focal cortical epilepsy. Epilepsia 2006; 47: 1169–1175.
- Remler MP, Marcussen W. Radiation-controlled focal pharmacology in the therapy of experimental epilepsy. Epilepsia 1981; 22: 153–159.
- Rogawski MA. Convection-enhanced delivery in the treatment of epilepsy. Neurotherapeutics 2009; 6: 344–351.
- Gasior M, White NA, Rogawski MA. Prolonged attenuation of amygdala-kindled seizure measures in rats by convection-enhanced delivery of the N-type calcium channel antagonists omega-conotoxin GVIA and omega-conotoxin MVIIA. J Pharmacol Exp Ther 2007; 323: 458–468.
- Tamargo RJ, Rossell LA, Kossoff EH, Tyler BM, Ewend MG, Aryanpur JJ. The intracerebral administration of phenytoin using controlled-release polymers reduces experimental seizures in rats. Epilepsy Res 2002; 48: 145–155.
- Wilz A, Pritchard EM, Li T, Lan JQ, Kaplan DL, Boison D. Silk polymer-based adenosine release: therapeutic potential for epilepsy. Biomaterials 2008; 29: 3609–3616.
- Madhavan D, Mirowski P, Ludvig N, et al. Effects of subdural application of lidocaine in patients with focal epilepsy. Epilepsy Res 2008; 78: 235–239.
- Nilsen KE, Cock HR. Focal treatment for refractory epilepsy: hope for the future? Brain Res Brain Res Rev 2004; 44: 141–153.
- Brailowsky S, Silva-Barrat C, Ménini C, Riche D, Naquet R. Effects of localized, chronic GABA infusions into different cortical areas of the photosensitive baboon, Papio papio. Electroencephalogr Clin Neurophysiol 1989; 72: 147–156.
- Ludvig N, Kuzniecky RI, Baptiste SL, et al. Epidural pentobarbital delivery can prevent locally induced neocortical seizures in rats: the prospect of transmeningeal pharmacotherapy for intractable focal epilepsy. Epilepsia 2006; 47: 1792–1802.
- Baptiste SL, Tang HM, Kuzniecky RI, Devinsky O, French JA, Ludvig N. Comparison of the antiepileptic properties of transmeningeally delivered muscimol, lidocaine, midazolam, pentobarbital and GABA, in rats. Neurosci Lett 2010; 469: 421–424.
- Boison D, Scheurer L, Tseng JL, Aebischer P, Mohler H. Seizure suppression in kindled rats by intraventricular grafting of an adenosine releasing synthetic polymer. Exp Neurol 1999; 160: 164–174.
- Kozan R, Ayyildiz M, Agar E. The effects of intracerebroventricular AM-251, a CB1-receptor antagonist, and ACEA, a CB1-receptor agonist, on penicillin-induced epileptiform activity in rats. Epilepsia 2009; 50: 1760–1767.
- Ali A, Pillai KK, Ahmad FJ, Dua Y, Khan ZI, Vohora D. Comparative efficacy of liposome-entrapped amiloride and free amiloride in animal models of seizures and serum potassium in mice. Eur Neuropsychopharmacol 2007; 17: 227–229.
- Veronesi MC, Kubek DJ, Kubek MJ. Intranasal delivery of a thyrotropin-releasing hormone analog attenuates seizures in the amygdala-kindled rat. Epilepsia 2007; 48: 2280–2286.
- Bennewitz MF, Saltzman WM. Nanotechnology for delivery of drugs to the brain for epilepsy. Neurotherapeutics 2009; 6: 323–336.
- Ludvig N, Medveczky G, French JA, Carlson C, Devinsky O, Kuzniecky RI. Evolution and prospects for intracranial pharmacotherapy for refractory epilepsies: the subdural hybrid neuroprosthesis. Epilepsy Res Treat 2010; 2010: 725696.
- Ludvig N, Baptiste SL, Tang HM, et al. Localized transmeningeal muscimol prevents neocortical seizures in rats and nonhuman primates: therapeutic implications. Epilepsia 2009; 50: 678–693.
