Oxidative Stress and Parkinson Disease
Kah-Leong Lim
Department of Physiology, National University of Singapore, Singapore
Duke-NUS Graduate Medical School, Singapore
Neuroscience Research Partnership, A*STAR, Singapore
National Neuroscience Institute, Singapore
Search for more papers by this authorXiao-Hui Ng
Department of Physiology, National University of Singapore, Singapore
Search for more papers by this authorKah-Leong Lim
Department of Physiology, National University of Singapore, Singapore
Duke-NUS Graduate Medical School, Singapore
Neuroscience Research Partnership, A*STAR, Singapore
National Neuroscience Institute, Singapore
Search for more papers by this authorXiao-Hui Ng
Department of Physiology, National University of Singapore, Singapore
Search for more papers by this authorTahira Farooqui
Department of Entomology/Center of Molecular Neurobiology, The Ohio State University, Columbus, Ohio, USA
Search for more papers by this authorAkhlaq A. Farooqui
Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, USA
Search for more papers by this authorSummary
This chapter contains sections titled:
-
Introduction
-
Reactive Oxygen Species and Oxidative Stress
-
Oxidative Stress and PD
-
Therapeutic Implications
-
Conclusion
-
Acknowledgments
-
References
REFERENCES
- E. R. Dorsey, R. Constantinescu, J. P. Thompson, K. M. Biglan, R. G. Holloway, K. Kieburtz, F. J. Marshall, B. M. Ravina, G. Schifitto, A. Siderowf and C. M. Tanner. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 2007; 68: 384–386.
- H. Braak, K. Del Tredici, U. Rub, R. A. de Vos, E. N. Jansen Steur and E. Braak. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging 2003; 24: 197–211.
- B. Thomas and M. F. Beal. Parkinson's disease. Hum Mol Genet 2007; 16 Spec No. 2: R183–194.
- M. He, M. Sebaihia, T. D. Lawley, R. A. Stabler, L. F. Dawson, M. J. Martin, K. E. Holt, H. M. Seth-Smith, M. A. Quail, R. Rance, K. Brooks, C. Churcher, D. Harris, S. D. Bentley, C. Burrows, L. Clark, C. Corton, V. Murray, G. Rose, S. Thurston, A. van Tonder, D. Walker, B. W. Wren, G. Dougan and J. Parkhill. Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci USA 2010; 107: 7527–7532.
- D. G. Graham. Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol 1978; 14: 633–643.
- D. G. Graham, S. M. Tiffany, W. R. Bell, Jr. and W. F. Gutknecht. Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydro-xydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Mol Pharmacol 1978; 14: 644–653.
- D. T. Hess, A. Matsumoto, S. O. Kim, H. E. Marshall and J. S. Stamler. Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 2005; 6: 150–166.
- Z. Gu, T. Nakamura and S. A. Lipton. Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases. Mol Neurobiol 2010; 41: 55–72.
- F. Q. Schafer and G. R. Buettner. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 2001; 30: 1191–1212.
- D. Kaur, J. Peng, S. J. Chinta, S. Rajagopalan, D. A. Di Monte, R. A. Cherny and J. K. Andersen. Increased murine neonatal iron intake results in Parkinson-like neurodegeneration with age. Neurobiol Aging 2007; 28: 907–913.
- A. Kamsler and M. Segal. Control of neuronal plasticity by reactive oxygen species. Antioxid Redox Signal 2007; 9: 165–167.
- K. T. Kishida and E. Klann. Sources and targets of reactive oxygen species in synaptic plasticity and memory. Antioxid Redox Signal 2007; 9: 233–244.
- D. Boehning and S. H. Snyder. Novel neural modulators. Annu Rev Neurosci 2003; 26: 105–131.
- D. T. Dexter, C. J. Carter, F. R. Wells, F. Javoy-Agid, Y. Agid, A. Lees, P. Jenner and C. D. Marsden. Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J Neurochem 1989; 52: 381–389.
- Z. I. Alam, S. E. Daniel, A. J. Lees, D. C. Marsden, P. Jenner and B. Halliwell. A generalised increase in protein carbonyls in the brain in Parkinson's but not incidental Lewy body disease. J Neurochem 1997; 69: 1326–1329.
