Role of Chaperone Proteins in AHR Function
Iain A. Murray
Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
Search for more papers by this authorGary H. Perdew
Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
Search for more papers by this authorIain A. Murray
Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
Search for more papers by this authorGary H. Perdew
Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
Search for more papers by this authorRaimo Pohjanvirta
Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
Search for more papers by this authorSummary
This chapter contains sections titled:
-
Introduction
-
Composition of the Unliganded AHR Core Complex
-
Presence of other Proteins in the AHR Core Complex
-
Conclusions
-
Acknowledgment
-
References
REFERENCES
- Gu, Y. Z., Hogenesch, J. B., and Bradfield, C. A. (2000). The PAS superfamily: sensors of environmental and developmental signals. Annual Review of Pharmacology and Toxicology, 40, 519–561.
- Poland, A., Glover, E., and Kende, A. S. (1976). Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. Journal of Biological Chemistry, 251, 4936–4946.
- Perdew, G. H. and Poland, A. (1988). Purification of the Ah receptor from C57BL/6J mouse liver. Journal of biological chemistry, 263, 9848–9852.
- Bradfield, C. A., Glover, E., and Poland, A. (1991). Purification and N-terminal amino acid sequence of the Ah receptor from the C57BL/6J mouse. Molecular Pharmacology, 39, 13–19.
- Poland, A., Glover, E., and Bradfield, C. A. (1991). Characterization of polyclonal antibodies to the Ah receptor prepared by immunization with a synthetic peptide hapten. Molecular Pharmacology, 39, 20–26.
- Burbach, K. M., Poland, A., and Bradfield, C. A. (1992). Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 89, 8185–8189.
- Perdew, G. H. (1988). Association of the Ah receptor with the 90-kDa heat shock protein. Journal of Biological Chemistry, 263, 13802–13805.
- Denis, M., Cuthill, S., Wikstrom, A. C., Poellinger, L., and Gustafsson, J. A. (1988). Association of the dioxin receptor with the Mr 90,000 heat shock protein: a structural kinship with the glucocorticoid receptor. Biochemical and Biophysical Research Communications, 155, 801–807.
- Perdew, G. H. and Whitelaw, M. L. (1991) Evidence that the 90-kDa heat shock protein (HSP90) exists in cytosol in heteromeric complexes containing HSP70 and three other proteins with Mr of 63,000, 56,000, and 50,000. Journal of Biological Chemistry, 266, 6708–6713.
- Perdew, G. H. (1992). Chemical cross-linking of the cytosolic and nuclear forms of the Ah receptor in hepatoma cell line 1c1c7. Biochemical and Biophysical Research Communications, 182, 55–62.
- Chen, H. S. and Perdew, G. H. (1994). Subunit composition of the heteromeric cytosolic aryl hydrocarbon receptor complex. Journal of Biological Chemistry, 269, 27554–27558.
- Meyer, B. K. and Perdew, G. H. (1999). Characterization of the AhR-HSP90-XAP2 core complex and the role of the immunophilin-related protein XAP2 in AhR stabilization. Biochemistry, 38, 8907–8917.
- Fukunaga, B. N., Probst, M. R., Reisz-Porszasz, S., and Hankinson, O. (1995). Identification of functional domains of the aryl hydrocarbon receptor. Journal of Biological Chemistry, 270, 29270–29278.
- Perdew, G. H. and Bradfield, C. A. (1996). Mapping the 90 kDa heat shock protein binding region of the Ah receptor. Biochemistry and Molecular Biology International, 39, 589–593.
- Antonsson, C., Whitelaw, M. L., McGuire, J., Gustafsson, J. A., and Poellinger, L. (1995). Distinct roles of the molecular chaperone HSP90 in modulating dioxin receptor function via the basic helix–loop–helix and PAS domains. Molecular and Cellular Biology, 15, 756–765.
- Soshilov, A. and Denison, M. S. (2008). Role of the Per/Arnt/ Sim domains in ligand-dependent transformation of the aryl hydrocarbon receptor. Journal of Biological Chemistry, 283, 32995–33005.
- Pratt, W. B. and Toft, D. O. (1997). Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocrine Reviews, 18, 306–360.
-
Pratt, W. B. and Toft, D. O. (2003). Regulation of signaling protein function and trafficking by the HSP90/hsp70-based chaperone machinery. Experimental Biology and Medicine (Maywood), 228, 111–133.
