Nanotechnology-Based Applications for Transdermal Delivery of Therapeutics
Venkata K. Yellepeddi
College of Pharmacy, Roseman University of Health Sciences, South Jordan, UT, USA
College of Pharmacy, University of Utah, Salt Lake City, UT, USA
Search for more papers by this authorVenkata K. Yellepeddi
College of Pharmacy, Roseman University of Health Sciences, South Jordan, UT, USA
College of Pharmacy, University of Utah, Salt Lake City, UT, USA
Search for more papers by this authorRyan F. Donnelly
School of Pharmacy, Queen's University Belfast, UK
Search for more papers by this authorThakur Raghu Raj Singh
School of Pharmacy, Queen's University Belfast, UK
Search for more papers by this authorRyan F. Donnelly
School of Pharmacy, Queen's University Belfast, UK
Search for more papers by this authorThakur Raghu Raj Singh
School of Pharmacy, Queen's University Belfast, UK
Search for more papers by this authorSummary
Nanotechnology is considered to be one of the most important innovations in the field of modern medicine. Owing to its enormous success, nanotechnology was also investigated for its applications in delivery of therapeutics through skin. The complexity of skin's structural integrity poses a challenge for the delivery of nanoparticles with therapeutics through skin. Therefore, this contribution will attempt to provide a concise review of applications of nanotechnology with respect to delivery of therapeutics through skin. To this end, skin structure, pathways for nanoparticle penetration, current nanotechnology based formulations for skin delivery and limitations of nanotechnology for skin delivery applications will be reviewed.
References
- Frequesntly Asked Questions (2010) Nanotechnology 101. http://www.nano.gov/nanotech-101/nanotechnology-facts (accessed 26 November 2013).
- Bertrand, N., Wu, J., Xu, X. et al. (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev., 66, 2–25.
- Cheng, Y., Morshed, R.A., Auffinger, B. et al. (2014) Multifunctional nanoparticles for brain tumor imaging and therapy. Adv. Drug Deliv. Rev., 66, 42–57.
- Nohynek, G.J., Lademann, J., Ribaud, C. and Roberts, M.S. (2007) Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit. Rev. Toxicol., 37 (3), 251–277.
- Baroli, B. (2010) Penetration of nanoparticles and nanomaterials in the skin: fiction or reality? J. Pharm. Sci., 99 (1), 21–50.
- Prow, T.W., Grice, J.E., Lin, L.L. et al. (2011) Nanoparticles and microparticles for skin drug delivery. Adv. Drug Deliv. Rev., 63 (6), 470–491.
- Pegoraro, C., MacNeil, S. and Battaglia, G. (2012) Transdermal drug delivery: from micro to nano. Nanoscale, 4 (6), 1881–1894.
- Hansen, S. and Lehr, C.M. (2012) Nanoparticles for transcutaneous vaccination. Microb. Biotechnol., 5 (2), 156–167.
- DeLouise, L.A. (2012) Applications of nanotechnology in dermatology. J. Invest. Dermatol., 132 (3 Pt 2), 964–975.
- Prausnitz, M.R., Mitragotri, S. and Langer, R. (2004) Current status and future potential of transdermal drug delivery. Nat. Rev. Drug Discov., 3 (2), 115–124.
- Kierszenbaum, A.L. and Tres, L.L. (2011) Integumentary system, in Histology and Cell Biology, An Introduction to Pathology, 3rd edn (eds A.L. Kierszenbaum and L.L. Tres), Elsevier Saunders, Philadelphia, pp. 339–344.
- Nemes, Z. and Steinert, P.M. (1999) Bricks and mortar of the epidermal barrier. Exp. Mol. Med., 31 (1), 5–19.
- Elias, P.M. (2005) Stratum corneum defensive functions: an integrated view. J. Invest. Dermatol., 125 (2), 183–200.
- Bouwstra, J.A. and Ponec, M. (2006) The skin barrier in healthy and diseased state. Biochim. Biophys. Acta, 1758 (12), 2080–2095.