- Z. I. Alam, A. Jenner, S. E. Daniel, A. J. Lees, N. Cairns, C. D. Marsden, P. Jenner and B. Halliwell. Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem 1997; 69: 1196–1203.
- J. Zhang, G. Perry, M. A. Smith, D. Robertson, S. J. Olson, D. G. Graham and T. J. Montine. Parkinson's disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol 1999; 154: 1423–1429.
- J. Sian, D. T. Dexter, A. J. Lees, S. Daniel, P. Jenner and C. D. Marsden. Glutathione-related enzymes in brain in Parkinson's disease. Ann Neurol 1994; 36: 356–361.
- M. B. Youdim, D. Ben-Shachar and P. Riederer. The possible role of iron in the etiopathology of Parkinson's disease. Mov Disord 1993; 8: 1–12.
- J. Salazar, N. Mena, S. Hunot, A. Prigent, D. Alvarez-Fischer, M. Arredondo, C. Duyckaerts, V. Sazdovitch, L. Zhao, L. M. Garrick, M. T. Nunez, M. D. Garrick, R. Raisman-Vozari and E. C. Hirsch. Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson's disease. Proc Natl Acad Sci USA 2008; 105: 18578–18583.
- Y. Ke, Y. Z. Chang, X. L. Duan, J. R. Du, L. Zhu, K. Wang, X. D. Yang, K. P. Ho and Z. M. Qian. Age-dependent and iron-independent expression of two mRNA isoforms of divalent metal transporter 1 in rat brain. Neurobiol Aging 2005; 26: 739–748.
- P. M. Keeney, J. Xie, R. A. Capaldi and J. P. Bennett, Jr. Parkinson's disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 2006; 26: 5256–5264.
- A. H. Schapira, J. M. Cooper, D. Dexter, P. Jenner, J. B. Clark and C. D. Marsden. Mitochondrial complex I deficiency in Parkinson's disease. Lancet 1989; 1: 1269.
- C. W. Shults, R. H. Haas, D. Passov and M. F. Beal. Coenzyme Q10 levels correlate with the activities of complexes I and II/III in mitochondria from parkinsonian and nonparkinsonian subjects. Ann Neurol 1997; 42: 261–264.
- C. Henchcliffe and M. F. Beal. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol 2008; 4: 600–609.
- A. L. McCormack, M. Thiruchelvam, A. B. Manning-Bog, C. Thiffault, J. W. Langston, D. A. Cory-Slechta and D. A. Di Monte. Environmental risk factors and Parkinson's disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis 2002; 10: 119–127.
- J. Peng, F. F. Stevenson, S. R. Doctrow and J. K. Andersen. Superoxide dismutase/catalase mimetics are neuroprotective against selective paraquat-mediated dopaminergic neuron death in the substantial nigra: implications for Parkinson disease. J Biol Chem 2005; 280: 29194–29198.
- D. Kaur, F. Yantiri, S. Rajagopalan, J. Kumar, J. Q. Mo, R. Boonplueang, V. Viswanath, R. Jacobs, L. Yang, M. F. Beal, D. DiMonte, I. Volitaskis, L. Ellerby, R. A. Cherny, A. I. Bush and J. K. Andersen. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson's disease. Neuron 2003; 37: 899–909.
- B. I. Giasson, J. E. Duda, I. V. Murray, Q. Chen, J. M. Souza, H. I. Hurtig, H. Ischiropoulos, J. Q. Trojanowski and V. M. Lee. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 2000; 290: 985–989.
- S. Przedborski, Q. Chen, M. Vila, B. I. Giasson, R. Djaldatti, S. Vukosavic, J. M. Souza, V. Jackson-Lewis, V. M. Lee and H. Ischiropoulos. Oxidative post-translational modifications of alpha-synuclein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. J Neurochem 2001; 76: 637–640.
- D. D. Song, C. W. Shults, A. Sisk, E. Rockenstein and E. Masliah. Enhanced substantia nigra mitochondrial pathology in human alpha-synuclein transgenic mice after treatment with MPTP. Exp Neurol 2004; 186: 158–172.
- W. Dauer, N. Kholodilov, M. Vila, A. C. Trillat, R. Goodchild, K. E. Larsen, R. Staal, K. Tieu, Y. Schmitz, C. A. Yuan, M. Rocha, V. Jackson-Lewis, S. Hersch, D. Sulzer, S. Przedborski, R. Burke and R. Hen. Resistance of alpha-synuclein null mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci USA 2002; 99: 14524–14529.
