Transcutaneous Magnetic Coupling of Power and Data
Maysam Ghovanloo
North Carolina State University, Raleigh, North Carolina
Search for more papers by this authorGianluca Lazzi
North Carolina State University, Raleigh, North Carolina
Search for more papers by this authorMaysam Ghovanloo
North Carolina State University, Raleigh, North Carolina
Search for more papers by this authorGianluca Lazzi
North Carolina State University, Raleigh, North Carolina
Search for more papers by this authorAbstract
Since the invention of the first implantable pacemaker in 1958, wireless implantable microelectronic devices (IMDs) have been significantly improved by going through many generations. They have made it possible to treat a wide range of ailments and disabilities from bradycardia and chronic back pain to epilepsy and deafness. IMDs have the potential to alleviate more challenging types of disabilities such as blindness and paralysis. These devices need to transmit and receive information wirelessly across the skin barrier as breaching the skin with interconnect wires would be a source of morbidity for the patient and significantly increases the risk of infection.
IMDs can be divided in autonomous and sensory devices which, in turn, results in different requirements for the wireless telemetry system. Autonomous devices such as pacemakers, cardioverters, and deep-brain stimulators usually have a small number of stimulating sites (<5), low stimulus pulse rates (<500/s), and low power requirements. The anatomical location of implantation for most autonomous devices in the body allows them to be large enough to contain an energy source that would last for several years. Their autonomous operation limits the need to communicate with the external world to only occasional adjustments and interrogations, which can take place at low data rates. On the other hand, in sensory prosthetic devices—those that interface with the central nervous system (CNS) to restore a sensory function such as hearing or vision—the quality of perception enhances with the number of stimulating sites/electrodes and the rate of stimulation. These latter devices may stimulate the neural tissue by means of tens to hundreds of stimulating channels and, consequently, they generally require considerably more power and communication bandwidth than autonomous devices. Future visual prostheses might even go beyond one thousand sites to better provide the most important visual functions to the blind such as mobility without a cane, face recognition, and reading. Thus, sensory prosthetic devices usually require an inductive link between two (or more) magnetically couple coils for the transmission of power and data to the implanted device.
Bibliography
- 1W. Greatbatch and C. F. Holmes, History of implantable devices. IEEE Eng. Med. Biol. 1991; Sep.: 38–42.
- 2D. J. Woolons, To beat or not to beat: the history and development of heart pacemakers. IEE J. Eng. Sci. Ed. 1995; 4(6): 259–268.
10.1049/esej:19950604 Google Scholar
- 3R. Allan, Medtronic sets the pace with implantable electronics. Electron. Design 2003; 51(24): 52–56.
- 4Advanced Bionics Corporation. (2003). Precision spinal cord stimulator. (online). Available: http://www.controlyourpain.com/howprecisionworks.asp.
- 5A. L. Benabid, B. Wallace, J. Mitrofanis, C. Xia, B. Piallat, V. Fraix, A. Batir, P. Krack, P. Pollak, and F. Berger, Therapeutic electrical stimulation of the central nervous system. C.R. Biologies, in press, Available: http://www.sciencedirect.com.
- 6F. A. Spelman, The past, present, and future of cochlear prostheses. IEEE Eng. Med. Biol. 1999; May: 27–33.
- 7P. C. Loizou, Mimicking the human ear. IEEE Signal Proc. Mag. 1998; Sep.: 101–130.
- 8J. P. Rauschecker and R. V. Shannon, Sending sound to the brain. Science 2002; 295: 1025–1029.
- 9Conclusions of discussions at 2003 Conference on Implantable Auditory Prostheses, Session 7, Asilomar, CA, August 2003. Available: http://www.hei.org/ciap2005/ciap.htm.
- 10Cochlear Corporation. (2005). Cochlear Freedom Implant. (online). Available: http://www.cochlearamericas.com/Products/23.asp.
