Chapter 37
Diversity of Archaea in Terrestrial Hot Springs and Role in Ammonia Oxidation
Chuanlun L. Zhang,
Brian P. Hedlund, Jun Meng,
Chuanlun L. Zhang
University of Georgia, Athens, Georgia, USA
Tongji University, Shanghai China
Search for more papers by this authorChuanlun L. Zhang,
Brian P. Hedlund, Jun Meng,
Chuanlun L. Zhang
University of Georgia, Athens, Georgia, USA
Tongji University, Shanghai China
Search for more papers by this authorBook Editor(s):Frans J. de Bruijn,
Frans J. de Bruijn
Laboratory of Plant Micro-organism Interaction, CNRS-INRA, Castanet Tolosan, France
Search for more papers by this authorSummary
This chapter contains sections titled:
-
Introduction
-
Thermophilic/Hyperthermophilic Archaea in Geothermal Ecosystems
-
Archaeal Ammonia Oxidation in Terrestrial Hot Springs
-
Summary and Future Research Challenges
-
References
REFERENCES
- Auchtung TA, Takacs-Vesbach CD, Cavanaugh CM. 2006. 16S rRNA Phylogenetic Investigation of the Candidate Division “Korarchaeota”. Appl. Environ. Microbiol. 72: 5077–5082.
- Barns SM, Fundyga RE, Jeffries MW, Pace NR. 1994. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl. Acad. Sci. USA 91: 1609–1613.
- Barns SM, Delwiche CF, Palmer JD, Pace NR. 1996. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc. Natl. Acad. Sci. USA 93: 9188–9193.
- Beman JM, Francis CA. 2006. Diversity of ammonia-oxidizing Archaea and bacteria in the sediments of a hyper-nutrified subtropical estuary: Bahía del Tóbari, Mexico. Appl. Environ. Microbiol. 72: 7677–7777.
-
Boone DR, Castenholz RW. 2001. Bergey's Manual of Systematic Bacteriology, Vol. 1: The Archaea and the Deeply Branching and Phototrophic Bacteria. Berlin: Springer.
10.1007/978-0-387-21609-6 Google Scholar
- Boyd E, Jackson RA, Encarnacion G, Zahn JA, Beard T, Leavitt WD, Pi Y, Zhang CL, Pearson A, Geesey G. 2007. Isolation, characterization, and ecology of sulfur-respiring Crenarchaea inhabiting acid-sulfate-chloride-containing geothermal springs in Yellowstone National Park. Appl. Environ. Microbiol. 73: 6669–6677.
- Brochier C, Gribaldo S, Zivanovic Y, Confalonieri F, Forterre P. 2005. Nanoarchaea: Representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales? Genome Biol. 6: R42.
- Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P. 2008. Mesophilic crenarchaeota: Proposal for a third archaeal phylum, the Thaumarchaeota. Nat. Rev. Microbiol. 6: 245–252.
- Brock TD, Brock KM, Belly RT, Weiss RL. 1972. Sulfolobus: A new genus of sulphur oxidizing bacteria living at low pH and high temperature. Arch. Microbiol. 84: 54–68.
- Casanueva A, Galada N, Baker GC, Grant WD, Heaphy S, et al. 2008. Nanoarchaeal 16S rRNA gene sequences are widely dispersed in hyperthermophilic and mesophilic halophilic environments. Extremophiles 12: 651–656.
- Costa KC, Navarro JB, Shock EL, Zhang CL, Soukup D, et al. 2009. Microbiology and geochemistry of Great Boiling and Mud Hot Springs in the United States Great Basin. Extremophiles 13: 447–459.
- Damsté JSS, Rijpstra W, Hopmans EC, Prahl F, Wakeham S, Schouten S. 2002. Distribution of membrane lipids of planktonic Crenarchaeota in the Arabian Sea. Appl. Environ. Microbiol. 68: 2997–3002.
