Antimicrobial Activities of Marine Protein and Peptides
Mingyong Zeng
College of Food Science and Engineering, Ocean University of China, China
Search for more papers by this authorZunying Liu
College of Food Science and Engineering, Ocean University of China, China
Search for more papers by this authorYuanhui Zhao
College of Food Science and Engineering, Ocean University of China, China
Search for more papers by this authorShiyuan Dong
College of Food Science and Engineering, Ocean University of China, China
Search for more papers by this authorMingyong Zeng
College of Food Science and Engineering, Ocean University of China, China
Search for more papers by this authorZunying Liu
College of Food Science and Engineering, Ocean University of China, China
Search for more papers by this authorYuanhui Zhao
College of Food Science and Engineering, Ocean University of China, China
Search for more papers by this authorShiyuan Dong
College of Food Science and Engineering, Ocean University of China, China
Search for more papers by this authorSe-Kwon Kim
Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea
Department of Chemistry, Pukyoung National University, Nam-Gu, Busan, Republic of Korea
Search for more papers by this authorSummary
Antimicrobial peptides (AMPs) are known as host defense peptides. This chapter first discusses preparation, purification and characterization of AMPs from marine protein sources. Next, it presents experimental techniques utilized to study AMPs and their effects on bacterial cells. The majority of experiments to date have focused primarily on the interaction of cationic peptides with model membrane systems. These have indicated that all AMPs interact with membranes and tend to divide peptides into two mechanistic classes: membrane-disruptive and non-membrane-disruptive. Membrane-disruptive peptides are generally reported to be of the a-helical structural class. Three mechanistic models, the ‘barrel-stave’, ‘micellar-aggregate’ and ‘carpet’ models, have been developed to explain membrane disruption. Finally, the chapter suggests that AMPs have potent capacities for new antibiotic development in the pharmaceutical as well as the food industries, as novel antimicrobial agents.
References
- Austin, B. (1988). Marine Microbiology. Cambridge University Press: Cambridge, UK, pp. 12–30.
- Bergsson, G., Agerberth, B., Jörnvall, H., Gudmundsson, G. H. (2005). Isolation and identification of antimicrobial components from the epidermal mucus of Atlantic cod (Gadus morhua). FEBS J., 272, 4960–4969.
- Bernardini, R. D., Harnedy, P., Bolton, D., Kerry, J., O'Neill, E., Mullen, A. M., Hayes, M. (2011). Antioxidant and antimicrobial peptidic hydrolysates from muscle protein sources and by-products. Food Chem., 124, 1296–1307.
- Bolintineanu, D., Hazrati, E., Davis, H. T., Lehrer, R. I., Kaznessis, Y. N. (2010). Antimicrobial mechanism of pore-forming protegrin peptides: 100 pores to kill E. coli. Peptides, 31, 1–8.
- Bulet, P., Stocklin, R., Menin, L. (2004). Anti-microbial peptides: from invertebrates to vertebrates. Immunol. Rev., 198, 169–184.
- Cavallarin, L., Adreu, D., San Segundo, B. (1998). Cecropin A derived peptides are potent inhibitors of fungal plant pathogens. Mol. Plant-Microbe Interact., 11, 218–227.
- Charlet, M., Chernysh, S., Philippe, H., Hetru, C., Hoffmann, J. A., Bulet, P. (1996). Innate immunity: isolation of several cystein-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. J. Biol. Chem., 271, 21808–21813.
- Dong, X. Z., Xu, H. B., Huang, K. X., Liou, Q., Zhou, J. (2002). The preparation and characterization of an antimicrobial polypeptide from the loach, Misgurnus anguillicaudatus. Protein Expr. Purif., 26, 235–242.
- Epand, R. M. (1997). Modulation of lipid polymorphism by peptides. In: R. F Epand., ed. Lipid Polymorphism and Membrane Properties. Academic Press: San Diego, CA, pp. 237–252.
- Epand, R. M., Shai, Y., Segrest, J. P., Anantharamaiah, G. M. (1995). Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides. Biopolymers, 37, 319–338.
- Fogaca, A. C., Da Silva, P. I., Miranda, M. T. M., Bianchi, A. G., Miranda, A., Ribolla, P. E. M., Daffre, S. (1999). Antimicrobial activity of a bovine hemoglobin fragment in the tick Boophilus microplus. J. Biol. Chem., 274, 25330–25334.