- Li S, Zhou W, Yuan Q, Liu Y. Seizure prediction using spike rate of intracranial EEG. IEEE Trans Neural Syst Rehabil Eng 2013; 21: 880–886.
- Cook MJ, O'Brien TJ, Berkovic SF, et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol 2013; 12: 563–571.
- Shen CP, Chen CC, Hsieh SL, et al. High-performance seizure detection system using a wavelet-approximate entropy-fSVM cascade with clinical validation. Clin EEG Neurosci 2013; 44: 247–256.
- Löscher W, Schmidt D. Experimental and clinical evidence for loss of effect (tolerance) during prolonged treatment with antiepileptic drugs. Epilepsia 2006; 47: 1253–1284.
- Brailowsky S, Kunimoto M, Silva-Barrat C, Menini C, Naquet R. Electroencephalographic study of the GABA-withdrawal syndrome in rats. Epilepsia 1990; 31: 369–377.
- Polderman KH. Induced hypothermia and fever control for prevention and treatment of neurological injuries. Lancet 2008; 371: 1955–1969.
- Cereda C, Berger MM, Rossetti AO. Bowel ischemia: a rare complication of thiopental treatment for status epilepticus. Neurocrit Care 2009; 10: 355–358.
- Corry JJ, Dhar R, Murphy T, Diringer MN. Hypothermia for refractory status epilepticus. Neurocrit Care 2008; 9: 189–197.
- Elting JW, van der Naalt J, Fock JM. Mild hypothermia for refractory focal status epilepticus in an infant with hemimegalencephaly. Eur J Paediatr Neurol 2010; 14: 452–455.
- Sartorius CJ, Berger MS. Rapid termination of intraoperative stimulation-evoked seizures with application of cold Ringer's lactate to the cortex. Technical note. J Neurosurg 1998; 88: 349–351.
- Karkar KM, Garcia PA, Bateman LM, Smyth MD, Barbaro NM, Berger M. Focal cooling suppresses spontaneous epileptiform activity without changing the cortical motor threshold. Epilepsia 2002; 43: 932–935.
- Rothman SM. The therapeutic potential of focal cooling for neocortical epilepsy. Neurotherapeutics 2009; 6: 251–257.
- Fujii M, Fujioka H, Oku T, et al. Application of focal cerebral cooling for the treatment of intractable epilepsy. Neurol Med Chir (Tokyo) 2010; 50: 839–844.
- D'Ambrosio R, Eastman CL, Darvas F, et al. Mild passive focal cooling prevents epileptic seizures after head injury in rats. Ann Neurol 2013; 73: 199–209.
- Sorensen AT, Kokaia M. Novel approaches to epilepsy treatment. Epilepsia 2013; 54: 1–10.
- Walker MC, Schorge S, Kullmann DM, Wykes RC, Heeroma JH, Mantoan L. Gene therapy in status epilepticus. Epilepsia 2013; 54 (Suppl. 6): 43–45.
- Haberman RP, Samulski RJ, McCown TJ. Attenuation of seizures and neuronal death by adeno-associated virus vector galanin expression and secretion. Nat Med 2003; 9: 1076–1080.
- Richichi C, Lin EJD, Stefanin D, et al. Anticonvulsant and antiepileptogenic effects mediated by adeno-associated virus vector neuropeptide Y expression in the rat hippocampus. J Neurosci 2004; 24: 3051–3059.
- Foti S, Haberman RP, Samulski RJ, McCown TJ. Adeno-associated virus-mediated expression and constitutive secretion of NPY or NPY13-36 suppresses seizure activity in vivo. Gene Ther 2007; 14: 1534–1536.
- Woldbye DPD, Angehagen M, Gøtzsche CR, et al. Adeno-associated viral vector-induced overexpression of neuropeptide Y Y2 receptors in the hippocampus suppresses seizures. Brain 2010; 133: 2778–2788.