- Dawson S, DeLong EF, Pace NR. 2000. Phylogenetic and ecological perspectives on uncultured Crenarchaeota and Korarchaeota. InDworkin M, Falkow S, Rosenberg E, Schleifer KH, Stacke-brandt E, eds. The Prokaryotes—An Evolving Electronic Resource for the Microbiological Community, Vol. 3. Berlin: Springer, pp. 281–289.
- De Corte D, Yokokawa T, Varela MM, Agogue H, Herndl GJ. 2009. Spatial distribution of Bacteria and Archaea and amoA gene copy numbers throughout the water column of the Eastern Mediterranean Sea. ISME J. 3: 147–158.
- de la Torre JR, Walker CB, Ingalls AE, Könneke M, Stahl DA. 2008. Cultivation of a thermophilic ammonia-oxidizing archaeon synthesizing crenarchaeol. Environ. Microbiol. 10: 810–818.
- DeRosa M, Gambacorta A. 1988. The lipids of archaebacteria. Prog. Lipid Res. 27: 153–175.
- DeLong EF. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89: 5685–5689.
- DeLong EF, King LL, Massana R, Cittone H, Murray A, et al. 1998. Dibiphytanyl ether lipids in nonthermophilic crenarchaeotes. Appl. Environ. Microbiol. 64: 1133–1138.
- DeLong EF. 1998. Everything in moderation: archaea as ‘nonextremophiles’. Curr. Opin. Genet. Dev. 8: 649–654.
- Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y, et al. 2008. A korarchaeal genome reveals insights into the evolution of Archaea. Proc. Natl. Acad. Sci. USA 105: 8102–8107.
- Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB. 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. USA 102: 14683–14688.
- Francis CA, Beman JM, Kuypers MMM. 2007. New processes and players in the nitrogen cycle: The microbial ecology of anaerobic and archaeal ammonia oxidation. Inte. Soc. Micro. Ecol. J. 1: 19–27.
- Fuhrman JA, McCallum K, Davis AA. 1992. Novel major archae-bacterial group from marine plankton. Nature 356: 148–149.
- Gliozzi A, Paoli G, DeRosa M, Gambacorta A. 1983. Effect of isoprenoid cyclization on the transition temperature of lipids in thermophilic archaebacteria. Biochim. Biophys. Acta 735: 234–242.
- Golovacheva RS. 1976. Thermophilic nitrifying bacteria from hot springs. Microbiology 45: 329–331.
- Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K, et al. 2006. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol. 4: 520–536.
- Hatzenpichler R, Lebedeva EV, Spieck E, Stoecker K, Richter A, et al. 2008. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc. Natl. Acad. Sci. USA 105: 2134–2139.
- Herndl G, Reinthaler T, Teira E, van Aken H, Veth C, et al. 2005. Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl. Environ. Microbiol. 71: 2303–2309.
- Hohn MJ, Hedlund BP, Huber H. 2002. Detection of 16S rDNA sequences representing the novel phylum “Nanoarchaeota”: Indication for a world-wide distribution in high temperature biotopes. Syst. Appl. Microbiol. 25: 551–554.
- Huang Z, Wiegel J, Zhou J, Hedlund B, Zhang CL. 2007. Molecular phylogeny of uncultivated crenarchaeota in Great Basin hot springs of moderately elevated temperature. Geomicrobiology 24: 535–542.
- Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, et al. 2002. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417: 63–67.
- Huber H, Hohn MJ, Stetter KO, Rachel R. 2003. The phylum Nanoarchaeota: Present knowledge and future perspectives of a unique form of life. Res. Microbiol. 154: 165–171.
- Ingalls AE, Shah SR, Hansman RL, Aluwihare LI, Santos GM, et al. 2006. Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. Proc. Natl. Acad. Sci. USA 103: 6442–6447.
- Inskeep WP, et al. Unpublished data.
- Itoh T, Norimichi N, Sako Y. 2003. Distribution of 16S rRNA introns among the family Thermoproteaceae and their evolutionary implications. Extremophiles 7: 229–233.
- Jackson CR, Langner HW, Donahoe-Christiansen J, Inskeep WP, McDermott TR. 2001. Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring. Environ. Microbiol. 3: 532–542.