- P. Klivenyi, D. Siwek, G. Gardian, L. Yang, A. Starkov, C. Cleren, R. J. Ferrante, N. W. Kowall, A. Abeliovich and M. F. Beal. Mice lacking alpha-synuclein are resistant to mitochondrial toxins. Neurobiol Dis 2006; 21: 541–548.
- M. Hashimoto, L. J. Hsu, Y. Xia, A. Takeda, A. Sisk, M. Sundsmo and E. Masliah. Oxidative stress induces amyloid-like aggregate formation of NACP/alpha-synuclein in vitro. Neuroreport 1999; 10: 717–721.
- V. N. Uversky, J. Li and A. L. Fink. Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson's disease and heavy metal exposure. J Biol Chem 2001; 276: 44284–44296.
- A. L. McCormack, J. G. Atienza, L. C. Johnston, J. K. Andersen, S. Vu and D. A. Di Monte. Role of oxidative stress in paraquat-induced dopaminergic cell degeneration. J Neurochem 2005; 93: 1030–1037.
- C. Wang, H. S. Ko, B. Thomas, F. Tsang, K. C. Chew, S. P. Tay, M. W. Ho, T. M. Lim, T. W. Soong, O. Pletnikova, J. Troncoso, V. L. Dawson, T. M. Dawson and K. L. Lim. Stress-induced alterations in parkin solubility promote parkin aggregation and compromise parkin's protective function. Hum Mol Genet 2005; 14: 3885–3897.
- E. S. Wong, J. M. Tan, C. Wang, Z. Zhang, S. P. Tay, N. Zaiden, H. S. Ko, V. L. Dawson, T. M. Dawson and K. L. Lim. Relative sensitivity of parkin and other cysteine-containing enzymes to stress-induced solubility alterations. J Biol Chem 2007; 282: 12310–12318.
- J. E. Ahlskog. Parkin and PINK1 parkinsonism may represent nigral mitochondrial cytopathies distinct from Lewy body Parkinson's disease. Parkinsonism Relat Disord 2009; 15: 721–727.
- C. A. Gautier, T. Kitada and J. Shen. Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc Natl Acad Sci USA 2008; 105: 11364–11369.
- J. A. Rodriguez-Navarro, M. J. Casarejos, J. Menendez, R. M. Solano, I. Rodal, A. Gomez, J. G. Yebenes and M. A. Mena. Mortality, oxidative stress and tau accumulation during ageing in parkin null mice. J Neurochem 2007; 103: 98–114.
- H. Jiang, Q. Jiang, W. Liu and J. Feng. Parkin suppresses the expression of monoamine oxidases. J Biol Chem 2006; 281: 8591–8599.
- Y. Ren, H. Jiang, D. Ma, K. Nakaso and J. Feng. Parkin degrades estrogen-related receptors to limit the expression of monoamine oxidases. Hum Mol Genet 2011; 20: 1074–1083.
- T. Taira, Y. Saito, T. Niki, S. M. Iguchi-Ariga, K. Takahashi and H. Ariga. DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep 200; 5: 213–218.
- R. M. Canet-Aviles, M. A. Wilson, D. W. Miller, R. Ahmad, C. McLendon, S. Bandyopadhyay, M. J. Baptista, D. Ringe, G. A. Petsko and M. R. Cookson. The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci USA 2004; 101: 9103–9108.
- L. Zhang, M. Shimoji, B. Thomas, D. J. Moore, S. W. Yu, N. I. Marupudi, R. Torp, I. A. Torgner, O. P. Ottersen, T. M. Dawson and V. L. Dawson. Mitochondrial localization of the Parkinson's disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet 2005; 14: 2063–2073.
- E. Andres-Mateos, C. Perier, L. Zhang, B. Blanchard-Fillion, T. M. Greco, B. Thomas, H. S. Ko, M. Sasaki, H. Ischiropoulos, S. Przedborski, T. M. Dawson and V. L. Dawson. DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proc Natl Acad Sci USA 2007; 104: 14807–14812.
- F. M. Menzies, S. C. Yenisetti and K. T. Min. Roles of Drosophila DJ-1 in survival of dopaminergic neurons and oxidative stress. Curr Biol 2005; 15: 1578–1582.
