Meniscal Replacements
Tammy Haut Donahue
Michigan Technological University, Department of Mechanical Engineering-Engineering Mechanics, Houghton, Michigan
Search for more papers by this authorJason Maes
Michigan Technological University, Department of Mechanical Engineering-Engineering Mechanics, Houghton, Michigan
Search for more papers by this authorTammy Haut Donahue
Michigan Technological University, Department of Mechanical Engineering-Engineering Mechanics, Houghton, Michigan
Search for more papers by this authorJason Maes
Michigan Technological University, Department of Mechanical Engineering-Engineering Mechanics, Houghton, Michigan
Search for more papers by this authorAbstract
Menisci are fibrocartilagenous structures in the knee joint that act to distribute the load from the femur to the tibia. Menisci are frequently torn as a result of sporting activity or degenerative tears associated with aging. Approximately 12.5% of annual visits to orthopedic surgeons are related to knee injury, and of those visits, 43% are directly related to meniscal injuries (see review by McBride and Reid, 1988). Some tears do not heal because they either occur in the avascular region of the meniscus or are too complex for repair. Therefore, the common treatment for these types of tears is either complete or partial meniscectomy depending on the severity of the tear. However, meniscectomies have been shown to lead to degenerative arthritis in the knee. Therefore, in an effort to prevent premature arthritis caused by removal of the meniscus or a portion of the meniscus, meniscal replacement strategies are being investigated.
This article will detail the basic structure and function of meniscal tissue and the attachments of the menisci to the surrounding structures. The strengths and weaknesses of various meniscal replacement strategies will be discussed, including autografts, meniscal allografts, synthetic prosthesis, and tissue-engineered constructs. The success of meniscal replacements likely depends on their ability to restore normal meniscal function both biologically and biomechanically. Previous studies indicate that a number of biomechanical criteria are important for proper meniscal function, such as the material properties and geometry of the replacement tissue as well as the attachment of the replacement to the tibial plateau.
Bibliography
- 1I. D. McBride and J. G. Reid, Biomechanical considerations of the menisci of the knee. Can. J. Sport Sci. 1988; 13(4): 175–187.
- 2P. Renstrom and R. J. Johnson, Anatomy and biomechanics of the menisci. Clin. Sports Med. 1990; 9(3): 523–538.
- 3M. E. Baratz, F. H. Fu, and R. Mengato, Meniscal tears: the effect of meniscectomy and of repair on intraarticular contact areas and stress in the human knee. A preliminary report. Am. J. Sports Med. 1986; 14(4): 270–275.
- 4L. E. Bolano and W. A. Grana, Isolated arthroscopic partial meniscectomy: functional radiographic evaluation at five years. Am. J. Sports Med. 1993; 21(3): 432–437.
- 5P. Fauno and A. B. Nielson, Arthroscopic partial meniscectomy: a long term follow-up. Arthroscopy 1992; 8(3): 345–349.
- 6C. Rangger et al., Osteoarthritis after arthroscopic partial meniscectomy. Am. J. Sports Med. 1995; 23(2): 240–244.
- 7T. L. Haut Donahue et al., How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint. J. Biomech. 2003; 36(1): 19–34.
- 8T. L. Haut Donahue et al., The sensitivity of tibiofemoral contact pressure to the size and shape of the lateral and medial menisci. J. Orthop. Res. 2004; 22(4): 807–814.
- 9L. A. Setton et al., Biomechanical factors in tissue engineered meniscal repair. Clin. Orthop. 1999; 367(Suppl): S254–S272.
10.1097/00003086-199910001-00025 Google Scholar
- 10N. G. Shrive, O. C. JJ, and J. W. Goodfellow, Load-bearing in the knee joint. Clin. Orthoped. 1978; 131: 279–287.
- 11P. S. Walker and M. J. Erkman, The role of the menisci in force transmission across the knee. Clin. Orthoped. 1975; 109: 184–192.
- 12J. B. Morrison, The mechanics of the knee joint in relation to normal walking. J. Biomech. 1970; 3(1): 51–61.
- 13W. R. Krause et al., Mechanical changes in the knee after meniscectomy. J. Bone Joint Surg. [Am]. 1976; 58(5): 599–604.
- 14A. M. Ahmed, The load bearing role of the knee menisci. In: V. Mow, S. Arnoczky, and D. Jackson, eds., Knee Meniscus-Basic and Clinical Foundations. New York: Raven Press, 1992, pp. 59–73.