- Jiang H, Huang Q, Dong H, Wang P, Li W, Zhang CL. 2010. RNA-Based Investigation of Ammonia-Oxidizing Archaea in Hot Springs of Yunnan Province, China. Appl. Environ. Microbiol. 76: 4538–4541.
- Kanokratana P, Chanapan S, Pootanakit K, Eurwilaichitr L. 2004. Diversity and abundance of Bacteria and Archaea in the Bor Khlueng Hot Spring in Thailand. J. Basic Microbiol. 44: 430–444.
- Kashefi K, Lovley DR. 2000. Reduction of Fe(III), Mn(IV), and toxic metals at 100°C by Pyrobaculum islandicum. Appl. Environ. Micro-biol. 66: 1050–1056.
- Koga Y, Morii H, Akagawa-Matsushita M, Ohga M. 1998. Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens: Further analysis of lipid component parts. Biosci. Biotechnol. Biochem. 62: 230–236.
- Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, et al. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543–546.
- Kowalchuk GA, Stephen Jr. 2001. Ammonia-oxidizing bacteria: A model for molecular microbial ecology. Annu. Rev. Microbiol. 55: 485–529.
- Kublanov IV, Perevalova AA, Slobodkina GB, Lebedinsky AV, Bidzhieva SK, et al. 2009. Biodiversity of thermophilic prokaryotes with hydrolytic activities in hot springs of Uzon Caldera, Kamchatka (Russia). Appl. Environ. Microbiol. 75: 286–291.
- Kvist T, Mengewein A, Manzei S, Ahring BK, Westermann P. 2005. Diversity of thermophilic and non-thermophilic Crenarchaeota at 80°C. FEMS Microbiol. Lett. 244: 61–68.
- Kvist T, Ahring BK, Westermann P. 2007. Archaeal diversity in Icelandic hot springs. FEMS Microbiol. Ecol. 59: 71–80.
- Lebedeva EV, Alawi M, Fiencke C, Namsaraev B, Bock E, et al. 2005. Moderately thermophilic nitrifying bacteria from a hot spring of the Baikal rift zone. FEMS Microbiol. Ecol. 54: 297–306.
- Lebedinsky AV, Chernyh NA., Bonch-Osmolovskaya EA. 2007. Phylogenetic systematics of microorganisms inhabiting thermal environments. Biochemistry (Moscow) 72: 1299–1312.
- Leininger S, Urich T, Schloter M, Schwark L, Qi J, et al. 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442: 806–809.
- Madigan MT, Martinko JM, Dunlap PV, Clark DP. 2008. Brock Biology of Microorganisms, 12th ed. Menlo Park, CA: Benjamin Cummings.
- Marteinsson VT, Hauksdottir S, Hobel CF, Kristmannsdottir H, Hreggvidsson GO, et al. 2001. Phylogenetic diversity analysis of subterranean hot springs in Iceland. Appl. Environ. Microbiol. 67: 4242–4248.
- Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA. 2009. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461: 976–981.
- Meyer-Dombard DR, Shock EL, Amend J. 2005. Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA. Geobiology 3: 211–227.
- Nicol GW, Schleper C. 2006. Ammonia-oxidizing Crenarchaeota: important players in the nitrogen cycle? Trends Microbiol. 14: 207–212.
- Niederberger TD, Ronimus RS, Morgan HW. 2008. The microbial ecology of a high-temperature near neutral spring situated in Rotorua, New Zealand. Microbiol. Res. 163: 594–603.
- Ouverney CC, Fuhrman JA. 1999. Combined microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl. Environ. Microbiol. 65: 1746–1752.
- Ouverney CC, Fuhrman JA. 2000. Marine planktonic Archaea take up amino acids. Appl. Environ. Microbiol. 66: 4829–4833.
- Pearson A, Huang Z, Ingalls AE, Romanek CS, Wiegel J, et al. 2004. Nonmarine crenarchaeol in Nevada hot springs. Appl. Environ. Microbiol. 70: 5229–5237.