- M. Meulener, A. J. Whitworth, C. E. Armstrong-Gold, P. Rizzu, P. Heutink, P. D. Wes, L. J. Pallanck and N. M. Bonini. Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson's disease. Curr Biol 2005; 15: 1572–1577.
- R. H. Kim, P. D. Smith, H. Aleyasin, S. Hayley, M. P. Mount, S. Pownall, A. Wakeham, A. J. You-Ten, S. K. Kalia, P. Horne, D. Westaway, A. M. Lozano, H. Anisman, D. S. Park and T. W. Mak. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc Natl Acad Sci USA 2005; 102: 5215–5220.
- Y. Yang, S. Gehrke, M. E. Haque, Y. Imai, J. Kosek, L. Yang, M. F. Beal, I. Nishimura, K. Wakamatsu, S. Ito, R. Takahashi and B. Lu. Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling. Proc Natl Acad Sci USA 2005; 102: 13670–13675.
- J. Park, S. Y. Kim, G. H. Cha, S. B. Lee, S. Kim and J. Chung. Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction. Gene 2005; 361: 133–139.
- A. B. Manning-Bog, W. M. Caudle, X. A. Perez, S. H. Reaney, R. Paletzki, M. Z. Isla, V. P. Chou, A. L. McCormack, G. W. Miller, J. W. Langston, C. R. Gerfen and D. A. Dimonte. Increased vulnerability of nigrostriatal terminals in DJ-1-deficient mice is mediated by the dopamine transporter. Neurobiol Dis 2007; 27: 141–150.
- D. G. Graham. On the origin and significance of neuromelanin. Arch Pathol Lab Med 1979;. 103: 359–362.
- E. Greggio, E. Bergantino, D. Carter, R. Ahmad, G. E. Costin, V. J. Hearing, J. Clarimon, A. Singleton, J. Eerola, O. Hellstrom, P. J. Tienari, D. W. Miller, A. Beilina, L. Bubacco and M. R. Cookson. Tyrosinase exacerbates dopamine toxicity but is not genetically associated with Parkinson's disease. J Neurochem 2005; 93: 246–256.
- L. Chen, Y. Ding, B. Cagniard, A. D. Van Laar, A. Mortimer, W. Chi, T. G. Hastings, U. J. Kang and X. Zhuang. Unregulated cytosolic dopamine causes neurode-generation associated with oxidative stress in mice. J Neurosci 2008; 28: 425–433.
- S. Przedborski, V. Kostic, V. Jackson-Lewis, A. B. Naini, S. Simonetti, S. Fahn, E. Carlson, C. J. Epstein and J. L. Cadet. Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. J Neurosci 1992; 12: 1658–1667.
- D. G. Graham and P. W. Jeffs. The role of 2,4,5-trihydroxyphenylalanine in melanin biosynthesis. J Biol Chem 1977; 252: 5729–5734.
- M. Bisaglia, S. Mammi and L. Bubacco. Kinetic and structural analysis of the early oxidation products of dopa-mine: analysis of the interactions with alpha-synuclein. J Biol Chem 2007; 282: 15597–15605.
- C. L. Pham, S. L. Leong, F. E. Ali, V. B. Kenche, A. F. Hill, S. L. Gras, K. J. Barnham and R. Cappai. Dopamine and the dopamine oxidation product 5,6-dihydroxylindole promote distinct on-pathway and off-pathway aggregation of alpha-synuclein in a pH-dependent manner. J Mol Biol 2009; 387: 771–785.
- J. P. Spencer, P. Jenner, S. E. Daniel, A. J. Lees, D. C. Marsden and B. Halliwell. Conjugates of catecholamines with cysteine and GSH in Parkinson's disease: possible mechanisms of formation involving reactive oxygen species. J Neurochem 1998; 71: 2112–2122.
- M. J. LaVoie, B. L. Ostaszewski, A. Weihofen, M. G. Schlossmacher and D. J. Selkoe. Dopamine covalently modifies and functionally inactivates parkin. Nat Med 2005; 11: 1214–1221.
- M. J. LaVoie, G. P. Cortese, B. L. Ostaszewski and M. G. Schlossmacher. The effects of oxidative stress on parkin and other E3 ligases. J Neurochem 2007; 103: 2354–2368.