- Noè F, Vaghi V, Balducci C, et al. Anticonvulsant effects and behavioural outcomes of rAAV serotype 1 vector-mediated neuropeptide Y overexpression in rat hippocampus. Gene Ther 2010; 17: 643–652.
- Gotzsche CR, Nikitidou L, Sorensen AT, et al. Combined gene overexpression of neuropeptide Y and its receptor Y5 in the hippocampus suppresses seizures. Neurobiol Dis 2012; 45: 288–296.
- Lin EJD, Richichi C, Young D, Baer K, Vezzani A, During MJ. Recombinant AAV-mediated expression of galanin in rat hippocampus suppresses seizure development. Eur J Neurosci 2003; 18: 2087–2092.
- McCown TJ. Adeno-associated virus vector-mediated expression and constitutive secretion of galanin suppresses limbic seizure activity. Neurotherapeutics 2009; 6: 307–311.
- Theofilas P, Brar S, Stewart KA, et al. Adenosine kinase as a target for therapeutic antisense strategies in epilepsy. Epilepsia 2011; 52: 589–601.
- Paradiso B, Marconi P, Zucchini S, et al. Localized delivery of fibroblast growth factor-2 and brain-derived neurotrophic factor reduces spontaneous seizures in an epilepsy model. Proc Natl Acad Sci U S A 2009; 106: 7191–7196.
- Bovolenta R, Zucchini S, Paradiso B, et al. Hippocampal FGF-2 and BDNF overexpression attenuates epileptogenesis-associated neuroinflammation and reduces spontaneous recurrent seizures. J Neuroinflammation 2010; 7: 81.
- Weinberg MS, Blake BL, Samulski RJ, McCown TJ. The influence of epileptic neuropathology and prior peripheral immunity on CNS transduction by rAAV2 and rAAV5. Gene Ther 2011; 18: 961–968.
- Raol YH, Lund IV, Bandyopadhyay S, et al. Enhancing GABA(A) receptor alpha 1 subunit levels in hippocampal dentate gyrus inhibits epilepsy development in an animal model of temporal lobe epilepsy. J Neurosci 2006; 26: 11342–11346.
- Noè F, Pool AH, Nissinen J, et al. Neuropeptide Y gene therapy decreases chronic spontaneous seizures in a rat model of temporal lobe epilepsy. Brain 2008; 131: 1506–1515.
- Shetty AK. Neural stem cell therapy for temporal lobe epilepsy. In: JL Noebels, M Avoli, MA Rogawski, RW Olsen, AV Delgado-Escueta (eds). Jasper's Basic Mechanisms of the Epilepsies, 4th edn. New York, NY: Oxford University Press, 2012: 1098–1111.
10.1093/med/9780199746545.003.0085 Google Scholar
- Holmes GL, Thompson JL, Huh K, Stuart JD, Carl GF. Effects of neural transplantation on seizures in the immature genetically epilepsy-prone rat. Exp Neurol 1992; 116: 52–63.
- Bengzon J, Kokaia Z, Lindvall O. Specific functions of grafted locus coeruleus neurons in the kindling model of epilepsy. Exp Neurol 1993; 122: 143–154.
- Clough R, Statnick M, Maring-Smith M, et al. Fetal raphe transplants reduce seizure severity in serotonin-depleted GEPRs. Neuroreport 1996; 8: 341–346.
- Shetty AK, Hattiangady B. Concise review: prospects of stem cell therapy for temporal lobe epilepsy. Stem Cells 2007; 25: 2396–2407.
- Shetty AK, Turner DA. Enhanced cell survival in fetal hippocampal suspension transplants grafted to adult rat hippocampus following kainate lesions: a three-dimensional graft reconstruction study. Neuroscience 1995; 67: 561–582.
- Zaman V, Turner DA, Shetty AK. Prolonged postlesion transplantation delay adversely influences survival of both homotopic and heterotopic fetal hippocampal cell grafts in Kainate-lesioned CA3 region of adult hippocampus. Cell Transplant 2001; 10: 41–52.