- Pearson A, Pi Y, Zhao W, Li W, Li YL, et al. 2008. Factors controlling the distribution of archaeal tetraethers in terrestrial hot springs. Appl. Environ. Microbiol. 74: 3523–3532.
- Perevalova AA, Kolganova TV, Birkeland NK, Schleper C, Bonch-Osmolovskaya EA, et al. 2008. Distribution of Crenarchaeota Representatives in Terrestrial Hot Springs of Russia and Iceland. Appl. Environ. Microbiol. 74: 7620–7628.
- Pitcher A, Schouten S, Damste JSS. 2009. In situ production of crenarchaeol in two California hot springs. Appl. Environ. Microbiol. 75: 4443–4451.
- Prosser JI, Embley TM. 2002. Cultivation-based and molecular approaches to characterisation of terrestrial and aquatic nitrifiers. Antonie van Leeuwenhoek 81: 165–179.
- Purcell D, Sompong U, Yim LC, Barraclough TG, Peerapornpisal Y, et al. 2006. The effects of temperature, pH and sulphide on the community structure of hyperthermophilic streamers in hot springs of northern Thailand. FEMS Microbiol. Ecol. 60: 456–466.
- Purkhold U, Pommerening-Roser A, Juretschko S, Schmid MC, Koops HP, Wagner M. 2000. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: Implications for molecular diversity surveys. Appl. Environ. Microbiol. 66: 5368–5382.
- Reigstad LJ, Richter A, Daims H, Urich T, Schwark L, et al. 2008. Nitrification in terrestrial hot springs of Iceland and Kamchatka. FEMS Microbiol. Ecol. 64: 167–174.
- Reigstad LR, Jorgensen SL, Schleper C. 2009. Diversity and abundance of Korarchaeota in terrestrial hot springs of Iceland and Kamchatka. ISME J. 1–11.
- Reysenbach AL, Ehringer M, Hershberger K. 2000. Microbial diversity at 83°C in Calcite Springs, Yellowstone National Park: Another environment where the Aquificales and “Korarchaeota” coexist. Extremophiles 4: 61–67.
- Reysenbach AL, Shock E. 2002. Merging genomes with geochemistry at hydrothermal ecosystems. Science 296: 1077–1082.
- Rusch A, Amend JP. 2004. Order-specific 16S rRNA-targeted oligonucleotide probes for (hyper)thermophilic archaea and bacteria. Extremophiles 8: 357–366.
- Schleper C. 2007.
- Schleper C, Jurgens G, Jonuscheit M. 2005. Genomic studies of uncultivated archaea. Nat. Rev. Microbiol. 3: 479–488.
- Schouten S, Hopmans EC, Pancost RD, Sinninghe Damsté JS. 2000. Widespread occurrence of structurally diverse tetraether membrane lipids: Evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles. Proc. Natl. Acad. Sci. 97: 14421–14426.
- Schouten S, Hopmans EC, Baas M, Boumann H, Standfest S, etal. 2008. Intact membrane lipids of “Candidatus Nitrosopumilus maritimus”, a cultivated representative of the cosmopolitan mesophilic Group I Crenarchaeota. Appl. Environ. Microbiol. 74: 2433–2440.
- Shock E. Unpublished data.
- Shock E, Holland M, Meyer-Dombard DR, Amend JP. 2005. Geo-chemical sources of energy for microbial metabolism in hydrothermal ecosystems: Obsidian Pool, Yellowstone National Park. InInskeep WP, McDermott TR, eds. Geothermal Biology and Geochemistry in Yellowstone National Park. Bozeman, MT: Montana State University Publications, pp. 95–109.
- Siering P, Clarke JM, Wilson MS. 2006. Geochemical and Biological Diversity of Acidic, Hot Springs in Lassen Volcanic National Park. Geomicrobiol. J. 23: 129–141.
- Song Z, Chen J, Zhou E, Tang S, Zhi X, Zhang L, Zhang CL, Li W. 2010. Diversity of Crenarchaeota in Terrestrial Hot Springs in Tengchong, China. Extremophiles 14: 287–296.
