Skin structure
Anthony Barker
NSW Rotation Plastic Surgery Registrar, Sydney, Australia
Search for more papers by this authorAnthony Barker
NSW Rotation Plastic Surgery Registrar, Sydney, Australia
Search for more papers by this authorRoss D. Farhadieh BSc(Med)Hons, MBBS, MD, EBOPRASF, FRACS(Plast), FRCS(Plast)
Panthea Plastic Surgery Clinics, Sydney and Canberra, Australia and Australian National University, Canberra, Australia
Search for more papers by this authorNeil W. Bulstrode BSc(Med)Hons, MBBS, MD, FRCS(Plast)
Clinical Lead Plastic Surgery
Great Ormond Street Hospital, London, UK
Search for more papers by this authorSabrina Cugno MD, MSc, FRCSC
Assistant Professor
McGill University, Department of Plastic Surgery, Montreal Children's Hospital, Montreal, Canada
Search for more papers by this authorSummary
This chapter outlines the structure of the skin and the clinical significance of this structure. The skin is the largest organ in the body and has the essential role of providing barrier protection to the host. The four-layer structure of the epidermis (stratum basale, stratum spinosum, stratum granulosum and stratum corneum) and the two-layer dermis (papillary dermis and reticular dermis), in addition to the skin appendages make up the components of skin. The complex signalling that triggers the formation of the protective outer stratum corneum in the embryo and adult is addressed. Clinically, connective tissue diseases of the dermis and epidermis illustrate how breakdown of skin components can result in significant morbidity for the patient. Novel cures for these diseases await through protein, cell or stem cell transfer.
References
- Braverman IM. The cutaneous microcirculation. Journal of Investigative Dermatology Symposium Proceedings 2000; 5(1): 3–9.
- Hilliges M, Wang L, Johansson O. Ultrastructural evidence for nerve fibers within all vital layers of the human epidermis. Journal of Investigative Dermatology 1995; 104(1): 134–137.
- Roggenkamp D, Köpnick S, Stäb F, Wenck H, Schmelz M, Neufang G. Epidermal nerve fibers modulate keratinocyte growth via neuropeptide signaling in an innervated skin model. Journal of Investigative Dermatology 2013; 133(6): 1620–1628.
- Bhushan B, Tang W, Ge S. Nanomechanical characterization of skin and skin cream. Journal of Microscopy 2010; 240(2): 135–144.
- Hoath SB, Leahy DG. The human stratum corneum as extended, covalently cross-linked biopolymer: mathematics, molecules, and medicine. Medical Hypotheses 2006; 66(6): 1191–1198.
- Blanpain C, Lowry WE, Pasolli HA, Fuchs E. Canonical notch signaling functions as a commitment switch in the epidermal lineage. Genes & Development 2006; 20(21): 3022–3035.
- Watt FM, Green H. Stratification and terminal differentiation of cultured epidermal cells. Nature 1982; 295(5848): 434–436.
- Byrne C, Tainsky M, Fuchs E. Programming gene expression in developing epidermis. Development (Cambridge, England) 1994; 120(9): 2369–2383.
- Romano R-A, Smalley K, Magraw C, et al. ΔNp63 knockout mice reveal its indispensable role as a master regulator of epithelial development and differentiation. Development (Cambridge, England) 2012; 139(4): 772–782.
- Koster MI. p63 in skin development and ectodermal dysplasias. Journal of Investigative Dermatology 2010; 130(10): 2352–2358.
- Tadeu AMB, Horsley V. Notch signaling represses p63 expression in the developing surface ectoderm. Development (Cambridge, England) 2013; 140(18): 3777–3786.
- Watt FM, Estrach S, Ambler CA. Epidermal Notch signalling: differentiation, cancer and adhesion. Current Opinion in Cell Biology 2008; 20(2): 171–179.
- Nguyen B-C, Lefort K, Mandinova A, et al. Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes & Development 2006; 20(8): 1028–1042.
- Moriyama M, Durham A-D, Moriyama H, et al. Multiple roles of Notch signaling in the regulation of epidermal development. Developmental Cell 2008; 14(4): 594–604.
- Candi E, Schmidt R, Melino G. The cornified envelope: a model of cell death in the skin. Nature Reviews Molecular Cell Biology 2005; 6(4): 328–340.
- Kruegel J, Miosge N. Basement membrane components are key players in specialized extracellular matrices. Cellular and Molecular Life Sciences: CMLS 2010; 67(17): 2879–2895.
- Smith LT, Sakai LY, Burgeson RE, Holbrook KA. Ontogeny of structural components at the dermal-epidermal junction in human embryonic and fetal skin: the appearance of anchoring fibrils and type VII collagen. Journal of Investigative Dermatology 1988; 90(4): 480–485.
- Marinkovich MP, Keene DR, Rimberg CS, Burgeson RE. Cellular origin of the dermal-epidermal basement membrane. Developmental Dynamics 1993; 197(4): 255–267.
- El Ghalbzouri A, Jonkman MF, Dijkman R, Ponec M. Basement membrane reconstruction in human skin equivalents is regulated by fibroblasts and/or exogenously activated keratinocytes. Journal of Investigative Dermatology 2005; 124(1): 79–86.
- Marionnet C, Vioux-Chagnoleau C, Pierrard Cc, Sok J, Asselineau D, Bernerd FB. Morphogenesis of dermal-epidermal junction in a model of reconstructed skin: beneficial effects of vitamin C. Experimental Dermatology 2006; 15(8): 625–633.
- Krieg T, Aumailley M. The extracellular matrix of the dermis: flexible structures with dynamic functions. Experimental Dermatology 2011; 20(8): 689–695.