- 15C. R. Allen et al., Importance of the medial meniscus in the anterior cruciate ligament-deficient knee. J. Orthopaed. Res. 2000; 18(1): 109–115.
- 16I. M. Levy et al., The effect of lateral meniscectomy on motion of the knee. J. Bone Joint Surg. Am. 1989; 71(3): 401–406.
- 17I. M. Levy, P. A. Torzilli, and R. F. Warren, The effect of medial meniscectomy on anterior-posterior motion of the knee. J. Bone Joint Surg. Am. 1982; 64(6): 883–888.
- 18S. C. Shoemaker and K. L. Markolf, The role of the meniscus in the anterior-posterior stability of the loaded anterior cruciate-deficient knee. Effects of partial versus total excision. J. Bone Joint Surg. Am. 1986; 68(1): 71–79.
- 19Y. Watanabe et al., Biomechanical function of the posterior horn of the medial meniscus: a human cadaveric study. J. Orthop. Sci. 2004; 9(3): 280–284.
- 20A. P. Newman, A. U. Daniels, and R. T. Burks, Principles and decision making in meniscal surgery. Arthroscopy 1993; 9(1): 33–51.
- 21S. P. Arnoczky, Gross and vascular anatomy of the meniscus and its role in meniscal healing, regeneration, and remodeling. In: V.C. Mow, S. P. Arnoczky, and D. W. Jackson, eds., Knee Meniscus; Basic and Clinical Foundations. New York: Raven Press, 1992.
- 22C. M. Gupte et al., Meniscofemoral ligaments-structural and material properties. J. Biomech. 2002; 35(12): 1623–1629.
- 23D. C. Fithian, M. A. Kelly, and V. C. Mow, Material properties and structure-function relationships in the menisci. Clin. Orthoped. Related Res. 1990; 252: 19–31.
- 24K. Messner and J. Gao, The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J. Anat. 1998; 193(Pt 2): 161–178.
- 25P. G. Bullough et al., The strength of the menisci of the knee as it relates to their fine structure. J. Bone Joint Surg. [Br]. 1970; 52(3): 564–567.
- 26P. S. Walker and J. V. Hajek, The load-bearing are in the knee joint. J. Biomech. 1972; 5: 581.
- 27A. M. Ahmed and D. L. Burke, In-vitro measurement of static pressure distribution in synovial joints–Part I: Tibial surface of the knee. J. Biomech. Eng. 1983; 105(3): 216–225.
- 28T. Fukubayashi and H. Kurosawa, The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints. Acta Orthoped. Scand. 1980; 51(6): 871–879.
- 29J. C. Ihn, S. J. Kim, and I. H. Park, In vitro study of contact area and pressure distribution in the human knee after partial and total meniscectomy. Int. Orthoped. 1993; 17(4): 214–218.
- 30H. Kurosawa, T. Fukubayashi, and H. Nakajima, Load-bearing mode of the knee joint; physical behavior of the knee with or without menisci. Clin. Orthopaed. Related Res. 1980; 149: 283–290.
- 31B. B. Seedhom, Load-bearing function of the menisci. Physiotherapy 1976; 62: 223–226.
- 32B. Zielinska and T. L. Haut Donahue, 3D finite element model of medial meniscus meniscectomy: changes in contact behavior. J. Biomech. Eng. in press.
- 33B. L. Schumacher et al., Proteoglycan 4 (PRG4) synthesis and immunolocalization in bovine meniscus. J. Orthop. Res. 2005; 23(3): 562–568.
- 34M. E. Adams and H. Muir, The glycosaminoglycans of canine menisci. Biochem. J. 1981; 197(2): 385–389.
- 35D. R. Eyre and H. Muir, The distribution of different molecular species of collagen in fibrous, elastic and hyaline cartilages of the pig. Biochem. J. 1975; 151(3): 595–602.
- 36M. E. Adams et al., Isolation and characterization of high-buoyant-density proteoglycans from semilunar menisci. J. Bone Joint Surg. Am. Vol. 1986; 68(1): 55–64.
- 37K. Nakata et al., Human meniscus cell: characterization of the primary culture and use for tissue engineering. Clin. Orthop. 2001; 391(Suppl): S208–S218.