- Spear JR, Barton HA, Robertson CE, Francis CA, Pace NR. 2007. Microbial community biofabrics in a geothermal mine adit. Appl. Environ. Microbiol. 73: 6172–6180.
- Spear JR, Walker JJ, McCollom TM, Pace NR. 2005. Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc. Natl. Acad. Sci. USA 102: 2555–2560.
- Stetter KO. 1996. Hyperthermophilic procaryotes. FEMS Microbiol. Rev. 18: 149–158.
- Stetter KO. 2006. History of discovery of the first hyperthermophiles. Extremophiles 10: 357–362.
- Stetter KO, Thomm M, Winter J, Wildgruber G, Huber H, et al. 1981. Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring. Zbl. Bakt. Hyg., I. Abt. Orig. C2: 166–178.
- Takai K, Sako Y. 1999. A molecular view of archaeal diversity in marine and terrestrial hot water environments. FEMS Microbiol. Ecol. 28: 177–188.
- Teira E, van Aken H, Veth C, Herndl GJ. 2006. Archaeal uptake of enantiomeric amino acids in the meso- and bathypelagic waters of the North Atlantic. Limnol. Oceanogr. 51: 60–69.
- Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C. 2005. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ. Microbiol. 7: 1985–1995.
- Uda I, Sugai A, Itoh YH, Itoh T. 2001. Variation in molecular species of polar lipids from Thermoplasma acidophilum depends on growth temperature. Lipids 36: 103–105.
- Valentine DL. 2007. Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat. Rev. Microbiol. doi:10.1038/nrmicro1619.
- Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, et al. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: 66–74.
- Vick TJ, Dodsworth JA, Costa KC, Shock EL, Hedlund BP. 2010. Microbiology and geochemistry of Little Hot Creek, a hyperthermophilic hot spring environment in the Long Valley Caldera. Geobiology 8: 1–14.
- Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD, et al. 2003. The genome of Nanoarchaeum equitans: Insights into early archaeal evolution and derived parasitism. Proc. Natl. Acad. Sci. USA 100: 12984–12988.
- Weidler GW, Dornmayr-Pfaffenhuemer M, Gerbl FW, Heinen W, Stan-Lotter H. 2007. Communities of archaea and bacteria in a subsurface radioactive thermal spring in the Austrian Central Alps, and evidence of ammonia-oxidizing Crenarchaeota. Appl. Environ. Microbiol. 73: 259–270.
- Wilson MS, Siering PL, White CL, Hauser ME, Bartles AN. 2008. Novel Archaea and Bacteria dominate stable microbial communities in North America's largest hot spring. Microb. Ecol. 56: 292–305.
- Woese CR, Fox GE. 1977. Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc. Natl. Acad. Sci. USA 74: 5088–5090.
- Woese CR, Kandler O. Wheelis ML. 1990. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA 87: 4576–4579.
- Wuchter C, Abbas B, Coolen MJL, Herfort L, van Bleijswijk J, et al. 2006. Archaeal nitrification in the ocean. Proc. Natl. Acad. Sci. USA 103: 12317–12322.
- Yim LC, Jing H, Aitchison JC, Pointing SB. 2006. Highlydiverse communitystructure ina remote central Tibetan geothermal spring does not displaymonotonic variation to thermal stress. FEMS Micro-biol. Ecol. 57: 80–91.
- Zhang CL, et al. Unpublished data.
- Zhang CL, Pearson A, Li YL, Mills G, Wiegel J. 2006. Thermophilic temperature optimum for crenarchaeol synthesis and its implication for archaeal evolution. Appl. Environ. Microbiol. 72: 4419–4422.
- Zhang CL, et al. 2007.
- Zhang CL, Ye Q, Huang Z, Li W, Chen J, et al. 2008. Global occur-rence of putative archaeal amoA genes from terrestrial hot springs. Appl. Environ. Microbiol. 74: 6417–6426.
- Zhao W, Song Z, Jiang H, Li W, Mu X, Li W, Wiegel J, Romanek C, Dong H, Zhang CL. 2010. Ammonia-oxidizing archaea in Kamchatka hot springs. Geomicrobiol. J. 28: 149–159.