10.1177/153537020322800201 Google Scholar
- Csermely, P., Kajtar, J., Hollosi, M., Jalsovszky, G., Holly, S., Kahn, C. R., Gergely, P., Jr., Soti, C., Mihaly, K., and Somogyi, J. (1993). ATP induces a conformational change of the 90-kDa heat shock protein (HSP90). Journal of Biological Chemistry, 268, 1901–1907.
- Cuthill, S., Poellinger, L., and Gustafsson, J. A. (1987). The receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin in the mouse hepatoma cell line Hepa 1c1c7. A comparison with the glucocorticoid receptor and the mouse and rat hepatic dioxin receptors. Journal of Biological Chemistry, 262, 3477–3481.
- Carver, L. A., Jackiw, V., and Bradfield, C. A. (1994). The 90-kDa heat shock protein is essential for Ah receptor signaling in a yeast expression system. Journal of Biological Chemistry, 269, 30109–30112.
- Pongratz, I., Mason, G. G., and Poellinger, L. (1992). Dual roles of the 90-kDa heat shock protein HSP90 in modulating functional activities of the dioxin receptor. Evidence that the dioxin receptor functionally belongs to a subclass of nuclear receptors which require HSP90 both for ligand binding activity and repression of intrinsic DNA binding activity. Journal of Biological Chemistry 267, 13728–13734.
- Whitelaw, M. L., McGuire, J., Picard, D., Gustafsson, J. A., and Poellinger, L. (1995). Heat shock protein HSP90 regulates dioxin receptor function in vivo. Proceedings of the National Academy of Sciences of the United States of America, 92, 4437–4441.
- Phelan, D. M., Brackney, W. R., and Denison, M. S. (1998). The Ah receptor can bind ligand in the absence of receptor-associated heat-shock protein 90. Archives of Biochemistry and Biophysics, 353, 47–54.
- Manchester, D. K., Gordon, S. K., Golas, C. L., Roberts, E. A., and Okey, A. B. (1987). Ah receptor in human placenta: stabilization by molybdate and characterization of binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin, 3-methylcholanthrene, and benzo(a)pyrene. Cancer Research, 47, 4861–4868.
- Harper, P. A., Golas, C. L., and Okey, A. B. (1988). Characterization of the Ah receptor and aryl hydrocarbon hydroxylase induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin and benz(a)anthracene in the human A431 squamous cell carcinoma line. Cancer Research, 48, 2388–2395.
- Chen, H. S., Singh, S. S., and Perdew, G. H. (1997). The Ah receptor is a sensitive target of geldanamycin-induced protein turnover. Archives of Biochemistry and Biophysics, 348, 190–198.
- Song, Z. and Pollenz, R. S. (2002). Ligand-dependent and independent modulation of aryl hydrocarbon receptor localization, degradation, and gene regulation. Molecular Pharmacology, 62, 806–816.
- Ikuta, T., Eguchi, H., Tachibana, T., Yoneda, Y., and Kawajiri, K. (1998). Nuclear localization and export signals of the human aryl hydrocarbon receptor. Journal of Biological Chemistry, 273, 2895–2904.
- Ikuta, T., Tachibana, T., Watanabe, J., Yoshida, M., Yoneda, Y., and Kawajiri, K. (2000). Nucleocytoplasmic shuttling of the aryl hydrocarbon receptor. Journal of Biochemistry, 127, 503–509.
- Richter, C. A., Tillitt, D. E., and Hannink, M. (2001). Regulation of subcellular localization of the aryl hydrocarbon receptor (AhR). Archives of Biochemistry and Biophysics, 389, 207–217.
- Kazlauskas, A., Sundstrom, S., Poellinger, L., and Pongratz, I. (2001). The HSP90 chaperone complex regulates intracellular localization of the dioxin receptor. Molecular and Cellular Biology, 21, 2594–2607.
- Petrulis, J. R., Kusnadi, A., Ramadoss, P., Hollingshead, B., and Perdew, G. H. (2003). The HSP90 co-chaperone XAP2 alters importin beta recognition of the bipartite nuclear localization signal of the Ah receptor and represses transcriptional activity. Journal of Biological Chemistry, 278, 2677–2685.