- 11 Advanced Bionics Corporation. (2005) HiRes 90 K Bionic Ear Implant. (online). Available: http://www.bionicear.com/products/90k_implant.asp.
- 12J. D. Weiland and M. S. Humayun, A biomimetic retinal stimulating array. IEEE Eng. Med. Biol. Mag. 2005; 24: 14–21.
- 13P. Walter, Z. F. Kisvarday, M. Gortz, N. Alteheld, G. Rossler, T. Stieglitz, and U. T. Eysel, Cortical activation via an implanted wireless retinal prosthesis. Invest. Ophthalmol. Visual Sci. 2005; 46: 1780–1785.
- 14E. Margalit, M. Maia, J. D. Weiland, R. J. Greenberg, G. Y. Fujii, G. Torres, D. V. Piyathaisere, T. M. O’Hearn, W. Liu, G. Lazzi, G. Dagnelie, D. A. Scribner, E. de Juan, and M. S. Humayun, Retinal prosthesis for the blind. Survey Ophtalmol. 2002; 47: 335–356.
- 15R. A. Normann, (2005). Sight restoration for individuals with profound blindness. (online). Available: http://www.bioen.utah.edu/cni/projects/blindness.htm.
- 16R. A. Normann, E. M. Maynard, K. S. Guilloty, and D. J. Warren, Cortical implants for the blind. IEEE Spectrum 1996; May: 54–59.
- 17R. A. Normann, Visual neuroprosthetics – Functional vision for the blind. IEEE Eng. Med. Biol. 1995; Jan.: 63–77.
- 18E. Zrenner, Will retinal implants restore vision? Science 2002; 295: 1022–1025.
- 19M. A. L. Nicolelis, Brain-machine interfaces to restore function and probe neural circuits. Nature Rev. Neurosci. 2003; 4: 417–422.
- 20M. A. L. Nicolelis, Actions from thoughts. Nature 2001; 409: 403–407.
- 21W. Craelius, The bionic man: restoring mobility. Science 2002; 295: 1018–1021.
- 22 W. F. Agnew and D. B. McCreery, eds., Neural prosthesis; fundamental studies. Upper Saddle River, NY: Prentice-Hall, 1990.
- 23 J. K. Chapin and K. A. Moxon, eds., Neural prostheses for restoration of sensory and motor function. Boca Raton, FL: CRC Press, 2000.
- 24K. E. Jones and R. A. Normann, An advanced demultiplexing system for physiological stimulation. IEEE Trans. Biomed. Eng. 1997; 44: 1210–1220.
- 25M. S. Humayun, et al., Pattern electrical stimulation of the human retina. Vision Res. 1999; 39: 2569–2576.
- 26M. S. Humayun, et al., Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res. 2003; 43: 2573–2581.
- 27K. Cha, K. Horch, and R. A. Normann, Simulation of a phosphene-based visual field: visual acuity in a pixelized vision system. Ann. Biomed. Eng. 1992; 20: 439–449.
- 28R. W. Thompson, G. D. Barnett, M. S. Humayun, and G. Dagnelie, Facial recognition using simulated prosthetic pixelized vision. Invest. Ophthalmol. Vis. Sci. 2003; 44(11): 5035–5042.
- 29J. S. Hayes, J. T. Yin, D. V. Piyathaisere, J. Weiland, M. S. Humayun, and G. Dagnelie, Visually guided performance of simple tasks using simulated prosthetic vision. Artific. Organs 2003; 27(11): 1016–1028.
- 30U. S. Inan and A. S. Inan, Engineering Electromagnetics. 1st ed., Upper Saddle River, NJ: Prentice-Hall, 1998.
- 31J. D. Kraus and D. A. Fleisch, Electromagnetics. 5th ed., New York: McGraw Hill, 1999.
- 32S. W. Wentworth, Fundamentals of Electromagnetics with Engineering Applications. New York: John Wiley and Sons, 2004.