10.1097/00003086-200110001-00020 Google Scholar
- 38H. S. Cheung, Distribution of type I, II, III and V in the pepsin solubilized collagens in bovine menisci. Connect Tissue Res. 1987; 16(4): 343–356.
- 39D. R. Eyre and J. J. Wu, Collagen of fibrocartilage: a distinctive molecular phenotype in bovine meniscus. FEBS Lett. 1983; 158(2): 265–270.
- 40T. J. Peters and I. S. Smillie, Studies on the chemical composition of the menisci of the knee joint with special reference to the horizontal cleavage lesion. Clin. Orthop. 1972; 86: 245–252.
- 41G. E. Kempson et al., The tensile properties of the cartilage of human femoral condyles related to the content of collagen and glycosaminoglycans. Biochim Biophys. Acta 1973; 297(2): 456–472.
- 42G. E. Kempson et al., The effects of proteolytic enzymes on the mechanical properties of adult human articular cartilage. Biochim Biophys. Acta 1976; 428(3): 741–760.
- 43J. Herwig, E. Egner, and E. Buddecke, Chemical changes of human knee joint menisci in various stages of degeneration. Ann. Rheum. Dis. 1984; 43(4): 635–640.
- 44M. E. Adams and Y. A. Ho, Localization of glycosaminoglycans in human and canine menisci and their attachments. Connect Tissue Res. 1987; 16(3): 269–279.
- 45C. A. McDevitt and R. J. Webber, The ultrastructure and biochemistry of meniscal cartilage. Clin. Orthoped. Related Res. 1990; 252: 8–18.
- 46R. R. Miller and C. A. McDevitt, The presence of thrombospondin in ligament, meniscus and intervertebral disc. Glycoconjugate J. 1988; 5: 312.
- 47S. P. Arnoczky and R. F. Warren, Microvasculature of the human meniscus. Am. J. Sports Med. 1982; 10(2): 90–95.
- 48J. Gao and K. Messner, Natural healing of anterior and posterior attachments of the rabbit meniscus. Clin. Orthop. 1996; 328: 276–284.
- 49J. Gao, Immunolocalization of types I, II, and X collagen in the tibial insertion sites of the medial meniscus. Knee Surg. Sports Traumatol Arthrosc. 2000; 8(1): 61–65.
- 50J. Gao, G. Oqvist, and K. Messner, The attachments of the rabbit medial meniscus. A morphological investigation using image analysis and immunohistochemistry. J. Anat. 1994; 185(Pt 3): 663–667.
- 51M. Tissakht and A. M. Ahmed, Tensile stress-strain characteristics of the human meniscal material. J. Biomech. 1995; 28(4): 411–422.
- 52C. S. Proctor, M. B. Schmidt, R. R. Whipple, M. A. Kelly, and V. C. Mow, Material properties of the normal medial bovine meniscus. J. Orthopaed. Res. 1989; 7(6): 771–782.
- 53D. L. Skaggs, W. H. Warden, and V. C. Mow, Radial tie fibers influence the tensile properties of the bovine medial meniscus. J. Orthopaed. Res. 1994; 12(2): 176–185.
- 54D. C. Fithian et al., Human meniscus tensile properties: regional variation and biochemical correlation. Trans. ORS. 1989; 35: 205.
- 55M. Benjamin et al., Quantitative differences in the histology of the attachment zones of the meniscal horns in the knee joint of man. J. Anat. 1991; 177: 127–134.
- 56J. Gao and K. Messner, Quantitative comparison of soft tissue-bone interface at chondral ligament insertions in the rabbit knee joint. J. Anat. 1996; 188(Pt 2): 367–373.
- 57D. Goertzen, J. Gillquist, and K. Messner, Tensile strength of the tibial meniscal attachments in the rabbit. J. Biomed. Mater. Res. 1996; 30(1): 125–128.
10.1002/(SICI)1097-4636(199601)30:1<125::AID-JBM16>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
- 58R. M. Aspden, Y. E. Yarker, and D. W. Hukins, Collagen orientations in the meniscus of the knee joint. J. Anat. 1985; 140(Pt 3): 371–380.
- 59P. Ghosh and T. K. Taylor, The knee joint meniscus. A fibrocartilage of some distinction. Clin. Orthop. 1987; 224: 52–63.
- 60V. C. Mow et al., Structure and function relationships of the menisci of the knee. In: V. Mow, S. Arnoczky, and D. Jackson, eds., Knee Meniscus:Basic and Clinical Foundations. New York: Raven Press, 1992.