- Zaman V, Turner DA, Shetty AK. Survival of grafted fetal neural cells in kainic acid lesioned CA3 region of adult hippocampus depends upon cell specificity. Exp Neurol 2000; 161: 535–561.
- Zaman V, Shetty AK. Fetal hippocampal CA3 cell grafts transplanted to lesioned CA3 region of the adult hippocampus exhibit long-term survival in a rat model of temporal lobe epilepsy. Neurobiol Dis 2001; 8: 942–952.
- Sutula TP, Hagen J, Pitkänen A. Do epileptic seizures damage the brain? Curr Opin Neurol 2003; 16: 189–195.
- Buzsáki G, Masliah E, Chen LS, Horváth Z, Terry R, Gage FH. Hippocampal grafts into the intact brain induce epileptic patterns. Brain Res 1991; 554: 30–37.
- Buzsáki G, Bayardo F, Miles R, Wong RK, Gage FH. The grafted hippocampus: an epileptic focus. Exp Neurol 1989; 105: 10–22.
- Miyamoto O, Itano T, Yamamoto Y, et al. Effect of embryonic hippocampal transplantation in amygdaloid kindled rat. Brain Res 1993; 603: 143–147.
- Holmes GL, Thompson JL, Huh K, Holmes C, Carl GF. Effect of neural transplants on seizure frequency and kindling in immature rats following kainic acid. Brain Res Dev Brain Res 1991; 64: 47–56.
- Rao MS, Hattiangady B, Rai KS, Shetty AK. Strategies for promoting anti-seizure effects of hippocampal fetal cells grafted into the hippocampus of rats exhibiting chronic temporal lobe epilepsy. Neurobiol Dis 2007; 27: 117–132.
- Hattiangady B, Rao MS, Shetty AK. Grafting of striatal precursor cells into hippocampus shortly after status epilepticus restrains chronic temporal lobe epilepsy. Exp Neurol 2008; 212: 468–481.
- Castillo CG, Mendoza-Trejo S, Aguilar MB, Freed WJ, Giordano M. Intranigral transplants of a GABAergic cell line produce long-term alleviation of established motor seizures. Behav Brain Res 2008; 193: 17–27.
- Chu K, Kim M, Jung KH, et al. Human neural stem cell transplantation reduces spontaneous recurrent seizures following pilocarpine-induced status epilepticus in adult rats. Brain Res 2004; 1023: 213–221.
- Zipancic I, Calcagnotto ME, Piquer-Gil M, Mello LE, Alvarez-Dolado M. Transplant of GABAergic precursors restores hippocampal inhibitory function in a mouse model of seizure susceptibility. Cell Transplant 2010; 19: 549–564.
- Baraban SC, Southwell DG, Estrada RC, et al. Reduction of seizures by transplantation of cortical GABAergic interneuron precursors into Kv1.1 mutant mice. Proc Natl Acad Sci U S A 2009; 106: 15472–15477.
- Maisano X, Litvina E, Tagliatela S, Aaron GB, Grabel LB, Naegele JR. Differentiation and functional incorporation of embryonic stem cell-derived GABAergic interneurons in the dentate gyrus of mice with temporal lobe epilepsy. J Neurosci 2012; 32: 46–61.
- Li T, Ren G, Kaplan DL, Boison D. Human mesenchymal stem cell grafts engineered to release adenosine reduce chronic seizures in a mouse model of CA3-selective epileptogenesis. Epilepsy Res 2009; 84: 238–241.
- Uebersax L, Fedele DE, Schumacher C, et al. The support of adenosine release from adenosine kinase deficient ES cells by silk substrates. Biomaterials 2006; 27: 4599–4607.
- Briggs WR, Spudich JL. Handbook of Photosensory Receptors. Weinheim, Germany: Wiley–VCH, 2005.
- Zemelman BV, Lee GA, Ng M, Miesenböck G. Selective photostimulation of genetically chARGed neurons. Neuron 2002; 33: 15–22.
- Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 2005; 8: 1263–1268.