- Scheuplein, R.J. (1967) Mechanism of percutaneous absorption. II. Transient diffusion and the relative importance of various routes of skin penetration. J. Invest. Dermatol., 48 (1), 79–88.
- Scientific Committee on Consumer Products (2008) On regulatory aspects of nanomaterials. Committee on the Environment, Public Health and Food Safety, European Parliament, Brussels.
- Baroli, B., Ennas, M.G., Loffredo, F. et al. (2007) Penetration of metallic nanoparticles in human full-thickness skin. J. Invest. Dermatol., 127 (7), 1701–1712.
- Ryman-Rasmussen, J.P., Riviere, J.E. and Monteiro-Riviere, N.A. (2007) Variables influencing interactions of untargeted quantum dot nanoparticles with skin cells and identification of biochemical modulators. Nano Lett., 7 (5), 1344–1348.
- van der Merwe, D., Brooks, J.D., Gehring, R. et al. (2006) A physiologically based pharmacokinetic model of organophosphate dermal absorption. Toxicol. Sci., 89 (1), 188–204.
- Reddy, M.B., Guy, R.H. and Bunge, A.L. (2000) Does epidermal turnover reduce percutaneous penetration? Pharm. Res., 17 (11), 1414–1419.
- Marks, R. (2004) The stratum corneum barrier: the final frontier. J. Nutr., 134 (Suppl. 8), 2017S–2021S.
- Tso, C.P., Zhung, C.M., Shih, Y.H. et al. (2010) Stability of metal oxide nanoparticles in aqueous solutions. Water Sci. Technol., 61 (1), 127–133.
- Nitsche, J.M. and Kasting, G.B. (2013) A microscopic multiphase diffusion model of viable epidermis permeability. Biophys. J., 104 (10), 2307–2320.
- Oesch, F., Fabian, E., Oesch-Bartlomowicz, B. et al. (2007) Drug-metabolizing enzymes in the skin of man, rat, and pig. Drug Metab. Rev., 39 (4), 659–698.
- Brandner, J.M., Kief, S., Grund, C. et al. (2002) Organization and formation of the tight junction system in human epidermis and cultured keratinocytes. Eur. J. Cell Biol., 81 (5), 253–263.
- Langbein, L., Grund, C., Kuhn, C. et al. (2002) Tight junctions and compositionally related junctional structures in mammalian stratified epithelia and cell cultures derived therefrom. Eur. J. Cell Biol., 81 (8), 419–435.
- Brandner, J.M., McIntyre, M., Kief, S. et al. (2003) Expression and localization of tight junction-associated proteins in human hair follicles. Arch. Dermatol. Res., 295 (5), 211–221.
- Baroli, B. (2010) Skin absorption and potential toxicity of nanoparticulate nanomaterials. J. Biomed. Nanotechnol., 6 (5), 485–496.
- Gillet, A., Lecomte, F., Hubert, P. et al. (2011) Skin penetration behaviour of liposomes as a function of their composition. Eur. J. Pharm. Biopharm., 79 (1), 43–53.
- Labouta, H.I., Liu, D.C., Lin, L.L. et al. (2011) Gold nanoparticle penetration and reduced metabolism in human skin by toluene. Pharm. Res., 28 (11), 2931–2944.
- Singh, P. and Nanda, A. (2014) Enhanced sun protection of nano-sized metal oxide particles over conventional metal oxide particles: an in vitro comparative study. Int. J. Cosmet. Sci., 36 (3), 273–283.
- Yellepeddi, V.K., Kumar, A. and Palakurthi, S. (2009) Surface modified poly(amido)amine dendrimers as diverse nanomolecules for biomedical applications. Expert Opin. Drug Deliv., 6 (8), 835–850.
- Yellepeddi, V.K., Kumar, A., Maher, D.M. et al. (2011) Biotinylated PAMAM dendrimers for intracellular delivery of cisplatin to ovarian cancer: role of SMVT. Anticancer Res, 31 (3), 897–906.