- 61J. A. Maes and T. L. Haut Donahue, Time dependent properties of bovine meniscal attachments: stress relaxation and creep. J. Biomech., in press.
- 62W. Zhu, K. Y. Chern, and V. C. Mow, Anisotropic viscoelastic shear properties of bovine meniscus. Clin. Orthopaed. Related Res. 1994; 306: 34–45.
- 63K. Lechner, M. L. Hull, and S. M. Howell, Is the circumferential tensile modulus within a human medial meniscus affected by the test sample location and cross-sectional area? J. Orthopaed. Res. 2000; 18(6): 945–951.
- 64V. C. Mow, W. Zhu, and A. Ratcliffe, Structure and function of articular cartilage and meniscus. In: V.C. Mow and W. C. Hayes, eds., Basic Orthopaedic Biomechanics. New York: Raven Press, 1991.
- 65J. Gao, X. Wei, and K. Messner, Healing of the anterior attachment of the rabbit meniscus to bone. Clin. Orthop. 1998; 348: 246–258.
- 66V. Vedi et al., Meniscal movement. An in-vivo study using dynamic MRI. J. Bone Joint Surg. Br. 1999; 81(1): 37–41.
- 67W. O. Thompson et al., Tibial meniscal dynamics using three-dimensional reconstruction of magnetic resonance images. Am. J. Sports Med. 1991; 19(3): 210-5; discussion 215–216.
- 68M. C. Logan et al., What really happens during the Lachman test? A dynamic MRI analysis of tibiofemoral motion. Am. J. Sports Med. 2004; 32(2): 369–375.
- 69H. U. Staubli, B. Noesberger, and R. P. Jakob, Stressradiography of the knee. Cruciate ligament function studied in 138 patients. Acta Orthop. Scand. Suppl. 1992; 249: 1–27.
- 70S. Sonne-Holm, I. Fledelius, and N. C. Ahn, Results after meniscectomy in 147 athletes. Acta Orthop. Scand. 1980; 51(2): 303–309.
- 71F. N. Ghadially, J. H. Wedge, and J. M. Lalonde, Experimental methods of repairing injured menisci. J. Bone Joint Surg. Brit. Vol. 1986; 68(1): 106–110.
- 72M. Asik and N. Sener, Failure strength of repair devices versus meniscus suturing techniques. Knee Surg. Sports Traumatol. Arthrosc. 2002; 10(1): 25–29.
- 73M. A. Sweigart and K. A. Athanasiou, Toward tissue engineering of the knee meniscus. Tissue Eng. 2001; 7(2): 111–129.
- 74K. E. DeHaven, Meniscectomy versus repair: clinical experience. In: V. C. Mow, Arnoszky, S. P. Jackson, and D. W. , eds., Knee Meniscus: Basic and Clinical Foundations. New York: Raven Press, 1992, pp. 131–141.
- 75D. J. Wyland et al., Chondropathy after meniscal tear or partial meniscectomy in a canine model. J. Orthop. Res. 2002; 20(5): 996–1002.
- 76P. R. Allen, R. A. Denham, and A. V. Swan, Late degenerative changes after meniscectomy. Factors effecting the knee after operation. J. Bone Joint Surg. [Br]. 1984; 66: 666–671.
- 77S. A. Rodeo, Meniscal allografts—where do we stand? Am. J. Sports Med. 2001; 29(2): 246–261.
- 78K. Messner, D. Kohn, and R. Verdonk, Future research in meniscal replacement. Scand. J. Med. Sci. Sports 1999; 9(3): 181–183.
- 79M. S. Moon, Y. K. Woo, and Y. I. Kim, Meniscal regeneration and its effects on articular cartilage in rabbit knees. Clin. Orthopaed. Related Res. 1988; 227: 298–304.
- 80T. R. Wilcox and E. M. Goble, Indications for meniscal allograft reconstruction. Am. J. Knee Surg. 1996; 9(1): 35–36.
- 81E. M. Goble et al., Meniscal substitutes–human experience. Scand. J. Med. Sci. Sports. 1999; 9(3): 146—157.
- 82R. Verdonk, Meniscal transplantation. Acta Orthop. Belg. 2002; 68(2): 118–127.
- 83S. P. Arnoczky, Meniscus. Clin. Orthopaed. Related Res. 1999; 367S: S293–S295.