- Girardeau S, Mine SN, Pageon H, Asselineau D. The Caucasian and African skin types differ morphologically and functionally in their dermal component. Experimental Dermatology 2009; 18(8): 704–711.
- Kielty CM, Sherratt MJ, Shuttleworth CA. Elastic fibres. Journal of Cell Science 2002; 115(Pt 14): 2817–2828.
- Byrne C, Hardman M, Nield K. Covering the limb – formation of the integument. Journal of Anatomy 2003; 202(1): 113–123.
- Fluhr JW, Darlenski R, Taieb A, et al. Functional skin adaptation in infancy – almost complete but not fully competent. Experimental Dermatology 2010; 19(6): 483–492.
- Schneider MR, Schmidt-Ullrich R, Paus R. The hair follicle as a dynamic miniorgan. Current Biology: CB 2009; 19(3): R132–R42.
- Fuchs E. Scratching the surface of skin development. Nature 2007; 445(7130): 834–842.
- Yang C-C, Cotsarelis G. Review of hair follicle dermal cells. Journal of Dermatological Science 2010; 57(1): 2–11.
- Driskell RR, Clavel C, Rendl M, Watt FM. Hair follicle dermal papilla cells at a glance. Journal of Cell Science 2011; 124(Pt 8): 1179–1182.
- Goldstein J, Horsley V. Home sweet home: skin stem cell niches. Cellular and Molecular Life Sciences: CMLS 2012; 69(15): 2573–2582.
- Niemann C, Horsley V. Development and homeostasis of the sebaceous gland. Seminars in Cell & Developmental Biology 2012; 23(8): 928–936.
- Blanpain Cd, Fuchs E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nature Reviews Molecular Cell Biology 2009; 10(3): 207–217.
- Benitah SA, Frye M. Stem cells in ectodermal development. Journal of Molecular Medicine (Berlin, Germany) 2012; 90(7): 783–790.
- Watt FM, Jensen KB. Epidermal stem cell diversity and quiescence. EMBO Molecular Medicine 2009; 1(5): 260–267.
- Pathak MA. In memory of Thomas Bernhard Fitzpatrick. Journal of Investigative Dermatology 2004; 122(2): xx–xxi.
- Fitzpatrick TB. The validity and practicality of sun-reactive skin types I through VI. Archives of Dermatology 1988; 124(6): 869–871.
- Sachdeva S. Fitzpatrick skin typing: applications in dermatology. Indian Journal of Dermatology, Venereology and Leprology 2009; 75(1): 93–96.
- Weinstock MA. Assessment of sun sensitivity by questionnaire: validity of items and formulation of a prediction rule. Journal of Clinical Epidemiology 1992; 45(5): 547–552.
- Callaghan TM, Wilhelm KP. A review of ageing and an examination of clinical methods in the assessment of ageing skin. Part I: Cellular and molecular perspectives of skin ageing. International Journal of Cosmetic Science. 2008; 30(5): 313–322.
- Mine S, Fortunel NO, Pageon H, Asselineau D. Aging alters functionally human dermal papillary fibroblasts but not reticular fibroblasts: a new view of skin morphogenesis and aging. Plos One 2008; 3(12): e4066.
- Li L, Mac-Mary S, Marsaut D, et al. Age-related changes in skin topography and microcirculation. Archives of Dermatological Research 2006; 297(9): 412–416.
- Racila D, Bickenbach JR. Are epidermal stem cells unique with respect to aging? Aging 2009; 1(8): 746–750.
- Prahl S, Kueper T, Biernoth T, et al. Aging skin is functionally anaerobic: importance of coenzyme Q10 for anti aging skin care. Biofactors (Oxford, England) 2008; 32(1–4): 245–255.
- Heinrich U, Tronnier H, Stahl W, Bejot M, Maurette JM. Antioxidant supplements improve parameters related to skin structure in humans. Skin Pharmacology and Physiology 2006; 19(4): 224–231.
- Milewicz DM, Urbán Z, Boyd C. Genetic disorders of the elastic fiber system. Matrix Biology: Journal of the International Society for Matrix Biology 2000; 19(6): 471–480.
- Van Agtmael T, Bruckner-Tuderman L. Basement membranes and human disease. Cell and Tissue Research 2010; 339(1): 167–188.
- Tassabehji M, Metcalfe K, Hurst J, et al. An elastin gene mutation producing abnormal tropoelastin and abnormal elastic fibres in a patient with autosomal dominant cutis laxa. Human Molecular Genetics 1998; 7(6): 1021–1028.
- Aumailley M, Has C, Tunggal L, Bruckner-Tuderman L. Molecular basis of inherited skin-blistering disorders, and therapeutic implications. Expert Reviews in Molecular Medicine 2006; 8(24): 1–21.
- Kern JS, Loeckermann S, Fritsch A, et al. Mechanisms of fibroblast cell therapy for dystrophic epidermolysis bullosa: high stability of collagen VII favors long-term skin integrity. Molecular Therapy: The Journal of the American Society of Gene Therapy 2009; 17(9): 1605–1615.
- Remington J, Wang X, Hou Y, et al. Injection of recombinant human type VII collagen corrects the disease phenotype in a murine model of dystrophic epidermolysis bullosa. Molecular Therapy: The Journal of the American Society of Gene Therapy 2009; 17(1): 26–33.
- Petrova A, Ilic D, McGrath JA. Stem cell therapies for recessive dystrophic epidermolysis bullosa. British Journal of Dermatology 2010; 163(6): 1149–1156.