- Heid, S. E., Pollenz, R. S., and Swanson, H. I. (2000). Role of heat shock protein 90 dissociation in mediating agonist-induced activation of the aryl hydrocarbon receptor. Molecular Pharmacology, 57, 82–92.
- Lees, M. J. and Whitelaw, M. L. (1999). Multiple roles of ligand in transforming the dioxin receptor to an active basic helix–loop–helix/PAS transcription factor complex with the nuclear protein Arnt. Molecular and Cellular Biology, 19, 5811–5822.
- Perdew, G. H. (1991). Comparison of the nuclear and cytosolic forms of the Ah receptor from Hepa 1c1c7 cells: charge heterogeneity and ATP binding properties. Archives of Biochemistry and Biophysics, 291, 284–290.
- Wilhelmsson, A., Cuthill, S., Denis, M., Wikstrom, A. C., Gustafsson, J. A., and Poellinger, L. (1990). The specific DNA binding activity of the dioxin receptor is modulated by the 90 kd heat shock protein. EMBO journal, 9, 69–76.
- McGuire, J., Whitelaw, M. L., Pongratz, I., Gustafsson, J. A., and Poellinger, L. (1994). A cellular factor stimulates ligand-dependent release of HSP90 from the basic helix–loop–helix dioxin receptor. Molecular and Cellular Biology, 14, 2438–2446.
- Probst, M. R., Reisz-Porszasz, S., Agbunag, R. V., Ong, M. S., and Hankinson, O. (1993). Role of the aryl hydrocarbon receptor nuclear translocator protein in aryl hydrocarbon (dioxin) receptor action. Molecular Pharmacology, 44, 511–518.
- Pollenz, R. S. (2002). The mechanism of AH receptor protein down-regulation (degradation) and its impact on AH receptor-mediated gene regulation. Chemico-Biological Interactions, 141, 41–61.
- Ma, Q. and Baldwin, K. T. (2000). 2, 3,7,8-Tetrachlorodibenzo-p-dioxin-induced degradation of aryl hydrocarbon receptor (AhR) by the ubiquitin-proteasome pathway. Role of the transcription activation and DNA binding of AhR. Journal of Biological Chemistry, 275, 8432–8438.
- Roberts, B. J. and Whitelaw, M. L. (1999). Degradation of the basic helix–loop–helix/Per–ARNT–Sim homology domain dioxin receptor via the ubiquitin/proteasome pathway. Journal of Biological Chemistry, 274, 36351–36356.
- Davarinos, N. A. and Pollenz, R. S. (1999). Aryl hydrocarbon receptor imported into the nucleus following ligand binding is rapidly degraded via the cytosplasmic proteasome following nuclear export. Journal of Biological Chemistry, 274, 28708–28715.
- Song, Z. and Pollenz, R. S. (2003). Functional analysis of murine aryl hydrocarbon (AH) receptors defective in nuclear import: impact on AH receptor degradation and gene regulation. Molecular Pharmacology, 63, 597–606.
- Bell, D. R. and Poland, A. (2000). Binding of aryl hydrocarbon receptor (AhR) to AhR-interacting protein. The role of HSP90. Journal of Biological Chemistry, 275, 36407–36414.
- Meyer, B. K., Pray-Grant, M. G., Vanden Heuvel, J. P., and Perdew, G. H. (1998). Hepatitis B virus X-associated protein 2 is a subunit of the unliganded aryl hydrocarbon receptor core complex and exhibits transcriptional enhancer activity. Molecular and Cellular Biology, 18, 978–988.
- Ma, Q. and Whitlock, J. P., Jr. (1997). A novel cytoplasmic protein that interacts with the Ah receptor, contains tetratricopeptide repeat motifs, and augments the transcriptional response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Journal of Biological Chemistry 272, 8878–8884.
- Carver, L. A., LaPres, J. J., Jain, S., Dunham, E. E., and Bradfield, C. A. (1998). Characterization of the Ah receptor-associated protein, ARA9. Journal of Biological Chemistry, 273, 33580–33587.
- Schreiber, S. L. (1991). Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science, 251, 283–287.
- Tai, P. K. and Faber, L. E. (1985). Isolation of dissimilar components of the 8.5S nonactivated uterine progestin receptor. Canadian Journal of Biochemistry and Cell Biology, 63, 41–49.