10.1097/00003086-199910001-00028 Google Scholar
- 84K. R. Stone et al., Future directions. Collagen-based prostheses for meniscal regeneration. Clin. Orthoped. Related Res. 1990; 252: 129–135.
- 85S. P. Arnoczky, R. F. Warren, and C. A. McDevitt, Meniscal replacement using a cryopreserved allograft: an experimental study in the dog. Clin. Orthoped. Related Res. 1990; 252: 121–128.
- 86M. A. Asselmeier, R. B. Caspari, and S. Bottenfield, A review of allograft processing and sterilization techniques and their role in transmission of the human immunodeficiency virus. Am. J. Sports Med. 1993; 21(2): 170–175.
- 87W. Canham and W. Stanish, A study of the biological behavior of the meniscus as a transplant in the medial compartment of a dog's knee. Am. J. Sports Med. 1986; 14(5): 376–379.
- 88J. C. Garrett and R. N. Stevensen, Meniscal transplantation in the human knee: a preliminary report. Arthroscopy 1991; 7(1): 57–62.
- 89D. W. Jackson et al., Meniscal transplantation using fresh and cryopreserved allografts. An experimental study in goats. Am. J. Sports Med. 1992; 20(6): 644–656.
- 90D. W. Jackson, J. Whelan, and T. M. Simon, Cell survival after transplantation of fresh meniscal allografts. DNA probe analysis in a goat model. Am. J. Sports Med. 1993; 21(4): 540–550.
- 91Z. D. Mikic et al., Allograft meniscus transplantation in the dog. Acta Orthoped. Scand. 1993; 64(3): 329–332.
- 92C. J. Wirth et al., Long-term results of meniscal allograft transplantation. Am. J. Sports Med. 2002; 30(2): 174–181.
- 93P. J. Wisnewski, D. L. Powers, and J. M. Kennedy, Glutaraldehyde-cross-linked meniscal allografts: mechanical properties. J. Invest. Surg. 1988; 1(4): 259–266.
- 94L. H. Yahia, G. Drouin, and D. Zukor, The irradiation effect on the initial mechanical properties of meniscal grafts. Biomed. Mater. Eng. 1993; 3(4): 211–221.
- 95D. Zukor, J. M. Rubins, and M. R. Daigle, Allotransplantation of frozen irradiated menisci in rabbits. J. Bone Joint Surg. Br. 1991; 73: 45.
- 96L. L. Johnson and J. A. Feagin, Jr., Autogenous tendon graft substitution for absent knee joint meniscus: a pilot study. Arthroscopy 2000; 16(2): 191–196.
- 97D. Kohn et al., Medial meniscus replacement by a fat pad autograft. An experimental study in sheep. Int. Orthop. 1997; 21(4): 232–238.
- 98D. Kohn et al., Medial meniscus replacement by a tendon autograft. Experiments in sheep. J. Bone Joint Surg. Br. 1992; 74(6): 910–917.
- 99G. Mora et al., Articular cartilage degeneration after frozen meniscus and Achilles tendon allograft transplantation: experimental study in sheep. Arthroscopy 2003; 19(8): 833–841.
- 100J. C. Garrett, Meniscal transplantation: review of forty-three cases with two-to-seven year follow-up. Sports Med. Arthrosc. Rev. 1993; 1: 164–167.
10.1097/00132585-199300120-00010 Google Scholar
- 101R. M. Patten and B. A. Rolfe, MRI of meniscal allografts. J. Comput. Assist. Tomogr. 1995; 19(2): 243–246.
- 102S. A. Rodeo et al., Histological analysis of human meniscal allografts. A preliminary report. J. Bone Joint Surg. Am. 2000; 82A(8): 1071–1082.
- 103R. K. Ryu, V. W. Dunbar, and G. G. Morse, Meniscal allograft replacement: a 1-year to 6-year experience. Arthroscopy 2002; 18(9): 989–994.
- 104E. R. van Arkel and H. H. de Boer, Human meniscus transplantation. Agents Actions Suppl. 1993; 39: 243–246.
- 105E. R. van Arkel and H. H. de Boer, Human meniscal transplantation. Preliminary results at 2 to 5-year follow-up. J. Bone Joint Surg. Br. 1995; 77(4): 589–595.
- 106D. M. Veltri et al., Current status of allograft meniscal transplantation. Clin. Orthop. 1994; 303: 44–55.