- Friedrich, C., Scott, M. G., Karunaratne, N., Yan, H., Hancock, R. E. W. (1999). Salt-resistant alpha-helical cationic antimicrobial peptides. Antimicrob Agents Ch., 43, 1542–1548.
- Friedrich, C. L., Moyles, D., Beveridge, T. J., Hancock, R. E. W. (2000). Antibacterial action of structurally diverse cationic peptides on Gram-positive bacteria. Antimicrob Agents Ch., 44, 2086–2092.
- Gazit, E., Boman, A., Boman, H. G., Shai, Y. (1995). Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. Biochem., 34, 11479–11488.
- Gazit, E., Miller, I. R., Biggin, P. C., Sansom, M. S., Shai, Y. (1996). Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes. J. Mol. Biol., 258, 860–870.
- Giuliani, A., Pirri, G., Nicoletto, S. (2007). Antimicrobial peptides: an overview of a promising class of therapeutics. Cent. Eur. J. Biol., 2, 1–33.
- Gottler L. M. (2008). Peptides as model systems, antimicrobial agents, and a means for protein superassembly. PhD thesis, Department of Chemistry, University of Michigan: Ann Arbor, MI.
- Gottler, L. M., Ramamoorthy, A. (2009). Structure, membrane orientation, mechanism, and function of pexiganan: a highly potent antimicrobial peptide designed from magainin. Biochimica et Biophysica Acta, 1788, 1680–1686.
- Hadley, E. B., Hancock, R. E. (2010). Strategies for the discovery and advancement of novel cationic antimicrobial peptides. Curr. Top. Med. Chem., 10, 1872–1881.
- Hallock, K. J., Lee, D. K., Ramamoorthy, A. (2003). MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophys. J., 84, 3052–3060.
- Haney, E. F., Lau, F., Vogel, H. J. (2007). Solution structures and model membrane interactions of lactoferrampin, an antimicrobial peptide derived from bovine lactoferrin. Biochim. Biophys. Acta, 1768, 2355–2364.
- Haney, E. F., Nathoo, S., Vogel, H. J., Prenner, E. J. (2010). Induction of non-lamellar lipid phases by antimicrobial peptides: a potential link to mode of action. Chem. Phys. Lipids, 163, 82–93
- Haney, E. F., Vogel, H. J. (2009). NMR of antimicrobial peptides. In: G. A Webb., ed. Annual Reports on NMR Spectroscopy. Academic Press: Burlington, MA, pp. 1–51.
- Harris, F., Dennison, S. R., Phoenix, D. A. (2009). Anionic antimicrobial peptides from eukaryotic organisms. Curr. Protein Pept. Sci., 10, 585–606.
- Hayes, M., Ross, R. P., Fitzgerald, G. F., Hill, C., Stanton, C. (2006). Casein-derived antimicrobial peptides generated by Lactobacillus acidophilus DPC6026. Appl. Environ. Microb., 72, 2260–2264.
- Hickey, R. M., Twomey, D. P., Ross, R. P., Hill, C. (2003). Production of enterolysin A by a raw milk enterococcal isolate exhibiting multiple virulence factors. Microbiol., 149, 655–664.
- Hughes, C. C., Fenical, W. (2010). Antibacterials from the sea. Chem. Eur. J., 16, 12512–12525.
- Hultmark, D., Steiner, H., Rasmuson, T., Boman, H. G. (1980). Insect immunity: purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur. J. Biochem., 106, 7–16.
- Iwanaga, S. (2002). The molecular basis of innate immunity in the horseshoe crab. Curr. Opin. Immunol., 14, 87–95.
- Jones, R. W., Prusky, D. (2002). Expression of an antifungal peptide in Saccharomyces: a new approach for biological control of the postharvest disease caused by Colletotrichum coccodes. Phytopathology, 92, 33–37.
- Kim, S. K., Wijesekara, I. (2010). Development and biological activities of marine-derived bioactive peptides: a review. J. Functional Food, 2, 1–9.
- Kulkarni, M. M., McMaster, W. R., Kamysz, E., Kamysz, W., Engman, D. M., McGwire, B. S. (2006). The surface-metalloprotease of the parasitic protozoan, Leishmania, protects against antimicrobial peptide-induced apoptotic killing. Mol. Biol., 62, 1484–1497
- Lee, I. H., Cho, Y., Lehrer, R. I. (1997). Styelins, broad-spectrum antimicrobial peptides from solitary tunicate, Stylea clava. Comp. Biochem. Physiol., 118B, 515–521.