- V. S. Van Laar, A. J. Mishizen, M. Cascio and T. G. Hastings. Proteomic identification of dopamine-conjugated proteins from isolated rat brain mitochondria and SHSY5Y cells. Neurobiol Dis 2009; 34: 487–500.
- K. A. Conway, J. C. Rochet, R. M. Bieganski and P. T. Lansbury, Jr. Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 2001; 294: 1346–1349.
- M. Martinez-Vicente, Z. Talloczy, S. Kaushik, A. C. Massey, J. Mazzulli, E. V. Mosharov, R. Hodara, R. Fredenburg, D. C. Wu, A. Follenzi, W. Dauer, S. Przedborski, H. Ischiropoulos, P. T. Lansbury, D. Sulzer and A. M. Cuervo. Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest 2008; 118: 777–788.
- F. J. Lee, F. Liu, Z. B. Pristupa and H. B. Niznik. Direct binding and functional coupling of alpha-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. FASEB J 2001; 15: 916–926.
- S. B. Berman and T. G. Hastings. Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson's disease. J Neurochem 1999; 73: 1127–1137.
- M. R. Gluck and G. D. Zeevalk. Inhibition of brain mitochondrial respiration by dopamine and its metabolites: implications for Parkinson's disease and catecholamine-associated diseases. J Neurochem 2004; 91: 788–795.
- S. Jana, A. K. Maiti, M. B. Bagh, K. Banerjee, A. Das, A. Roy and S. Chakrabarti. Dopamine but not 3,4-dihydroxy phenylacetic acid (DOPAC) inhibits brain respiratory chain activity by autoxidation and mitochondria catalyzed oxidation to quinone products: implications in Parkinson's disease. Brain Res 2007; 1139: 195–200.
- F. H. Khan, T. Sen, A. K. Maiti, S. Jana, U. Chatterjee and S. Chakrabarti. Inhibition of rat brain mitochondrial electron transport chain activity by dopamine oxidation products during extended in vitro incubation: implications for Parkinson's disease. Biochim Biophys Acta 2005; 1741: 65–74.
- T. G. Hastings, D. A. Lewis and M. J. Zigmond. Role of oxidation in the neurotoxic effects of intrastriatal dopa-mine injections. Proc Natl Acad Sci USA 1996; 93: 1956–1961.
- A. D. Rabinovic, D. A. Lewis and T. G. Hastings. Role of oxidative changes in the degeneration of dopamine terminals after injection of neurotoxic levels of dopamine. Neuroscience 2000; 101: 67–76.
- W. M. Caudle, J. R. Richardson, M. Z. Wang, T. N. Taylor, T. S. Guillot, A. L. McCormack, R. E. Colebrooke, D. A. Di Monte, P. C. Emson and G. W. Miller. Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration. J Neurosci 2007; 27: 8138–8148.
- A. K. Stark and B. Pakkenberg. Histological changes of the dopaminergic nigrostriatal system in aging. Cell Tissue Res 2004; 318: 81–92.
- C. Y. Chung, H. Seo, K. C. Sonntag, A. Brooks, L. Lin and O. Isacson. Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol Genet 2005; 14: 1709–1725.
- R. S. Burns, C. C. Chiueh, S. P. Markey, M. H. Ebert, D. M. Jacobowitz and I. J. Kopin. A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 1983; 80: 4546–4550.
- M. Rodriguez, P. Barroso-Chinea, P. Abdala, J. Obeso and T. Gonzalez-Hernandez. Dopamine cell degeneration induced by intraventricular administration of 6-hydroxydopamine in the rat: similarities with cell loss in Parkinson's disease. Exp Neurol 2001; 169: 163–181.
- J. Zhang, D. G. Graham, T. J. Montine and Y. S. Ho. Enhanced N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in mice deficient in CuZn-superoxide dismutase or glutathione peroxidase. J Neuropathol Exp Neurol 2000; 59: 53–61.
- E. V. Mosharov, K. E. Larsen, E. Kanter, K. A. Phillips, K. Wilson, Y. Schmitz, D. E. Krantz, K. Kobayashi, R. H. Edwards and D. Sulzer. Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron 2009; 62: 218–229.