- 33C. M. Zierhofer and E. S. Hochmair, Geometric approach for coupling enhancement of magnetically coupled coils. IEEE Trans. Biomed. Eng. 1996; 43: 708–714.
- 34F. W. Grover, Inductance Calculations Working Formulas and Tables. New York: D. Van Nostrand Company, 1946.
- 35F. E. Terman, Radio Engineers Handbook. New York: McGraw-Hill, 1943.
- 36FastHenry-2. (2005). Fast Field Solvers. (online). Available: http://www.fastfieldsolvers.com/.
- 37M. Soma, D. G. Galbraith, and R. L. White, Radio-frequency coils in implantable devices: misalignment analysis and design procedure. IEEE Trans. Biomed. Eng. 1987; 34: 276–282.
- 38K. Finkenzeller, RFID-Handbook. 2nd ed., Hoboken, NJ: Wiley, 2003.
10.1002/0470868023 Google Scholar
- 39N. O. Sokal and A. D. Sokal, Class-E—a new class of high-efficiency tuned single-ended switching power amplifiers. IEEE J. Solid-State Circuits 1975; SC-10(6): 168–176.
- 40F. H. Raab and N. O. Sokal, Transistor power losses in the Class E tuned power amplifier. IEEE J. Solid-State Circuits 1978; SC-13: 912–914.
- 41F. H. Raab, Effects of circuit variations on the Class E tuned power amplifier. IEEE J. Solid-State Circuits 1978; SC-13: 239–247.
- 42C. M. Zierhofer and E. S. Hochmair, High-efficiency coupling-insensitive transcutaneous power and data transmission via an inductive link. IEEE Trans. Biomed. Eng. 1990; 37: 716–722.
- 43G. A. Kendir, et al., An optimal design methodology for inductive power link with class-E amplifier. IEEE Trans. Circuits Syst. I 2005; 52: 857–866.
- 44P. R. Troyk and M. A. K. Schwan, Closed-loop class E transcutaneous power and data link for MicroImplants. IEEE Trans. Biomed. Eng. 1992; 39: 6.
- 45M. K. Kazimierczuk and K. Puczko, Exact analysis of class E tuned power amplifier at any Q and switch duty cycle. IEEE Trans. Circuits Syst. 1987; CAS-34: 2.
- 46B. Ziaie, S. C. Rose, M. D. Nardin, and K. Najafi, A self-oscillating detuning-insensitive class-E transmitter for implantable microsystems. IEEE Trans. Biomed. Eng. 2001; 48: 397–400.
- 47W. H. Ko, S. P. Liang, and C. D. Fung, Design of radio-frequency powered coils for implant instruments. Med. Biol. Eng. Comput. 1977; 15: 634–640.
- 48C. R. Sullivan, Optimal choice for number of strands in a Litz-wire transformer winding. IEEE Trans. Power Electron. 1999; 14(2): 283–291.
- 49F. Tourkhani and P. Viarouge, Accurate analytical model of winding losses in round Litz wire windings. IEEE Trans. Magn. 2001; 37(1): 538–543.
- 50J. C. Lin, Computer methods for field intensity predictions. In: C. Polk and E. Postow, eds., CRC Handbook of Biological Effects of Electromagnetic Fields. Boca Raton, FL: CRC Press, 1986, ch. 2, pp. 273–313.
- 51IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz, 1999.
- 52K. Gosalia, J. Weiland, M. Humayun, and G. Lazzi, Thermal elevation in the human eye and head due to the operation of a retinal prosthesis. IEEE Trans. Biomed. Eng. 2004; 51: 1469–1477.
- 53J. A. Von Arx and K. Najafi, A wireless single-chip telemetry-powered neural stimulation system. Digest IEEE Intl. Solid-State Circuits Conf. February 1999:214–215.