- Lemaitre, B., Reichhart, J. M., Hoffmann, J. A. (1997). Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes ofmicroorganisms. Proc. Natl. Acad. Sci. USA, 94, 14614–14619.
- Li, C., Haug, T., Styrvold, O. B., Jørgensen, T. O., Stensvåg, K. (2008). Strongylocins, novel antimicrobial peptides from the green sea urchin, Stronglyocentrotus droebachiensis. Dev. Comp. Immunol., 32, 1430–1440.
- Li, Y. (2011). Recombinant production of antimicrobial peptides in Escherichia coli: a review. Protein Expr. Purif., 80, 260–267.
- Liu, Z., Dong, S., Xu, J., Zeng, M., Song, H., Zhao, Y. (2008). Production of cysteine-rich antimicrobial peptide by digestion of oyster (Crassostrea gigas) with alcalase and bromelin. Food Control, 19, 231–235.
- Lohner, K., Prenner, E. J. (1999). Differential scanning calorimetry and X-ray diffraction studies of the specificity of the interaction of antimicrobial peptides with membrane-mimetic systems. Biochim. Biophys. Acta, 1462, 141–156.
- Lopez-Garcia, B., Gonzalez-Candelas, L., Perez-Paya, E., Marcos, J. F. (2000). Identification and characterization of a hexapeptide with activity against phytopathogenic fungi that cause postharvest decay in fruits. Mol. Plant-Microb. Interact., 13, 837–846.
- Lopez-Garcia, B., Veyrat, A., Perez-Paya, E., Gonzalez-Candelas, L., Marcos, J. F. (2003). Comparison of the activity of antifungal hexapeptides and the fungicides thiabendazole and imazalil against postharvest fungal pathogens. Int. J. Food Microbiol., 89, 163–170.
- Matsuzaki, K., Nakayama, M., Fukui, M., Otaka, A., Funakoshi, S., Fujii, N., Bessho, K., Miyajima, K. (1993). Role of disulfide linkages in tachyplesin-lipid interactions. Biochem., 32, 11704–11710.
- Matsuzaki, K., Sugishita, K., Harada, M., Fujii, N., Miyajima, K. (1997). Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. Biochim Biophys Acta, 1327, 119–130.
- Meng, H., Kumar, K. (2007). Antimicrobial activity and protease stability of peptides containing fluorinated amino acids. J. Am. Chem. Soc., 129, 15615–15622.
- Mitta, G., Hubert, F., Dyrynda, E. A., Boudry, P., Roch, P. (2000). Mytilin B and MGD2, two antimicrobial peptides of marine mussels: gene structure and expression analysis. Dev. Comp. Immunol., 24, 381–393.
- Muñoz, M., Vandenbulcke, F., Saulnier, D., Bachère, E. (2002). Expression and distribution of penaeidin antimicrobial peptides are regulated by haemocyte reactions in microbial challenged shrimp. Eur. J. Biochem., 269, 2678–2689.
- Najafian, L., Babji, A. S. (2012). A review of fish-derived antioxidant and antimicrobial peptides: their production, assessment, and applications. Peptides, 33, 178–185.
- Ovchinnikova, T. V., Aleshina, G. M., Balandin, S. V., Krasnosdembskaya, A. D., Markelov, M. L., Frolova, E. I. et al. (2004). Purification and primary structure of two isoforms of arenicin, a novel antimicrobial peptide from marine polychaeta Arenicola marina. FEBS Lett., 577, 209–214.
- Ovchinnikova, T. V., Balandin, S. V., Aleshina, G. M., Tagaev, A. A., Leonova, Y. F., Krasnodembsky, E. D. et al. (2006). Aurelin, a novel antimicrobial peptide from jellyfish Aurelia aurita with structural features of defensins and channel-blocking toxins. Biochem. Biophys. Res. Commun., 348, 514–523.
- Pan, C. Y., Chen, J. Y., Lin, T. L., Lin, C. H. (2009). In vitro activities of three synthetic peptides derived from epinecidin-1 and an anti-lipopolysaccharide factor against Propionibacterium acnes, Candida albicans, and Trichomonas vaginalis. Peptides, 30, 1058–1068.