- Thiagarajan, G., Ray, A., Malugin, A. and Ghandehari, H. (2010) PAMAM-camptothecin conjugate inhibits proliferation and induces nuclear fragmentation in colorectal carcinoma cells. Pharm. Res., 27 (11), 2307–2316.
- El-Sayed, M., Ginski, M., Rhodes, C. and Ghandehari, H. (2002) Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers. J. Control. Release, 81 (3), 355–365.
- Kitchens, K.M., Kolhatkar, R.B., Swaan, P.W. et al. (2006) Transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers: influence of size, charge and fluorescent labeling. Pharm. Res., 23 (12), 2818–2826.
- Mignani, S., El Kazzouli, S., Bousmina, M. and Majoral, J.P. (2013) Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: a concise overview. Adv. Drug Deliv. Rev., 65 (10), 1316–1330.
- Sun, M.J., Fan, A.P., Wang, Z. and Zhao, Y.J. (2012) Dendrimer-mediated drug delivery to the skin. Soft Matter., 8 (16), 4301–4305.
- Venuganti, V.V., Sahdev, P., Hildreth, M. et al. (2011) Structure-skin permeability relationship of dendrimers. Pharm. Res., 28 (9), 2246–2260.
- Yang, Y., Sunoqrot, S., Stowell, C. et al. (2012) Effect of size, surface charge, and hydrophobicity of poly(amidoamine) dendrimers on their skin penetration. Biomacromolecules, 13 (7), 2154–2162.
- Agrawal, U., Mehra, N.K., Gupta, U. and Jain, N.K. (2013) Hyperbranched dendritic nano-carriers for topical delivery of dithranol. J. Drug Target., 21 (5), 497–506.
- Borowska, K., Wolowiec, S., Glowniak, K. et al. (2012) Transdermal delivery of 8-methoxypsoralene mediated by polyamidoamine dendrimer G2.5 and G3.5 – in vitro and in vivo study. Int. J. Pharm., 436 (1–2), 764–770.
- Cheng, Y., Man, N., Xu, T. et al. (2007) Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. J. Pharm. Sci., 96 (3), 595–602.
- Chauhan, A.S., Sridevi, S., Chalasani, K.B. et al. (2003) Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. J. Control. Release, 90 (3), 335–343.
- Filipowicz, A. and Wolowiec, S. (2011) Solubility and in vitro transdermal diffusion of riboflavin assisted by PAMAM dendrimers. Int. J. Pharm., 408 (1–2), 152–156.
- Venuganti, V.V. and Perumal, O.P. (2008) Effect of poly(amidoamine) (PAMAM) dendrimer on skin permeation of 5-fluorouracil. Int. J. Pharm., 361 (1–2), 230–238.
- Battah, S., O'Neill, S., Edwards, C. et al. (2006) Enhanced porphyrin accumulation using dendritic derivatives of 5-aminolaevulinic acid for photodynamic therapy: an in vitro study. Int. J. Biochem. Cell Biol., 38 (8), 1382–1392.
- Bielinska, A.U., Yen, A., Wu, H.L. et al. (2000) Application of membrane-based dendrimer/DNA complexes for solid phase transfection in vitro and in vivo . Biomaterials, 21 (9), 877–887.
- Daftarian, P.M., Stone, G.W., Kovalski, L. et al. (2013) A targeted and adjuvanted nanocarrier lowers the effective dose of liposomal amphotericin B and enhances adaptive immunity in murine cutaneous leishmaniasis. J. Infect. Dis., 208 (11), 1914–1922.
- Mutalik, S., Parekh, H.S., Anissimov, Y.G. et al. (2013) Iontophoresis-mediated transdermal permeation of peptide dendrimers across human epidermis. Skin Pharmacol. Physiol., 26 (3), 127–138.