- 107K. Messner, The concept of a permanent synthetic meniscus prosthesis: a critical discussion after 5 years of experimental investigations using dacron and teflon implants. Biomaterials 1994; 15(4): 243–250.
- 108K. Messner and J. Gillquist, Prosthetic replacement of the rabbit medial meniscus. J. Biomed. Mater. Res. 1993; 27(9): 1165–1173.
- 109K. Sommerlath, M. Gallino, and J. Gillquist, Biomechanical characteristics of different artificial substitutes for rabbit medial meniscus and effect of prosthesis size on knee cartilage. Clin. Biomech. 1992; 7: 97–103.
- 110K. Sommerlath and J. Gillquist, The effect of a meniscal prosthesis on knee biomechanics and cartilage. Am. J. Sports Med. 1992; 20(1): 73–81.
- 111K. Sommerlath and J. Gillquist, The effects of an artificial meniscus substitute in a knee joint with a resected anterior cruciate ligament. An experimental study in rabbits. Clin. Orthoped. Related Res. 1993; 289: 276–284.
- 112T. Toyonaga, N. Uezaki, and H. Chikama, Substitute meniscus of Teflon-net for the knee joint of dogs. Clin. Orthoped. 1983; 80(11): 291–297.
- 113D. J. Wood, R. J. Minns, and A. Strover, Replacement of the rabbit medial meniscus with a polyester-carbon fibre bioprosthesis. Biomaterials 1990; 11(1): 13–16.
- 114M. Kobayashi, J. Toguchida, and M. Oka, Development of an artificial meniscus using polyvinyl alcohol-hydrogel for early return to, and continuance of, athletic life in sportspersons with severe meniscus injury. I: mechanical evaluation. Knee 2003; 10(1): 47–51.
- 115M. Kobayashi, J. Toguchida, and M. Oka, Preliminary study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials 2003; 24(4): 639–647.
- 116J. H. de Groot et al., Meniscal tissue regeneration in porous 50/50 copoly (L-lactide/epsilon-caprolactone) implants. Biomaterials 1997; 18(8): 613–622.
- 117J. Klompmaker et al., Porous polymer implant for repair of meniscal lesions: a preliminary study in dogs. Biomaterials 1991; 12(9): 810–816.
- 118J. Klompmaker et al., Porous implants for knee joint meniscus reconstruction: a preliminary study on the role of pore sizes in ingrowth and differentiation of fibrocartilage. Clin. Mater. 1993; 14(1): 1–11.
- 119J. Klompmaker et al., Meniscal repair by fibrocartilage? An experimental study in the dog. J. Orthop. Res. 1992; 10(3): 359–370.
- 120J. Klompmaker et al., Meniscal replacement using a porous polymer prosthesis: a preliminary study in the dog. Biomaterials 1996; 17(12): 1169–1175.
- 121J. L. Cook et al., Long term results of replacement of meniscectomy defects using small intestinal submucosa grafts in a dog model. Trans. Orthop. Res. Soc. 2004; 50: 310.
- 122J. L. Cook et al., Kinetic study of the replacement of porcine small intestinal submucosa grafts and the regeneration of meniscal-like tissue in large avascular meniscal defects in dogs. Tissue Eng. 2001; 7(3): 321–334.
- 123J. L. Cook et al., Induction of meniscal regeneration in dogs using a novel biomaterial. Am. J. Sports Med. 1999; 27(5): 658–665.
- 124J. A. Gastel et al., Meniscal tissue regeneration using a collagenous biomaterial derived from porcine small intestine submucosa. Arthroscopy 2001; 17(2): 151–159.
- 125K. R. Stone et al., Meniscal regeneration with copolymeric collagen scaffolds. In vitro and in vivo studies evaluated clinically, histologically, and biochemically. Am. J. Sports Med. 1992; 20(2): 104–111.
- 126K. R. Stone et al., Regeneration of meniscal cartilage with use of a collagen scaffold. Analysis of preliminary data. J. Bone Joint Surg. Am. 1997; 79(12): 1770–1777.
- 127P. Debeer et al., DNA analysis of a transplanted cryopreserved meniscal allograft. Arthroscopy 2000; 16(1): 71–75.
- 128K. A. Milachowski, K. Weismeier, and C. J. Wirth, Homologous meniscus transplantation. Experimental and clinical results. Int. Orthoped. 1989; 13(1): 1–11.