- 54M. Ghovanloo, K. Beach, K. D. Wise, and K. Najafi, A BiCMOS wireless interface chip for micromachined stimulating microprobes. Proc. IEEE-EMBS Special Topic Conf. on Microtechnologies in Medicine and Biology May 2002:277–282.
- 55M. Ghovanloo and K. Najafi, A modular 32-site wireless neural stimulation microsystem. IEEE J. Solid-State Circuits 2004; 39(12): 2457–2466.
- 56K. Arabi and M. A. Sawan, Electronic design of a multichannel programmable implant for neuromuscular electrical stimulation. IEEE Trans. Rehab. Eng. 1999; 7(2): 204–214.
- 57C. M. Zierhofer, I. J. Hochmair-Desoyer, and E. S. Hochmair, Electronic design of a cochlear implant for multichannel high-rate pulsatile stimulation strategies. IEEE Trans. Rehab. Eng. 1995; 3: 112–116.
10.1109/86.372900 Google Scholar
- 58H. McDermott, An advanced multiple channel cochlear implant. IEEE Trans. Biomed. Eng. 1989; 36(7): 789–797.
- 59M. Sawan, F. Duval, M. M. Hassouna, J. Li, M. M. Elhilahi, J. Lachance, M. Leclair, S. Pourmehdi, and J. Mouine, Computerized transcutaneous control of a multichannel implantable urinary prosthesis. IEEE Trans. Biomed. Eng. 1992; 39(6): 600–609.
- 60S. Boyer, M. Sawan, M. Abdel-Gawad, S. Robin, and M. M. Alhilali, Implantable selective stimulator to improve bladder voiding: design and chronic experiment in dogs. IEEE Trans. Rehab. Eng. 2000; 8(4): 789–797.
- 61B. Ziaie, M. D. Nardin, A. R. Coghlan, and K. Najafi, A single-channel implantable microstimulator for functional neuromuscular stimulation. IEEE Trans. Biomed. Eng. 1997; 44(10): 909–920.
- 62B. Smith, Z. Tang, M. W. Johnson, S. Pourmehdi, M. M. Gazdik, J. R. Buckett, and P. H. Peckham, An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle. IEEE Trans. Biomed. Eng. 1998; 4: 463–475.
- 63W. Liu, et al., A neuro-stimulus chip with telemetry unit for retinal prosthetic device. IEEE J. Solid-State Circuits 2000; 35: 1487–1497.
- 64G. Gudnason and E. Bruun, A chip for an implantable neural stimulator. In: Analog Integrated Circuits and Signal Processing, vol. 22. Boston, MA: Kluwer Academic Publishers, 1999, pp. 81–89.
- 65G. J. Suaning and N. H. Lovell, CMOS neuro-stimulation ASIC with 100 channels, scalable output, and bidirectional radio-freq. telemetry. IEEE Trans. Biomed. Eng. 2001; 48: 248–260.
- 66S. Atluri and M. Ghovanloo, Design of a wideband power-efficient inductive wireless link for implantable biomedical devices using multiple carriers. Proc. 2nd Intl. IEEE/EMBS Conf. on Neural Engineering 2005:533–537.
- 67K. Gosalia, G. Lazzi, and M. Humayun, Investigation of a microwave data telemetry link for a retinal prosthesis. IEEE Trans. Microwave Theory Tech. 2004; 52(8): 1925–1933.
- 68Agilent technologies educator's corner. (2005). AM fundamentals. (online). Available: http://www.educatorscorner.com/index.cgi?CONTENT_ID=2551.
- 69P. Raker, L. Connell, T. Collins, and D. Russell, Secure contactless smartcard ASIC with DPA protection. IEEE J. Solid-State Circuits 2001; 36: 559–565.
- 70U. Kaiser and W. Steinhaugen, A low-power transponder IC for high-performance identification systems. IEEE J. Solid-State Circuits 1995; 30: 306–310.