- Kalhapure, R.S. and Akamanchi, K.G. (2013) Oleodendrimers: a novel class of multicephalous heterolipids as chemical penetration enhancers for transdermal drug delivery. Int. J. Pharm., 454 (1), 158–166.
- Pawar, K.R. and Babu, R.J. (2010) Polymeric and lipid-based materials for topical nanoparticle delivery systems. Crit. Rev. Ther. Drug Carrier Syst., 27 (5), 419–459.
- Li, J., Zhai, Y.L., Zhang, B. et al. (2008) Methoxy poly(ethylene glycol)-block-poly(d,l-lactic acid) copolymer nanoparticles as carriers for transdermal drug delivery. Polym. Int., 57 (2), 268–274.
- Mattheolabakis, G., Lagoumintzis, G., Panagi, Z. et al. (2010) Transcutaneous delivery of a nanoencapsulated antigen: induction of immune responses. Int. J. Pharm., 385 (1–2), 187–193.
- Stracke, F., Weiss, B., Lehr, C.M. et al. (2006) Multiphoton microscopy for the investigation of dermal penetration of nanoparticle-borne drugs. J. Invest. Dermatol., 126 (10), 2224–2233.
- da Silva, C.L., Del Ciampo, J.O., Rossetti, F.C. et al. (2013) PLGA nanoparticles as delivery systems for protoporphyrin IX in topical PDT: cutaneous penetration of photosensitizer observed by fluorescence microscopy. J. Nanosci. Nanotechnol., 13 (10), 6533–6540.
- de Carvalho, R.F., Ribeiro, I.F., Miranda-Vilela, A.L. et al. (2013) Leishmanicidal activity of amphotericin B encapsulated in PLGA-DMSA nanoparticles to treat cutaneous leishmaniasis in C57BL/6 mice. Exp. Parasitol., 135 (2), 217–222.
- Ponsart, S., Coudane, J. and Vert, M. (2000) A novel route to poly(epsilon-caprolactone)-based copolymers via anionic derivatization. Biomacromolecules, 1 (2), 275–281.
- Shim, J., Seok Kang, H., Park, W.S. et al. (2004) Transdermal delivery of mixnoxidil with block copolymer nanoparticles. J. Control. Release, 97 (3), 477–484.
- Rastogi, R., Anand, S. and Koul, V. (2009) Flexible polymerosomes – an alternative vehicle for topical delivery. Colloids Surf. B Biointerfaces, 72 (1), 161–166.
- Smith, A., Perelman, M. and Hinchcliffe, M. (2013) Chitosan: a promising safe and immune-enhancing adjuvant for intranasal vaccines. Hum. Vaccin. Immunother., 10 (3), 797–807.
- He, W., Guo, X., Xiao, L. and Feng, M. (2009) Study on the mechanisms of chitosan and its derivatives used as transdermal penetration enhancers. Int. J. Pharm., 382 (1–2), 234–243.
- Hasanovic, A., Zehl, M., Reznicek, G. and Valenta, C. (2009) Chitosan-tripolyphosphate nanoparticles as a possible skin drug delivery system for aciclovir with enhanced stability. J. Pharm. Pharmacol., 61 (12), 1609–1616.
- Cui, Z. and Mumper, R.J. (2001) Chitosan-based nanoparticles for topical genetic immunization. J. Control. Release, 75 (3), 409–419.
- Kataria, K., Gupta, A., Rath, G. et al. (2014) In vivo wound healing performance of drug loaded electrospun composite nanofibers transdermal patch. Int. J. Pharm., 469, 102–110.
- Demir, Y.K., Akan, Z. and Kerimoglu, O. (2013) Characterization of polymeric microneedle arrays for transdermal drug delivery. PLoS One, 8 (10), e77289.
- Mazzitelli, S., Pagano, C., Giusepponi, D. et al. (2013) Hydrogel blends with adjustable properties as patches for transdermal delivery. Int. J. Pharm., 454 (1), 47–57.
- Wong, T.W. and Nor, K.A. (2013) Physicochemical modulation of skin barrier by microwave for transdermal drug delivery. Pharm. Res., 30 (1), 90–103.