- 129S.P. Arnoczky et al., Cellular repopulation of deep-frozen meniscal autografts: an experimental study in the dog. Arthroscopy 1992; 8(4): 428–436.
- 130M. M. Alhalki, M. L. Hull, and S. M. Howell, Contact mechanics of the medial tibial plateau after implantation of a medial meniscal allograft. A human cadaveric study. Am. J. Sports Med. 2000; 28(3): 370–376.
- 131C. Fabbriciani et al., Meniscal allografts: cyropreservation vs. deep-frozen teachnique. An experimental study in goats. Knee Surg. Sports Traumatol. Arthrosc. 1997; 5: 124–134.
- 132J. C. Garrett, Meniscal transplantation. Am. J. Knee Surg. 1996; 9(1): 32–34.
- 133G. A. Paletta et al., The effect of allograft meniscal replacement on intraarticular contact area and pressures in the human knee. Am. J. Sports Med. 1997; 25(5): 692–698.
- 134J. E. Kuhn and E. M. Wojtys, Allograft meniscus transplantation. Clin. Sports Med. 1996; 15(3): 537–546.
- 135M. M. Alhalki, S. M. Howell, and M. L. Hull, How three methods for fixing a medial meniscal autograft affect tibial contact mechanics. Am. J. Sports Med. 1999; 27(3): 320–328.
- 136M. I. Chen, T. P. Branch, and W. C. Hutton, Is it important to secure the horns during lateral meniscal transplantation? A cadaveric study. Arthroscopy 1996; 12(2): 174–181.
- 137J. Menetrey et al., Posterior peripheral sutures in meniscal allograft replacement. Arthroscopy 1999; 15(6): 663–668.
- 138K. R. Stone and R. N. N. P. Walgenbach, Meniscal allografting: the three-tunnel technique. Arthroscopy 2003; 19(4): 426–430.
- 139J. Farr, R. M. Meneghini, and B. J. Cole, Allograft interference screw fixation in meniscus transplantation. Arthroscopy 2004; 20(3): 322–327.
- 140D. L. Johnson, T. M. Swenson, and C. D. Harner, Meniscal reconstruction using allograft tissue: an arthroscopic technique. Op. Techniques Sports Med. 1994; 2(3): 223–231.
10.1016/1060-1872(94)90021-3 Google Scholar
- 141E. M. Goble, R. Verdonk, and D. Kohn, Arthroscopic and open surgical techniques for meniscus replacement–meniscal allograft transplantation and tendon autograft transplantation. Scand. J. Med. Sci. Sports. 1999; 9(3): 168–176.
- 142T. R. Wilcox, E. M. Goble, and S. A. Doucette, Goble technique of meniscus transplantation. Am. J. Knee Surg. 1996; 9(1): 37–42.
- 143T. R. Carter, Meniscal allograft transplantation. Sports Med. Arthrosc. Rev. 1999; 7: 51–62.
- 144G. T. Stollsteimer et al., Meniscal allograft transplantation: a 1- to 5-year follow-up of 22 patients. Arthroscopy 2000; 16(4): 343–347.
- 145J. C. Cameroned and S. Saha, Meniscal allograft transplantation for unicompartmental arthritis of the knee. Clin. Orthop. Related Res. 1997; 337: 164–171.
10.1097/00003086-199704000-00018 Google Scholar
- 146R. Verdonk, Alternative treatments for meniscal injuries. J. Bone Joint Surg. Br. 1997; 79(5): 866–873.
- 147H. H. De Boer and J. Koudstaal, The fate of meniscus cartilage after transplantation of cryopreserved nontissue-antigen-matched allograft. A case report. Clin. Orthoped. Related Res. 1991; 266: 145–151.
- 148H. H. de Boer and J. Koudstaal, Failed meniscus transplantation. A report of three cases. Clin. Orthop. Related Res. 1994; 306: 155–162.
- 149D. Kohn et al., Postoperative follow-up and rehabilitation after meniscus replacement. Scand. J. Med. Sci. Sports 1999; 9(3): 177–180.
- 150D. W. Jackson and T. M. Simon, Biology of meniscal allograft. In: V.C. Mow, S. P. Arnoczky, and D.W. Jackson, eds., Knee Meniscus: Basic and Clinical Foundations. New York: Raven Press, 1990, pp. 141–152.
