Integrating Computational Materials Science Tools in Form and Formulation Design
Joseph F. Krzyzaniak
Pfizer Worldwide Research & Development, Groton, CT, USA
Search for more papers by this authorPaul A. Meenan
Pfizer Worldwide Research & Development, Groton, CT, USA
Search for more papers by this authorCheryl L. Doherty
Pfizer Worldwide Research & Development, Sandwich, Kent, UK
Search for more papers by this authorKlimentina Pencheva
Pfizer Worldwide Research & Development, Sandwich, Kent, UK
Search for more papers by this authorSuman Luthra
Pfizer Worldwide Research & Development, Andover, MA, USA
Search for more papers by this authorAurora Cruz-Cabeza
The School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK
Search for more papers by this authorJoseph F. Krzyzaniak
Pfizer Worldwide Research & Development, Groton, CT, USA
Search for more papers by this authorPaul A. Meenan
Pfizer Worldwide Research & Development, Groton, CT, USA
Search for more papers by this authorCheryl L. Doherty
Pfizer Worldwide Research & Development, Sandwich, Kent, UK
Search for more papers by this authorKlimentina Pencheva
Pfizer Worldwide Research & Development, Sandwich, Kent, UK
Search for more papers by this authorSuman Luthra
Pfizer Worldwide Research & Development, Andover, MA, USA
Search for more papers by this authorAurora Cruz-Cabeza
The School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK
Search for more papers by this authorYuriy A. Abramov
Search for more papers by this authorSummary
This chapter provides a brief summary of computational materials science approaches utilized to direct and guide experimental studies in assessing the risk of identifying a more stable active pharmaceutical ingredient (API) crystal form, while providing a rationale at the molecular level to justify the selection of the optimal form and particle for robust drug product development. It focuses on drawing the attention to the wealth of information inherent in the structural features of the particles, and highlights a potential utilization of such a molecular toolbox during drug product design. Through the integration of these tools during development, a fundamental understanding of the relationship between molecular interactions, surface chemistry, and bulk properties makes it possible to identify the stable solid form as well as engineer the optimal crystal morphology for drug product processing and stability irrespective of the dosage form.
References
- Lee, A. Y.; Erdemir, D.; Myerson, A. S., Annu. Rev. Chem. Biomol. Eng. 2011, 2, 259–280.
- Lynn, D. Data presented by Steven Lynn, Chief, Recalls and Shortages, FDA/CDER Office of Compliance, Division of Manufacturing and Product Quality. Recalls, presentation to CASA, May 20, 2011, Baltimore, MD.
- Llinas, A.; Goodman Jonathan, M., Drug Discov. Today 2008, 13, 198–210.
- Nagy, Z. K.; Fujiwara, M.; Braatz, R. D., J. Process Cont. 2008, 18, 856–864.
- Perumalla, S. R.; Sun, C. C., J. Pharm. Sci. 2014, 103, 1126–1132.
- Vekilov, P. G., Cryst. Growth Des. 2010, 10, 5007–5019.
- Takiyama, H., Adv. Powder Technol. 2012, 23, 273–278.
- Ware, E. C.; Lu, D. R., Pharm. Res. 2004, 21, 177–184.
- Luthra, S. A.; Casteel, M.; Frericks-Schmidt, H.; Krzyzaniak, J., In-situ reactivity of API and excipients in an aqueous oral formulation resulting in formation of a quaternary supramolecular co-crystal complex. In AAPS, Washington, DC, October 25, 2011.
- Arora, K. K.; Tayade, N. G.; Suryanarayanan, R., Mol. Pharm. 2011, 8, 982–989.
- Arora, K. K.; Thakral, S.; Suryanarayanan, R., Pharm. Res. 2013, 30, 1779–1789.
- Bak, A.; Gore, A.; Yanez, E.; Stanton, M.; Tufekcic, S.; Syed, R.; Akrami, A.; Rose, M.; Surapaneni, S.; Bostick, T.; King, A.; Neervannan, S.; Ostovic, D.; Koparkar, A., J. Pharm. Sci. 2008, 97, 3942–3956.