- Renoir, J. M., Radanyi, C., Faber, L. E., and Baulieu, E. E. (1990). The non-DNA-binding heterooligomeric form of mammalian steroid hormone receptors contains a HSP90-bound 59-kilodalton protein. Journal of Biological Chemistry, 265, 10740–10745.
- Sanchez, E. R. (1990). Hsp56: a novel heat shock protein associated with untransformed steroid receptor complexes. Journal of Biological Chemistry, 265, 22067–22070.
- Carver, L. A. and Bradfield, C. A. (1997). Ligand-dependent interaction of the aryl hydrocarbon receptor with a novel immunophilin homolog in vivo. Journal of Biological Chemistry, 272, 11452–11456.
- Palermo, C. M., Westlake, C. A., and Gasiewicz, T. A. (2005). Epigallocatechin gallate inhibits aryl hydrocarbon receptor gene transcription through an indirect mechanism involving binding to a 90 kDa heat shock protein. Biochemistry, 44, 5041–5052.
- Hollingshead, B. D., Petrulis, J. R., and Perdew, G. H. (2004). The aryl hydrocarbon (Ah) receptor transcriptional regulator hepatitis B virus X-associated protein 2 antagonizes p23 binding to Ah receptor-HSP90 complexes and is dispensable for receptor function. Journal of Biological Chemistry, 279, 45652–45661.
- Kazlauskas, A., Poellinger, L., and Pongratz, I. (1999). Evidence that the co-chaperone p23 regulates ligand responsiveness of the dioxin (aryl hydrocarbon) receptor. Journal of Biological Chemistry, 274, 13519–13524.
- Hankinson, O. (1979). Single-step selection of clones of a mouse hepatoma line deficient in aryl hydrocarbon hydroxylase. Proceedings of the National Academy of Sciences of the United States of America, 76, 373–376.
- Hollingshead, B. D., Patel, R. D., and Perdew, G. H. (2006). Endogenous hepatic expression of the hepatitis B virus X-associated protein 2 is adequate for maximal association with aryl hydrocarbon receptor-90-kDa heat shock protein complexes. Molecular Pharmacology, 70, 2096–2107.
- Meyer, B. K., Petrulis, J. R., and Perdew, G. H. (2000). Aryl hydrocarbon (Ah) receptor levels are selectively modulated by HSP90-associated immunophilin homolog XAP2. Cell Stress & Chaperones, 5, 243–254.
- Pollenz, R. S. and Dougherty, E. J. (2005). Redefining the role of the endogenous XAP2 and C-terminal hsp70-interacting protein on the endogenous Ah receptors expressed in mouse and rat cell lines. Journal of Biological Chemistry 280, 33346–33356.
- Miller, C. A., 3rd. (1997). Expression of the human aryl hydrocarbon receptor complex in yeast. Activation of transcription by indole compounds. Journal of Biological Chemistry, 272, 32824–32829.
- LaPres, J. J., Glover, E., Dunham, E. E., Bunger, M. K., and Bradfield, C. A. (2000). ARA9 modifies agonist signaling through an increase in cytosolic aryl hydrocarbon receptor. Journal of Biological Chemistry, 275, 6153–6159.
- Ramadoss, P., Petrulis, J. R., Hollingshead, B. D., Kusnadi, A., and Perdew, G. H. (2004). Divergent roles of hepatitis B virus X-associated protein 2 (XAP2) in human versus mouse Ah receptor complexes. Biochemistry, 43, 700–709.
- Okey, A. B., Vella, L. M., and Harper, P. A. (1989). Detection and characterization of a low affinity form of cytosolic Ah receptor in livers of mice nonresponsive to induction of cytochrome P1-450 by 3-methylcholanthrene. Molecular Pharmacology, 35, 823–830.
- Ramadoss, P. and Perdew, G. H. (2005). The transactivation domain of the Ah receptor is a key determinant of cellular localization and ligand-independent nucleocytoplasmic shuttling properties. Biochemistry, 44, 11148–11159.
- Kazlauskas, A., Poellinger, L., and Pongratz, I. (2000). The immunophilin-like protein XAP2 regulates ubiquitination and subcellular localization of the dioxin receptor. Journal of Biological Chemistry, 275, 41317–41324.