- Zhang F, Wang LP, Brauner M, et al. Multimodal fast optical interrogation of neural circuitry. Nature 2007; 446: 633–639.
- Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K. Optogenetics in neural systems. Neuron 2011; 71: 9–34.
- Mattis J, Tye KM, Ferenczi EA, et al. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 2012; 9: 159–172.
- Airan RD, Thompson KR, Fenno LE, Bernstein H, Deisseroth K. Temporally precise in vivo control of intracellular signalling. Nature 2009; 458: 1025–1029.
- Chow BY, Han X, Dobry AS, et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 2010; 463: 98–102.
- Wietek J, Wiegert JS, Adeishvili N, et al. Conversion of channelrhodopsin into a light-gated chloride channel. Science 2014; 344: 409–412.
- Aravanis AM, Wang LP, Zhang F, et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 2007; 4: S143–S156.
- Diester I, Kaufman MT, Mogri M, et al. An optogenetic toolbox designed for primates. Nat Neurosci 2011; 14: 387–397.
- Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 2007; 450: 420–424.
- Carter ME, Yizhar O, Chikahisa S, et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci 2010; 13: 1526–1533.
- Gourine AV, Kasymov V, Marina N, et al. Astrocytes control breathing through pH-dependent release of ATP. Science 2010; 329: 571–575.
- Huber D, Petreanu L, Ghitani N, et al. Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 2008; 451: 61–64.
- Tonnesen J, Sorensen AT, Deisseroth K, Lundberg C, Kokaia M. Optogenetic control of epileptiform activity. Proc Natl Acad Sci U S A 2009; 106: 12162–12167.
- Busskamp V, Duebel J, Balya D, et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 2010; 329: 413–417.
- Kravitz AV, Freeze BS, Parker PRL, et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 2010; 466: 622–626.
- Wykes RC, Heeroma JH, Mantoan L, et al. Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci Transl Med 2012; 4: 161ra152.
- Mantoan Ritter L Golshani P, Takahashi K, Dufour S, Valiante T, Kokaia M.WONOEP appraisal: optogenetic tools to suppress seizures and explore the mechanisms of epileptogenesis. Epilepsia 2014; 55: 1693–1702.
- Paz JT, Davidson TJ, Frechette ES, et al. Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat Neurosci 2013; 16: 64–70.
- Krook-Magnuson E, Armstrong C, Oijala M, Soltesz I. On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat Commun 2013; 4: 1376.
- Ledri M, Madsen MG, Nikitidou L, Kirik D, Kokaia M. Global optogenetic activation of inhibitory interneurons during epileptiform activity. J Neurosci 2014; 34: 3364–3377.
- Berglind F, Ledri M, Sorensen AT, et al. Optogenetic inhibition of chemically induced hypersynchronized bursting in mice. Neurobiol Dis 2014; 65: 133–141.
- Han X, Qian X, Bernstein JG, et al. Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 2009; 62: 191–198.
- Pei Y, Rogan SC, Yan F, Roth BL. Engineered GPCRs as tools to modulate signal transduction. Physiology (Bethesda) 2008; 23: 313–321.
- Kätzel D, Nicholson E, Schorge S, Walker MC, Kullmann DM. Chemical-genetic attenuation of focal neocortical seizures. Nat Commun 2014; 5: 3847.
- Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 2007; 104: 5163–5168.
- Stewart HJ, Fong-Wong L, Strickland I, et al. A stable producer cell line for the manufacture of a lentiviral vector for gene therapy of Parkinson's disease. Hum Gene Ther 2011; 22: 357–369.
- Yildirim M, Marangoz C. Anticonvulsant effects of focal and intracerebroventricular adenosine on penicillin-induced epileptiform activity in rats. Brain Res 2007; 1127: 193–200.
- Anschel DJ, Ortega EL, Kraus AC, Fisher RS. Focally injected adenosine prevents seizures in the rat. Exp Neurol 2004; 190: 544–547.
- Mantoan L, Kullmann DM. Optogenetic treatment of epilepsy. Adv Clin Neurosci Rehabil 2013; 13: 12–15.