- Wassgren, C.; Curtis, J. S., MRS Bull. 2006, 31, 900–904.
- Puri, V.; Dantuluri, A. K.; Kumar, M.; Karar, N.; Bansal, A. K., Eur. J. Pharm. Sci. 2010, 40, 84–93.
- Hammond, R. B.; Pencheva, K.; Ramachandran, V.; Roberts, K. J., Cryst. Growth Des. 2007, 7, 1571–1574.
- Dandekar, P.; Kuvadia, Z. B.; Doherty, M. F., Annu. Rev. Mater. Res. 2013, 43, 359–386.
- Shariare, M. H.; Blagden, N.; de Matas, M.; Leusen, F. J. J.; York, P., J. Pharm. Sci. 2012, 101, 1108–1119.
- Olusanmi, D.; Roberts, K. J.; Ghadiri, M.; Ding, Y., Int. J. Pharm. 2011, 411, 49–63.
- Abramov, Y. A., Org. Process Res. Dev. 2013, 17, 472–485.
- Gu, C.-H.; Young, V., Jr.; Grant, D. J. W., J. Pharm. Sci. 2001, 90, 1878–1890.
- Gong, Y.; Collman, B. M.; Mehrens, S. M.; Lu, E.; Miller, J. M.; Blackburn, A.; Grant, D. J. W., J. Pharm. Sci. 2008, 97, 2130–2144.
- Lupyan, D.; Abramov Yuriy, A.; Sherman, W., J. Comput. Aided Mol. Des. 2012, 26, 1195–205.
- Eckert, F. K., A COSMOtherm, C3.0; COSMOlogic. GmbH & Co. KG: Leverkusen, 2012.
- Galek, P. T. A.; Fabian, L.; Motherwell, W. D. S.; Allen, F. H.; Feeder, N., Acta Crystallogr., Sect. B: Struct. Sci. 2007, 63, 768–782.
- Wood, P. A.; Olsson, T. S. G.; Cole, J. C.; Cottrell, S. J.; Feeder, N.; Galek, P. T. A.; Groom, C. R.; Pidcock, E., CrystEngComm 2013, 15, 65–72.
- Allen, F. H., Acta Crystallogr., Sect. B: Struct. Sci. 2002, 58, 380–388.
- Abramov, Y. A.; Zell, M.; Krzyzaniak, J. F., Toward a rational solvent selection for conformational polymorph screening. In Chemical Engineering in the Pharmaceutical Industry: R&D to Manufacturing; D. J. am Ende, Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2011; pp 491–504.
- Hawkins, P. C. D.; Skillman, A. G.; Warren, G. L.; Ellingson, B. A.; Stahl, M. T., J. Chem. Inf. Model. 2010, 50, 572–584.
- TURBOMOLE, V6.0 2009, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007. Available from http://www.turbomole.com (accessed October 30, 2015).
- (a) Schaefer, A.; Huber, C.; Ahlrichs, R., J. Chem. Phys. 1994, 100, 5829–5835; (b) Becke, A. D., Phys. Rev. A 1988, 38, 3098–3100; (c) Perdew, J. P., Phys. Rev. B. 1986, 33, 8822–8824; (d) Perdew, J. P., Phys. Rev. B. 1986, 34, 7406–7406.
- (a) Day, G. M.; Chisholm, J.; Shan, N.; Motherwell, W. D. S.; Jones, W., Cryst. Growth Des. 2004, 4, 1327–1340; (b) Day, G. M.; Motherwell, W. D. S.; Jones, W., Cryst. Growth Des. 2005, 5, 1023–1033; (c) Cooper, T.; Jones, W.; Motherwell, W. D. S.; Day, G. M., CrystEngComm 2007, 9, 595–602; (d) Day, G. M.; Motherwell, W. D. S.; Jones, W., Phys. Chem. Chem. Phys. 2007, 9, 1693–1704.