- Morales, J. L. and Perdew, G. H. (2007). Carboxyl terminus of hsc70-interacting protein (CHIP) can remodel mature aryl hydrocarbon receptor (AhR) complexes and mediate ubiquitination of both the AhR and the 90 kDa heat-shock protein (HSP90) in vitro. Biochemistry, 46, 610–621.
- Lees, M. J., Peet, D. J., and Whitelaw, M. L. (2003). Defining the role for XAP2 in stabilization of the dioxin receptor. Journal of Biological Chemistry, 278, 35878–35888.
- Petrulis, J. R. and Perdew, G. H. (2001). Monitoring nuclear import with GFP-variant fusion proteins in digitonin-permeabilized cells. BioTechniques, 31, 772–775.
- Eguchi, H., Ikuta, T., Tachibana, T., Yoneda, Y., and Kawajiri, K. (1997). A nuclear localization signal of human aryl hydrocarbon receptor nuclear translocator/hypoxia-inducible factor 1β is a novel bipartite type recognized by the two components of nuclear pore-targeting complex. Journal of Biological Chemistry, 272, 17640–17647.
- Galigniana, M. D., Radanyi, C., Renoir, J. M., Housley, P. R., and Pratt, W. B. (2001). Evidence that the peptidylprolyl isomerase domain of the HSP90-binding immunophilin FKBP52 is involved in both dynein interaction and glucocorticoid receptor movement to the nucleus. Journal of Biological Chemistry, 276, 14884–14889.
- Pemberton, L. F. and Paschal, B. M. (2005). Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic (Copenhagen, Denmark), 6, 187–198.
- Berg, P. and Pongratz, I. (2002). Two parallel pathways mediate cytoplasmic localization of the dioxin (aryl hydrocarbon) receptor. Journal of Biological Chemistry, 277, 32310–32319.
- Jain, S., Maltepe, E., Lu, M. M., Simon, C., and Bradfield, C. A. (1998). Expression of ARNT, ARNT2, HIF1 alpha, HIF2 alpha and Ah receptor mRNAs in the developing mouse. Mechanisms of Development, 73, 117–123.
- Lin, B. C., Sullivan, R., Lee, Y., Moran, S., Glover, E., and Bradfield, C. A. (2007). Deletion of the aryl hydrocarbon receptor-associated protein 9 leads to cardiac malformation and embryonic lethality. Journal of Biological Chemistry, 282, 35924–35932.
- Kuzhandaivelu, N., Cong, Y. S., Inouye, C., Yang, W. M., and Seto, E. (1996). XAP2, a novel hepatitis B virus X-associated protein that inhibits X transactivation. Nucleic Acids Research, 24, 4741–4750.
- Aufiero, B. and Schneider, R. J. (1990). The hepatitis B virus X-gene product trans-activates both RNA polymerase II and III promoters. EMBO Journal, 9, 497–504.
- Lucito, R. and Schneider, R. J. (1992). Hepatitis B virus X protein activates transcription factor NF-κB without a requirement for protein kinase C. Journal of Virology, 66, 983–991.
- Haviv, I., Vaizel, D., and Shaul, Y. (1995). The X protein of hepatitis B virus coactivates potent activation domains. Molecular and Cellular Biology, 15, 1079–1085.
- Gearhart, T. L. and Bouchard, M. J. The hepatitis B virus X protein modulates hepatocyte proliferation pathways to stimulate viral replication. Journal of Virology, 84, 2675–2686.
- Zhang, X., Zhang, H., and Ye, L. (2006). Effects of hepatitis B virus X protein on the development of liver cancer. Journal of Laboratory And Clinical Medicine, 147, 58–66.
- Kashuba, E. V., Gradin, K., Isaguliants, M., Szekely, L., Poellinger, L., Klein, G., and Kazlauskas, A. (2006). Regulation of transactivation function of the aryl hydrocarbon receptor by the Epstein–Barr virus-encoded EBNA-3 protein. Journal of Biological Chemistry, 281, 1215–1223.
- Sumanasekera, W. K., Tien, E. S., Turpey, R., Vanden Heuvel, J. P., and Perdew, G. H. (2003). Evidence that peroxisome proliferator-activated receptor alpha is complexed with the 90-kDa heat shock protein and the hepatitis virus B X-associated protein 2. Journal of Biological Chemistry, 278, 4467–4473.