- 71A. Abrial, J. Bouvier, M. Renaudin, P. Senn, and P. Vivet, A new contactless smart card IC using an on-chip antenna and an asynchronous microcontroller. IEEE J. Solid-State Cir. 2001; 36: 1101–1107.
- 72Agilent technologies educator's corner. (2005). FM fundamentals. (online). Available: http://www.educatorscorner.com/index.cgi?CONTENT_ID=2551.
- 73D. G. Galbraith, M. Soma, and R. L. White, A wide-band efficient inductive transdermal power and data link with coupling insensitive gain. IEEE Trans. Biomed. Eng. 1987; 34: 265–275.
- 74P. R. Troyk and G. A. DeMichele, Inductively-coupled power and data link for neural prostheses using a class-E oscillator and FSK modulation. Proc. IEEE 25th EMBS Conf. 2003:3376–3379.
- 75M. Ghovanloo and K. Najafi, High data rate frequency shift keying demodulation for wireless biomedical implants. IEEE Trans. Circuits Syst. I 2004; 51(12): 2374–2383.
- 76M. Sawan, Y. Hu, and J. Coulombe, Wireless smart implants dedicated to multichannel monitoring and microstimulation. IEEE Cir. Sys. Mag. 2005; 5: 21–39.
10.1109/MCAS.2005.1405898 Google Scholar
- 77C. Marschner, S. Rehfuss, D. Peters, H. Bolte, and R. Laur, A novel circuit concept for PSK-demodulation in passive telemetric systems. Microelectron. J. 2002; 33: 69–75.
- 78Z. Tang, B. Smith, J. H. Schild, and P. H. Peckham, Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator. IEEE Trans. Biomed. Eng. 1995; 42: 524–528.
- 79L. Zhou and N. Donaldson, A fast passive data transmission method for eng telemetry. Neuromodulation 2003; 6(2): 116–121.
- 80M. Catrysse, B. Hermans, and R. Puers, An inductive power system with integrated bi-directional data-transmission. Sensors Actuators A 2004; 115: 221–229.
- 81I. Obeid, J. C. Morizio, K. A. Moxon, M. A. L. Nicolelis, and P. D. Wolf, Two multichannel integrated circuits for neural recording and signal processing. IEEE Trans. Biomed. Eng. 2003; 50: 255–258.
- 82E. S. Hawley, E. L. Hargreaves, J. L. Kubie, B. Rivard, and R. U. Muller, telemetry system for reliable recording of action potentials from freely moving rats. Hippocampus 2002; 12: 505–513.
- 83J. Morizio, P. Irazoqui, V. Go, and J. Parmentier, A wireless headstage for neural prosthetics. Proc. 2nd Intl. IEEE/EMBS Conf. on Neural Engineering 2005:414–417.
- 84G. A. DeMichele and P. R. Troyk, Integrated multi-channel wireless biotelemetry system. IEEE 25th EMBS Conf. 2003:3372–3375.
- 85P. Irazoqui-Pastor, I. Mody, and J. W. Judy, In-vivo EEG recording using a wireless implantable neural transceiver. 1st IEEE EMBS Conf. Neural Engineering 2003:622–625.
- 86P. Mohseni and K. Najafi, A fully integrated neural recording amplifier with dc input stabilization. IEEE Trans. Biomed. Eng. 2004; 51: 832–837.
- 87N. M. Neihart and R. R. Harrison, Micropower circuits for bidirectional wireless telemetry in neural recording applications. IEEE Trans. Biomed. Eng. 2005; 52: 1950–1959.
- 88J. H. Schulman, et al., Battery powered Bion FES network. Proc. IEEE 26th EMBS Conf. 2004:4283–4286.
- 89K. Gosalia, G. Lazzi, and M. Humayun, Investigation of a microwave data telemetry link for a retinal prosthesis. IEEE Trans. Microwave Theory Tech. 2004; 52(8): 1925–1933.