- Delley, B., J. Chem. Phys. 1990, 92, 508–517.
- Accelrys Inc., Materials studio, 6.0. Accelrys Inc., San Diego, CA, 2013.
- Accelrys Inc., Cerius2, version 4.6. Accelrys Inc., San Diego, CA, 1997.
- (a) Coombes, D. S.; Price, S. L.; Willock, D. J.; Leslie, M., J. Phys. Chem. 1996, 100, 7352–7360; (b) Williams, D. E.; Cox, S. R., Acta Crystallogr., Sect. B: Struct. Sci. 1984, 40, 404–417; (c) Cox, S. R.; Hsu, L.-Y.; Williams, D. E., Acta Crystallogr., Sect. A: Found. Crystallogr. 1981, 37, 293–301.
- Motherwell, S.; Chisholm, J. A., J. Appl. Crystallogr. 2005, 38, 228–231.
- Mayo, S. L.; Olafson, B. D.; Goddard, W. A., III, J. Phys. Chem. 1990, 94, 8897–909.
- Frisch, M. J., Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A., Gaussian, 03; Gaussian, Inc.: Wallingford, CT, 2004.
- Price, S. L. Willock, D. J.; Leslie, M.; Day, G. M., DMAREL, 3.1. CSE Department, CLRC Daresbury Laboratory: Warrington, UK, XX, 2001.
- Stone, A. J., Chem. Phys. Lett. 1981, 83, 233–239.
- Sun, H., J. Phys. Chem. B 1998, 102, 7338–7364.
- Schmidt, C.; Ulrich, J., Chem. Eng. Technol. 2012, 35, 1009–1012.
- Clydesdale, G.; Roberts, K.; Docherty, R., The crystal habit of molecular materials: a structural perspective. In Theoretical Aspects and Computer Modeling of the Molecular Solid State; A. Gavezzotti, Ed.; John Wiley & Sons, Inc.: New York, 1997; p 203.
- Hartman, P.; Perdok, W. G., Acta Crystallogr. 1955, 8, 521–524.
- Hartman, P.; Bennema, P., J. Cryst. Growth 1980, 49, 145–156.
- Eckert, F.; Klamt, A., AIChE J. 2002, 48, 369–385.
- Todorova, T.; Delley, B., Mol. Simul. 2008, 34, 1013–1017.
- Luner, P. E.; Zhang, Y.; Abramov, Y. A.; Carvajal, M. T., Cryst. Growth Des. 2012, 12, 5271–5282.
- Bunyan, J. M. E.; Shankland, N.; Sheen, D. B., AIChE Symp. Ser. 1991, 87 (284), 44–57.
- Vemavarapu, C.; Surapaneni, M.; Hussain, M.; Badawy, S., Int. J. Pharm. 2009, 374, 96–105.
- Iacocca, R. G.; Burcham, C. L.; Hilden, L. R., J. Pharm. Sci. 2009, 99, 51–75.
- Kougoulos, E.; Smales, I.; Verrier, H. M., AAPS PharmSciTech 2011, 12, 287–294.
- (a) Yalkowsky, S. H.; Bolton, S., Pharm. Res. 1990, 7, 962–966; (b) Johnson, K. C.; Swindell, A. C., Pharm. Res. 1996, 13, 1795–1798; (c) Mullarney, M. P.; Leyva, N., Pharm. Technol. 2009, 33, 126, 128–130, 132–134.
- Wood, W. M. L., Powder Technol. 2001, 121, 53–59.
- Hooton, J. C.; Jones, M. D.; Harris, H.; Shur, J.; Price, R., Drug Dev. Ind. Pharm. 2008, 34, 974–983.
- Bauer, J. F.; Dziki, W.; Quick, J. E., J. Pharm. Sci. 1999, 88, 1222–1227.
- Kang, F.; Vogt, F. G.; Brum, J.; Forcino, R.; Copley, R. C. B.; Williams, G.; Carlton, R., Cryst. Growth Des. 2012, 12, 60–74.