- Laenger, A., Lang-Rollin, I., Kozany, C., Zschocke, J., Zimmermann, N., Ruegg, J., Holsboer, F., Hausch, F., and Rein, T. (2009). XAP2 inhibits glucocorticoid receptor activity in mammalian cells. FEBS Letters, 583, 1493–1498.
- Scammell, J. G., Denny, W. B., Valentine, D. L., and Smith, D. F. (2001). Overexpression of the FK506-binding immunophilin FKBP51 is the common cause of glucocorticoid resistance in three New World primates. General and Comparative Endocrinology, 124, 152–165.
- Froidevaux, M. S., Berg, P., Seugnet, I., Decherf, S., Becker, N., Sachs, L. M., Bilesimo, P., Nygard, M., Pongratz, I., and Demeneix, B. A. (2006). The co-chaperone XAP2 is required for activation of hypothalamic thyrotropin-releasing hormone transcription in vivo. EMBO Reports, 7, 1035–1039.
- Decherf, S., Hassani, Z., and Demeneix, B. A. (2008). In vivo siRNA delivery to the mouse hypothalamus shows a role of the co-chaperone XAP2 in regulating TRH transcription. Methods in Molecular Biology, 433, 355–366.
- Kang, B. H. and Altieri, D. C. (2006). Regulation of survivin stability by the aryl hydrocarbon receptor-interacting protein. Journal of Biological Chemistry, 281, 24721–24727.
- Vargiolu, M., Fusco, D., Kurelac, I., Dirnberger, D., Baumeister, R., Morra, I., Melcarne, A., Rimondini, R., Romeo, G., and Bonora, E. (2009). The tyrosine kinase receptor RET interacts in vivo with aryl hydrocarbon receptor-interacting protein to alter survivin availability. Journal of Clinical Endocrinology and Metabolism, 94, 2571–2578.
- Ozfirat, Z. and Korbonits, M. AIP gene and familial isolated pituitary adenomas. Molecular and Cellular Endocrinology.
- Cazabat, L., Libe, R., Perlemoine, K., Rene-Corail, F., Burnichon, N., Gimenez-Roqueplo, A. P., DupasquierFediaevsky, L., Bertagna, X., Clauser, E., Chanson, P., Bertherat, J., and Raffin-Sanson, M. L. (2007). Germline inactivating mutations of the aryl hydrocarbon receptor-interacting protein gene in a large cohort of sporadic acromegaly: mutations are found in a subset of young patients with macroadenomas. European Journal of Endocrinology/European Federation of Endocrine Societies, 157, 1–8.
- Igreja, S., Chahal, H. S., Akker, S. A., Gueorguiev, M., Popovic, V., Damjanovic, S., Burman, P., Wass, J. A., Quinton, R., Grossman, A. B., and Korbonits, M. (2009). Assessment of p27 (cyclin-dependent kinase inhibitor 1B) and aryl hydro-carbon receptor-interacting protein (AIP) genes in multiple endocrine neoplasia (MEN1) syndrome patients without any detectable MEN1 gene mutations. Clinical Endocrinology, 70, 259–264.
- Leontiou, C. A., Gueorguiev, M., van der Spuy, J., Quinton, R., Lolli, F., Hassan, S., Chahal, H. S., Igreja, S. C., Jordan, S., Rowe, J., Stolbrink, M., Christian, H. C., Wray, J., Bishop-Bailey, D., Berney, D. M., Wass, J. A., Popovic, V., RibeiroOliveira, A., Jr. Gadelha, M. R., Monson, J. P., Akker, S. A., Davis, J. R., Clayton, R. N., Yoshimoto, K., Iwata, T., Matsuno, A., Eguchi, K., Musat, M., Flanagan, D., Peters, G., Bolger, G. B., Chapple, J. P., Frohman, L. A., Grossman, A. B., and Korbonits, M. (2008). The role of the aryl hydro-carbon receptor-interacting protein gene in familial and sporadic pituitary adenomas. Journal of Clinical Endocrinology and Metabolism, 93, 2390–2401.
- Lin, B. C., Nguyen, L. P., Walisser, J. A., and Bradfield, C. A. (2008). A hypomorphic allele of aryl hydrocarbon receptor-associated protein-9 produces a phenocopy of the AHR-null mouse. Molecular Pharmacology, 74, 1367–1371.