- 151W. Hamlet, S. H. Liu, and R. Yang, Destruction of a cyropreserved meniscal allograft: a case for acute rejection. Arthroscopy 1997; 13(4): 517–521.
- 152K. R. Stone et al., Autogenous replacement of the meniscus cartilage: analysis of results and mechanisms of failure. Arthroscopy 1995; 11(4): 395–400.
- 153P. C. Rijk et al., Radiographic evaluation of the knee joint after meniscal allograft transplantation. An experimental study in rabbits. Knee Surg. Sports Traumatol. Arthros. 2002; 10(4): 241–246.
- 154J. F. Cummins et al., Meniscal transplantation and degenerative articular change: an experimental study in the rabbit. Arthroscopy 1997; 13(4): 485–491.
- 155Z. D. Mikic et al., Transplantation of fresh-frozen menisci: an experimental study in dogs. Arthroscopy 1997; 13(5): 579–583.
- 156B. Shaffer et al., Preoperative sizing of meniscal allografts in meniscus transplantation. Am. J. Sports Med. 2000; 28(4): 524–533.
- 157T. L. Haut, M. L. Hull, and S. M. Howell, Use of roentgenography and MRI to predict meniscal geometry determined with a three-dimensional coordinate digitizing system. J. Orthoped. Res. 2000; 18: 228–237.
- 158M. E. Pollard, Q. Kang, and E. E. Berg, Radiographic sizing for meniscal transplantation. Arthroscopy 1995; 11(6): 684–687.
- 159A. Z. Huang et al., Identification of cross-sectional parameters of lateral meniscal allografts that predict tibial contact mechanics in human cadaveric knees. J. Biomech. Eng. 2002; 124(5): 481–489.
- 160D. Kohn and B. Moreno, Meniscus insertion anatomy as a basis for meniscus replacement: a morphological cadaveric study. Arthroscopy 1995; 11(1): 96–103.
- 161S. V. Sekaran, M. L. Hull, and S. M. Howell, Nonanatomic location of the posterior horn of a medial meniscal autograft implanted in a cadaveric knee adversely affects the pressure distribution on the tibial plateau. Am. J. Sports Med. 2002; 30(1): 74–82.
- 162C. Ibarra, J. A. Koski, and R. F. Warren, Tissue engineering meniscus: cells and matrix. Orthop. Clin. North Am. 2000; 31(3): 411–418.
- 163F. N. Ghadially et al., Ultrastructure of rabbit semilunar cartilages. J. Anat. 1978; 125(3): 499–517.
- 164S. P. Arnoczky, Building a meniscus. Biologic considerations. Clin. Orthop. 1999; 367(Suppl): S244–S253.
- 165A. I. Caplan, Mesenchymal stem cells. J. Orthop. Res. 1991; 9(5): 641–650.
- 166S. P. Arnoczky, R. F. Warren, and J. M. Spivak, Meniscal repair using an exogenous fibrin clot. An experimental study in dogs. J. Bone Joint Surg. Am. Vol. 1988; 70(8): 1209–1217.
- 167J. H. de Groot et al., Use of porous polyurethanes for meniscal reconstruction and meniscal prostheses. Biomaterials 1996; 17(2): 163–173.
- 168T. G. Tienen et al., Prosthetic replacement of the medial meniscus in cadaveric knees: does the prosthesis mimic the functional behavior of the native meniscus? Am. J. Sports Med. 2004; 32(5): 1182–1188.
- 169C. J. Spaans et al., Solvent-free fabrication of micro-porous polyurethane amide and polyurethane-urea scaffolds for repair and replacement of the knee-joint meniscus. Biomaterials 2000; 21(23): 2453–2460.
- 170C. Hidaka et al., Formation of vascularized meniscal tissue by combining gene therapy with tissue engineering. Tissue Eng. 2002; 8(1): 93–105.
- 171V. Martinek et al., Genetic engineering of meniscal allografts. Tissue Eng. 2002; 8(1): 107–117.
- 172J. P. Holden et al., In vivo forces in the anterior cruciate ligament: direct measurements during walking and trotting in a quadruped. J. Biomech. 1994; 27(5): 517–526.
- 173F. R. Noyes, The clinical application of allografts in the ACl-deficient knee. In: G. A. M. Finerman and F. R. Noyes, eds., Biology and Biomechanics of the Traumatized Synovial Joint: The Knee as a Model. Scottsdale, AZ: American Academy of Orthopaedic Surgeons, 1992.