- Wen, M.M., Farid, R.M. and Kassem, A.A. (2014) Nano-proniosomes enhancing the transdermal delivery of mefenamic acid. J. Liposome Res., 24, 280–289.
- Elnaggar, Y.S., El-Refaie, W.M., El-Massik, M.A. and Abdallah, O.Y. (2014) Lecithin-based nanostructured gels for skin delivery: an update on state of art and recent applications. J. Control. Release, 180C, 10–24.
- Ghica, M.V., Albu, M.G., Leca, M. et al. (2011) Design and optimization of some collagen-minocycline based hydrogels potentially applicable for the treatment of cutaneous wound infections. Pharmazie, 66 (11), 853–861.
- Swatschek, D., Schatton, W., Muller, W. and Kreuter, J. (2002) Microparticles derived from marine sponge collagen (SCMPs): preparation, characterization and suitability for dermal delivery of all-trans retinol. Eur. J. Pharm. Biopharm., 54 (2), 125–133.
- Martins, M., Azoia, N.G., Shimanovich, U. et al. (2014) Design of novel BSA/hyaluronic acid nanodispersions for transdermal pharma purposes. Mol. Pharm., 11, 1479–1488.
- Liu, S., Jin, M.N., Quan, Y.S. et al. (2014) Transdermal delivery of relatively high molecular weight drugs using novel self-dissolving microneedle arrays fabricated from hyaluronic acid and their characteristics and safety after application to the skin. Eur. J. Pharm. Biopharm., 86 (2), 267–276.
- Kong, M., Park, H., Feng, C. et al. (2013) Construction of hyaluronic acid noisome as functional transdermal nanocarrier for tumor therapy. Carbohydr. Polym., 94 (1), 634–641.
- Gupta, M., Agrawal, U. and Vyas, S.P. (2012) Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opin. Drug Deliv., 9 (7), 783–804.
- Benson, H.A. (2006) Transfersomes for transdermal drug delivery. Expert Opin. Drug Deliv., 3 (6), 727–737.
- El Maghraby, G.M., Williams, A.C. and Barry, B.W. (2006) Can drug-bearing liposomes penetrate intact skin? J. Pharm. Pharmacol., 58 (4), 415–429.
- Elsayed, M.M., Abdallah, O.Y., Naggar, V.F. and Khalafallah, N.M. (2007) PG-liposomes: novel lipid vesicles for skin delivery of drugs. J. Pharm. Pharmacol., 59 (10), 1447–1450.
- Elsayed, M.M., Abdallah, O.Y., Naggar, V.F. and Khalafallah, N.M. (2007) Lipid vesicles for skin delivery of drugs: reviewing three decades of research. Int. J. Pharm., 332 (1–2), 1–16.
- Pierre, M.B. and Dos Santos Miranda Costa, I. (2011) Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Arch. Dermatol. Res., 303 (9), 607–621.
- Yarosh, D.B., O'Connor, A., Alas, L. et al. (1999) Photoprotection by topical DNA repair enzymes: molecular correlates of clinical studies. Photochem. Photobiol., 69 (2), 136–140.
- Vora, B., Khopade, A.J. and Jain, N.K. (1998) Proniosome based transdermal delivery of levonorgestrel for effective contraception. J. Control. Release, 54 (2), 149–165.
- Fang, J.Y., Hong, C.T., Chiu, W.T. and Wang, Y.Y. (2001) Effect of liposomes and niosomes on skin permeation of enoxacin. Int. J. Pharm., 219 (1–2), 61–72.
- Shahiwala, A. and Misra, A. (2002) Studies in topical application of niosomally entrapped Nimesulide. J. Pharm. Pharm. Sci., 5 (3), 220–225.
- Vyas, S.P., Singh, R.P., Jain, S. et al. (2005) Non-ionic surfactant based vesicles (niosomes) for non-invasive topical genetic immunization against hepatitis B. Int. J. Pharm., 296 (1–2), 80–86.