- Beavo, J. A., Conti, M., and Heaslip, R. J. (1994). Multiple cyclic nucleotide phosphodiesterases. Molecular Pharmacology, 46, 399–405.
- Conti, M. and Beavo, J. (2007). Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annual Review of Biochemistry, 76, 481–511.
- de Oliveira, S. K., Hoffmeister, M., Gambaryan, S., MullerEsterl, W., Guimaraes, J. A., and Smolenski, A. P. (2007). Phosphodiesterase 2A forms a complex with the co-chaperone XAP2 and regulates nuclear translocation of the aryl hydro-carbon receptor. Journal of Biological Chemistry, 282, 13656–13663.
- Bolger, G. B., Peden, A. H., Steele, M. R., MacKenzie, C., McEwan, D. G., Wallace, D. A., Huston, E., Baillie, G. S., and Houslay, M. D. (2003). Attenuation of the activity of the cAMP-specific phosphodiesterase PDE4A5 by interaction with the immunophilin XAP2. Journal of Biological Chemistry, 278, 33351–33363.
- Oesch-Bartlomowicz, B., Huelster, A., Wiss, O., AntoniouLipfert, P., Dietrich, C., Arand, M., Weiss, C., Bockamp, E., and Oesch, F. (2005). Aryl hydrocarbon receptor activation by cAMP vs. dioxin: divergent signaling pathways. Proceedings of the National Academy of Sciences of the United States of America, 102, 9218–9223.
- Zheng, W., Brake, P. B., Bhattacharyya, K. K., Zhang, L., Zhao, D., and Jefcoate, C. R. (2003). Cell selective cAMP induction of rat CYP1B1 in adrenal and testis cells. Identification of a novel cAMP-responsive far upstream enhancer and a second Ah receptor-dependent mechanism. Archives of Biochemistry and Biophysics, 416, 53–67.
- Zhang, Q. Y., He, W., Dunbar, D., and Kaminsky, L. (1997). Induction of CYP1A1 by β-naphthoflavone in IEC-18 rat intestinal epithelial cells and potentiation of induction by dibutyryl cAMP. Biochemical and Biophysical Research Communications, 233, 623–626.
- de Oliveira, S. K. and Smolenski, A. (2009). Phosphodiesterases link the aryl hydrocarbon receptor complex to cyclic nucleotide signaling. Biochemical Pharmacology, 77, 723–733.
- Felts, S. J. and Toft, D. O. (2003). p23, a simple protein with complex activities. Cell Stress & Chaperones, 8, 108–113.
- Young, J. C., Moarefi, I., and Hartl, F. U. (2001). HSP90: a specialized but essential protein-folding tool. Journal of Cell Biology, 154, 267–273.
- Freeman, B. C., Felts, S. J., Toft, D. O., and Yamamoto, K. R. (2000). The p23 molecular chaperones act at a late step in intracellular receptor action to differentially affect ligand efficacies. Genes & Development, 14, 422–434.
- Young, J. C. and Hartl, F. U. (2000). Polypeptide release by HSP90 involves ATP hydrolysis and is enhanced by the co-chaperone p23. EMBO Journal, 19, 5930–5940.
- Cox, M. B. and Miller, C. A., 3rd. (2002). The p23 co-chaperone facilitates dioxin receptor signaling in a yeast model system. Toxicology Letters, 129, 13–21.
- Shetty, P. V., Bhagwat, B. Y., and Chan, W. K. (2003). P23 enhances the formation of the aryl hydrocarbon receptor–DNA complex. Biochemical Pharmacology, 65, 941–948.
- Flaveny, C., Perdew, G. H., and Miller, C. A., 3rd. (2009). The aryl-hydrocarbon receptor does not require the p23 co-chaperone for ligand binding and target gene expression in vivo. Toxicology Letters, 189, 57–62.
- Nair, S. C., Toran, E. J., Rimerman, R. A., Hjermstad, S., Smithgall, T. E., and Smith, D. F. (1996). A pathway of multi-chaperone interactions common to diverse regulatory proteins: estrogen receptor, Fes tyrosine kinase, heat shock transcription factor Hsf1, and the aryl hydrocarbon receptor. Cell Stress & Chaperones, 1, 237–250.