- C. S. Chan, J. N. Guzman, E. Ilijic, J. N. Mercer, C. Rick, T. Tkatch, G. E. Meredith and D. J. Surmeier. “Rejuve-nation” protects neurons in mouse models of Parkinson's disease. Nature 2007; 447: 1081–1086.
- D. J. Surmeier, J. N. Guzman and J. Sanchez-Padilla. Calcium, cellular aging, and selective neuronal vulnerability in Parkinson's disease. Cell Calcium 2010; 47: 175–182.
- J. N. Guzman, J. Sanchez-Padilla, D. Wokosin, J. Kondapalli, E. Ilijic, P. T. Schumacker and D. J. Surmeier. Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 2010; 468: 696–700.
- J. T. Williams, R. A. North, S. A. Shefner, S. Nishi and T. M. Egan. Membrane properties of rat locus coeruleus neurones. Neuroscience 198; 13: 137–156.
- C. R. Gerfen, K. G. Baimbridge and J. J. Miller. The neostriatal mosaic: compartmental distribution of calcium-binding protein and parvalbumin in the basal ganglia of the rat and monkey. Proc Natl Acad Sci USA 1985; 82: 8780–8784.
- G. E. Alexander. Biology of Parkinson's disease: pathogenesis and pathophysiology of a multisystem neuro-degenerative disorder. Dialogues Clin Neurosci 2004; 6: 259–280.
- L. C. Park, H. Zhang and G. E. Gibson. Co-culture with astrocytes or microglia protects metabolically impaired neurons. Mech Ageing Dev 2001; 123: 21–27.
- R. Dringen, J. M. Gutterer and J. Hirrlinger. Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem 2000; 267: 4912–4916.
- N. G. Gubernator, H. Zhang, R. G. Staal, E. V. Mosharov, D. B. Pereira, M. Yue, V. Balsanek, P. A. Vadola, B. Mukherjee, R. H. Edwards, D. Sulzer and D. Sames. Fluorescent false neurotransmitters visualize dopa-mine release from individual presynaptic terminals. Science 2009; 324: 1441–1444.
- A. Hald and J. Lotharius. Oxidative stress and inflammation in Parkinson's disease: is there a causal link? Exp Neurol 2005; 193: 279–290.
- S. Chung, E. Hedlund, M. Hwang, D. W. Kim, B. S. Shin, D. Y. Hwang, U. Jung Kang, O. Isacson and K. S. Kim. The homeodomain transcription factor Pitx3 facilitates differentiation of mouse embryonic stem cells into AHD2-expressing dopaminergic neurons. Mol Cell Neurosci 2005; 28: 241–252.
- D. C. Wu, P. Teismann, K. Tieu, M. Vila, V. Jackson-Lewis, H. Ischiropoulos and S. Przedborski. NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Proc Natl Acad Sci USA 2003; 100: 6145–6150.
- S. Hunot, F. Boissiere, B. Faucheux, B. Brugg, A. MouattPrigent, Y. Agid and E. C. Hirsch. Nitric oxide synthase and neuronal vulnerability in Parkinson's disease. Neuro-science 1996; 72: 355–363.
- J. J. Hoozemans, R. Veerhuis, I. Janssen, E. J. van Elk, A. J. Rozemuller and P. Eikelenboom. The role of cyclo-oxygenase 1 and 2 activity in prostaglandin E2 secretion by cultured human adult microglia: implications for Alzheimer's disease. Brain Res 2002; 951: 218–226.
- P. Teismann, K. Tieu, D. K. Choi, D. C. Wu, A. Naini, S. Hunot, M. Vila, V. Jackson-Lewis and S. Przedborski. Cyclooxygenase-2 is instrumental in Parkinson's disease neurodegeneration. Proc Natl Acad Sci USA 2003; 100: 5473–5478.
- The Parkinson Study Group. Effect of deprenyl on the progression of disability in early Parkinson's disease. N Engl J Med 1989; 321: 1364–1371.
- B. Ritz, S. L. Rhodes, L. Qian, E. Schernhammer, J. H. Olsen and S. Friis. L-type calcium channel blockers and Parkinson disease in Denmark. Ann Neurol 2010; 67: 600– 606.
- X. Wang and E. K. Michaelis. Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci 2010; 2: 12.
- K. L. Lim. Ubiquitin-proteasome system dysfunction in Parkinson's disease: current evidence and controversies. Expert Rev Proteomics 2007; 4: 769–781.