Cardiac Electromechanical Coupling
David Nickerson,
David Nickerson
The University of Auckland, Auckland, New Zealand
Search for more papers by this authorDavid Nickerson,
David Nickerson
The University of Auckland, Auckland, New Zealand
Search for more papers by this authorFirst published: 14 April 2006
Abstract
Cardiac electromechanical coupling is the process that enables electrical excitation of cardiac cells and tissue to result in mechanical contraction of the cell and, hence, the tissue. The mechanisms involved in this process are discussed here and reference is made to the mathematical modeling and computational simulation of these mechanisms.
Bibliography
- 1P. Kohl, P. Hunter, and D. Noble, Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models. Prog. Biophys. Mol. Biol. 1999; 71(1): 91–138.
- 2D. Noble and Y. Rudy, Models of cardiac ventricular action potentials: iterative interaction between experiment and simulation. Phil. Trans. R. Soc. Lond. A 2001; 359(1783): 1127–1142.
- 3N. P. Smith, D. P. Nickerson, E. J. Crampin, and P. J. Hunter, Multiscale computational modelling of the heart. Acta Numerica 2004; 13: 371–431.
10.1017/S0962492904000200 Google Scholar
- 4C. E. Clancy and Y. Rudy, Na+ channel mutation that causes both Brugada and long-QT syndrome phenotypes: a simulation study of mechanism. Circulation 2002; 105(10): 1208–1213.
- 5K. H. W. J. ten Tusscher, D. Noble, P. J. Noble, and A. V. Panfilov, A model for human ventricular tissue. Am. J. Physiol. Heart Circ. Physiol. 2004; 286(4): H1573–H1589.
- 6J. J. Rice, R. L. Winslow, and W. C. Hunter, Comparison of putative cooperative mechanisms in cardiac muscle: length dependence and dynamic responses. Am. J. Physiol. Heart Circ. Physiol. 1999; 276(5): H1734–H1754.
- 7R. L. Winslow, J. Rice, S. Jafri, E. Marban, and B. O’Rourke, Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II: model studies. Circ. Res. 1999; 84(5): 571–586.
- 8J. J. Rice, M. S. Jafri, and R. L. Winslow, Modelling short-term interval-force relations in cardiac muscle. Am. J. Physiol. Heart Circ. Physiol. 2000; 278(3): H913–H931.
- 9D. P. Nickerson, N. P. Smith, and P. J. Hunter, A model of cardiac cellular electromechanics. Phil. Trans. R. Soc. Lond. A 2001; 359(1783): 1159–1172.
- 10J. J. Rice and M. S. Jafri, Modelling calcium handling in cardiac cells. Phil. Trans. R. Soc. Lond. A 2001; 359(1783): 1143–1157.
- 11M. S. Jafri, J. J. Rice, and R. L. Winslow, Cardiac Ca2+ dynamics: the role of ryanodine receptor adaptation and sarcoplasmic reticulum load. Biophys. J. 1998; 74(3): 1149–1168.
- 12P. J. Hunter, A. McCulloch, and H. E. D. J. ter Keurs, Modelling the mechanical properties of cardiac muscle. Prog. Biophys. Molec. Biol. 1998; 69: 289–331.
- 13P. J. Hunter, M. P. Nash, and G. B. Sands, Computational electromechanics of the heart. In: A. V. Panfilov and A. V. Holden, eds., Computational Biology of the Heart, chapter 12. West Sussex, UK: John Wiley & Sons, 1997, pp. 345–407.
- 14T. P. Usyk, I. J. LeGrice, and A. D. McCulloch, Computational model of three-dimensional cardiac electromechnics. Comput. Visual Sci. 2002; 4: 249–257.
10.1007/s00791-002-0081-9 Google Scholar
- 15R. C. P. Kerckhoffs, P. H. M. Bovendeerd, J. C. S. Kotte, E. W. Prinzen, K. Smits, and T. Arts, Homogeneity of cardiac contraction despite physiological asynchrony of depolarization: a model study. Ann. Biomed. Eng. 2003; 31: 536–547.
- 16R. C. P. Kerckhoffs, O. P. Faris, P. H. M. Bovendeerd, F. W. Prinzen, K. Smits, E. R. McVeigh, and T. Arts, Timing of depolarization and contraction in the paced canine left ventricle: model and experiment. J. Cardiovasc. Electrophysiol. 2003; 14(Suppl.): S188–S195.
- 17D. P. Nickerson, N. P. Smith, and P. J. Hunter, New developments in a strongly coupled cardiac electromechanical model. Europace 2005; 7: s118–s127.
- 18A. A. Cuellar, C. M. Lloyd, P. F. Nielsen, D. P. Bullivant, D. P. Nickerson, and P. J. Hunter, An overview of CellML 1.1, a biological model description language. Simulation 2003; 79(12): 740–747.