- Dubey, V., Mishra, D. and Jain, N.K. (2007) Melatonin loaded ethanolic liposomes: physicochemical characterization and enhanced transdermal delivery. Eur. J. Pharm. Biopharm., 67 (2), 398–405.
- Dayan, N. and Touitou, E. (2000) Carriers for skin delivery of trihexyphenidyl HCl: ethosomes vs. liposomes. Biomaterials, 21 (18), 1879–1885.
- Touitou, E., Dayan, N., Bergelson, L. et al. (2000) Ethosomes – novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J. Control. Release, 65 (3), 403–418.
- Cevc, G. (2004) Lipid vesicles and other colloids as drug carriers on the skin. Adv. Drug Deliv. Rev., 56 (5), 675–711.
- Cevc, G., Gebauer, D., Stieber, J. et al. (1998) Ultraflexible vesicles, Transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. Biochim. Biophys. Acta, 1368 (2), 201–215.
- Chopra, A. and Cevc, G. (2014) Non-invasive, epicutaneous immunisation with toxoid in deformable vesicles protects mice against tetanus, chiefly owing to a Th2 response. Eur. J. Pharm. Sci., 56, 55–64.
- Vaizoglu, M.O. and Speiser, P.P. (1986) Pharmacosomes – a novel drug delivery system. Acta Pharm. Suec., 23 (3), 163–172.
- Mishra, V., Mahor, S., Rawat, A. et al. (2006) Development of novel fusogenic vesosomes for transcutaneous immunization. Vaccine, 24 (27–28), 5559–5570.
- Hiremath, P.S., Soppimath, K.S. and Betageri, G.V. (2009) Proliposomes of exemestane for improved oral delivery: formulation and in vitro evaluation using PAMPA, Caco-2 and rat intestine. Int. J. Pharm., 380 (1–2), 96–104.
- Hu, C. and Rhodes, D.G. (1999) Proniosomes: a novel drug carrier preparation. Int. J. Pharm., 185 (1), 23–35.
- Schafer-Korting, M., Mehnert, W. and Korting, H.C. (2007) Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv. Drug Deliv. Rev., 59 (6), 427–443.
- Muller, R.H., Radtke, M. and Wissing, S.A. (2002) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev., 54 (Suppl. 1), S131–S155.
- Wissing, S.A. and Muller, R.H. (2002) Solid lipid nanoparticles as carrier for sunscreens: in vitro release and in vivo skin penetration. J. Control. Release, 81 (3), 225–233.
- Patel, V.B., Misra, A. and Marfatia, Y.S. (2000) Topical liposomal gel of tretinoin for the treatment of acne: research and clinical implications. Pharm. Dev. Technol., 5 (4), 455–464.
- Taddio, A., Soin, H.K., Schuh, S. et al. (2005) Liposomal lidocaine to improve procedural success rates and reduce procedural pain among children: a randomized controlled trial. CMAJ, 172 (13), 1691–1695.
- Yin, F., Guo, S., Gan, Y. and Zhang, X. (2014) Preparation of redispersible liposomal dry powder using an ultrasonic spray freeze-drying technique for transdermal delivery of human epithelial growth factor. Int. J. Nanomedicine, 9, 1665–1676.
- Zhao, Y.Z., Lu, C.T., Zhang, Y. et al. (2013) Selection of high efficient transdermal lipid vesicle for curcumin skin delivery. Int. J. Pharm., 454 (1), 302–309.
- Zhang, Y.T., Shen, L.N., Zhao, J.H. and Feng, N.P. (2014) Evaluation of psoralen ethosomes for topical delivery in rats by using in vivo microdialysis. Int. J. Nanomedicine, 9, 669–678.
- Sarwa, K.K., Suresh, P.K., Rudrapal, M. and Verma, V.K. (2014) Penetration of tamoxifen citrate loaded ethosomes and liposomes across human skin: a comparative study with confocal laser scanning microscopy. Curr. Drug Deliv., 11, 332–337.