- Patrzykat, A., Douglas, S. E. (2003). Gone gene fishing: how to catch novel marine antimicrobials. Trends Biotechnol., 21, 362–369.
- Porcelli, F., Buck-Koehntop, B., Thennarasu, S., Ramamoorthy, A., Veglia, G. (2006). Structures of the dimeric and monomeric variants of magainin antimicrobial peptides (MSI-78 and MSI-594) in micelles and bilayers by NMR spectroscopy, Biochem., 45, 5793–5799.
- Powell, W. A., Catranis, C. M., Maynard, C. A. (1995). Synthetic antimicrobial peptide design. Mol. Plant-Microbe Interact., 8, 792–794.
- Powers, J. P. S., Hancock, R. E. W. (2003). The relationship between peptide structure and antibacterial activity. Peptides, 24, 1681–1691.
- Radzishevsky, I. S., Rotem, S., Zaknoon, F., Gaidukov, L., Dagan, A., Mor, A. (2005). Effects of acyl versus aminoacyl conjugation on the properties of antimicrobial peptides, Antimicrob. Agents Ch., 49, 2412–2420.
- Rajanbabu, V., Chen, J. Y. (2011). Applications of antimicrobial peptides from fish and perspectives for the future. Peptides, 32, 415–420.
- Ramamoorthy, A., Thennarasu, S., Lee, D. K., Tan, A., Maloy, L. (2006). Solid-state NMR investigations of the membrane-disrupting mechanism of antimicrobial peptides MSI-78 and MSI-594, Biophysical. J., 91, 206–216.
- Reddy, K. V., Yedery, R. D., Aranha, C. (2004). Antimicrobial peptides: premises and promises. Int. J. Antimicrob. Ag., 24, 536–547.
- Sato, H., Feix, J. B. (2006). Peptide–membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides. Biochimica et Biophysica Acta, 1758, 1245–1256.
- Smith, V. J., Fernandes, J. M. O., Kemp, G. D., Hauton, C. (2008). Crustins: enigmatic WAP domain-containing antibacterial proteins from crustaceans. Dev. Comp. Immunol., 32, 758–772.
- Sperstad, S. V., Haug, T., Blencke, H. M., Styrvold, O. B., Li, C., Stensvåg, K. (2011). Antimicrobial peptides from marine invertebrates: challenges and perspectives in marine antimicrobial peptide discovery. Biotech. Adv., 29, 519–530.
- Sperstad, S. V., Smith, V. J., Stensvåg, K. (2010). Expression of antimicrobial peptides from Hyasaraneus haemocytes following bacterial challenge in vitro. Dev. Comp. Immunol., 34, 618–624.
- Staudegger, E., Prenner, E. J., Kriechbaum, M., Degovics, G., Lewis, R. N. A. H., McElhaney, R. N., Lohner, K. (2000). X-ray studies onthe interaction of the antimicrobial peptide gramicidin S with microbial lipid extracts: evidence for cubic phase formation. Biochim. Biophys. Acta, 1468, 213–230.
- Steiner, H., Andreu, D., Merrifield, R. B. (1988). Binding and action of cecropin and cecropin analogues: antibacterial peptides from insects. Biochim. Biophys. Acta, 939, 260–266.
- Tyler, M. E., Segrest, J. P., Epand, R. M., Nie, S. Q., Epand, R. F., Mishra, V. K., tachalapathi, Y. V., Anantharamaih, G. M. (1993). Reciprocal effects of apolipoprotein and lytic peptide analogs on membranes: cross-sectional molecular shapes of amphipathic alpha helixes control membrane stability. J. Biol. Chem., 268, 22112–22118.
- Ullal, A. J., Noga, E. J. (2010). Antiparasitic activity of the antimicrobial peptide HbbP-1, a member of the β-haemoglobin peptide family. J. Fish Dis., 33, 657–664.
- Zelezetsky, I., Tossi, A. (2006). Alpha-helical antimicrobial peptides: using a sequence template to guide structure–activity relationship studies. BBA Biomemb., 1758, 1436–1449.
- Zhao, J., Guo, L., Zeng, H., Yang, X., Yuan, J., Shi, H., Xiong, Y., Chen, M., Han, L., Qiu, D. (2012). Purification and characterization of a novel antimicrobial peptide from Brevibacillus laterosporus strain A60. Petpides, doi:10.1016/j.peptides.2012.01.001.