- Meng, S., Chen, Z., Yang, L. et al. (2013) Enhanced transdermal bioavailability of testosterone propionate via surfactant-modified ethosomes. Int. J. Nanomedicine, 8, 3051–3060.
- Khan, M.A., Pandit, J., Sultana, Y. et al. (2014) Novel carbopol-based transfersomal gel of 5-fluorouracil for skin cancer treatment: in vitro characterization and in vivo study. Drug Deliv.in press.
- Shamma, R.N. and Elsayed, I. (2013) Transfersomal lyophilized gel of buspirone HCl: formulation, evaluation and statistical optimization. J. Liposome Res., 23 (3), 244–254.
- Zheng, W.S., Fang, X.Q., Wang, L.L. and Zhang, Y.J. (2012) Preparation and quality assessment of itraconazole transfersomes. Int. J. Pharm., 436 (1–2), 291–298.
- Patel, K.K., Kumar, P. and Thakkar, H.P. (2012) Formulation of niosomal gel for enhanced transdermal lopinavir delivery and its comparative evaluation with ethosomal gel. AAPS PharmSciTech, 13 (4), 1502–1510.
- Junyaprasert, V.B., Singhsa, P., Suksiriworapong, J. and Chantasart, D. (2012) Physicochemical properties and skin permeation of Span 60/Tween 60 niosomes of ellagic acid. Int. J. Pharm., 423 (2), 303–311.
- Aggarwal, N. and Goindi, S. (2013) Preparation and in vivo evaluation of solid lipid nanoparticles of griseofulvin for dermal use. J. Biomed. Nanotechnol., 9 (4), 564–576.
- Raza, K., Singh, B., Singal, P. et al. (2013) Systematically optimized biocompatible isotretinoin-loaded solid lipid nanoparticles (SLNs) for topical treatment of acne. Colloids Surf. B Biointerfaces, 105, 67–74.
- Chen, Y.C., Liu, D.Z., Liu, J.J. et al. (2012) Development of terbinafine solid lipid nanoparticles as a topical delivery system. Int. J. Nanomedicine, 7, 4409–4418.
- Gomes, M.J., Martins, S., Ferreira, D. et al. (2014) Lipid nanoparticles for topical and transdermal application for alopecia treatment: development, physicochemical characterization, and in vitro release and penetration studies. Int. J. Nanomedicine, 9, 1231–1242.
- Fan, X., Chen, J. and Shen, Q. (2013) Docetaxel-nicotinamide complex-loaded nanostructured lipid carriers for transdermal delivery. Int. J. Pharm., 458 (2), 296–304.
- Jain, A., Mehra, N.K., Nahar, M. and Jain, N.K. (2013) Topical delivery of enoxaparin using nanostructured lipid carrier. J. Microencapsul., 30 (7), 709–715.
- Michalet, X., Pinaud, F.F., Bentolila, L.A. et al. (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307 (5709), 538–544.
- Prow, T.W., Monteiro-Riviere, N.A., Inman, A.O. et al. (2012) Quantum dot penetration into viable human skin. Nanotoxicology, 6 (2), 173–185.
- Ryman-Rasmussen, J.P., Riviere, J.E. and Monteiro-Riviere, N.A. (2006) Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol. Sci., 91 (1), 159–165.
- Kimura, E., Kawano, Y., Todo, H. et al. (2012) Measurement of skin permeation/penetration of nanoparticles for their safety evaluation. Biol. Pharm. Bull., 35 (9), 1476–1486.
- Siu, K.S., Chen, D., Zheng, X. et al. (2014) Non-covalently functionalized single-walled carbon nanotube for topical siRNA delivery into melanoma. Biomaterials, 35 (10), 3435–3442.
- Rouse, J.G., Yang, J., Ryman-Rasmussen, J.P. et al. (2007) Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Lett., 7 (1), 155–160.
- Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) SCoEaN-IHR (2009) Risk assessment of products of nanotechnologis. European Commission Health and Consumer Protection Directorate General, Brussels.
- Schneider, M., Stracke, F., Hansen, S. and Schaefer, U.F. (2009) Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinology, 1 (4), 197–206.
- Desai, P., Patlolla, R.R. and Singh, M. (2010) Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol. Membr. Biol., 27 (7), 247–259.
- Luengo, J., Weiss, B., Schneider, M. et al. (2006) Influence of nanoencapsulation on human skin transport of flufenamic acid. Skin Pharmacol. Physiol., 19 (4), 190–197.
- El Maghraby, G.M., Barry, B.W. and Williams, A.C. (2008) Liposomes and skin: from drug delivery to model membranes. Eur. J. Pharm. Sci., 34 (4–5), 203–222.
- de Leeuw, J., de Vijlder, H.C., Bjerring, P. and Neumann, H.A. (2009) Liposomes in dermatology today. J. Eur. Acad. Dermatol. Venereol., 23 (5), 505–516.
- Shanmugam, S., Song, C.K., Nagayya-Sriraman, S. et al. (2009) Physicochemical characterization and skin permeation of liposome formulations containing clindamycin phosphate. Arch. Pharm. Res., 32 (7), 1067–1075.
- Jung, S., Otberg, N., Thiede, G. et al. (2006) Innovative liposomes as a transfollicular drug delivery system: penetration into porcine hair follicles. J. Invest. Dermatol., 126 (8), 1728–1732.
- Honeywell-Nguyen, P.L., Gooris, G.S. and Bouwstra, J.A. (2004) Quantitative assessment of the transport of elastic and rigid vesicle components and a model drug from these vesicle formulations into human skin in vivo . J. Invest. Dermatol., 123 (5), 902–910.
- Wissing, S.A. and Muller, R.H. (2003) Cosmetic applications for solid lipid nanoparticles (SLN). Int. J. Pharm., 254 (1), 65–68.
- Zhang, L.W., Yu, W.W., Colvin, V.L. and Monteiro-Riviere, N.A. (2008) Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes. Toxicol. Appl. Pharmacol., 228 (2), 200–211.
- Mortensen, L.J., Oberdorster, G., Pentland, A.P. and Delouise, L.A. (2008) In vivo skin penetration of quantum dot nanoparticles in the murine model: the effect of UVR. Nano Lett., 8 (9), 2779–2787.
- Lademann, J., Weigmann, H., Rickmeyer, C. et al. (1999) Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol. Appl. Skin Physiol., 12 (5), 247–256.
- Gamer, A.O., Leibold, E. and van Ravenzwaay, B. (2006) The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin. Toxicol. In Vitro, 20 (3), 301–307.
- Cross, S.E., Innes, B., Roberts, M.S. et al. (2007) Human skin penetration of sunscreen nanoparticles: in-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol. Physiol., 20 (3), 148–154.
- Kunzmann, A., Andersson, B., Thurnherr, T. et al. (2011) Toxicology of engineered nanomaterials: focus on biocompatibility, biodistribution and biodegradation. Biochim. Biophys. Acta, 1810 (3), 361–373.
- Ochoa, M., Mousoulis, C. and Ziaie, B. (2012) Polymeric microdevices for transdermal and subcutaneous drug delivery. Adv. Drug Deliv. Rev., 64 (14), 1603–1616.
- Rizwan, M., Aqil, M., Talegaonkar, S. et al. (2009) Enhanced transdermal drug delivery techniques: an extensive review of patents. Recent Pat. Drug Deliv. Formul., 3 (2), 105–124.
- Zaric, M., Lyubomska, O., Touzelet, O. et al. (2013) Skin dendritic cell targeting via microneedle arrays laden with antigen-encapsulated poly-d,l-lactide-co-glycolide nanoparticles induces efficient antitumor and antiviral immune responses. ACS Nano, 7 (3), 2042–2055.