Tissue Mechanics
J. Michael Lee
Dalhousie University, School of Biomedical Engineering, Halifax, Nova Scotia, Canada
Search for more papers by this authorJ. Michael Lee
Dalhousie University, School of Biomedical Engineering, Halifax, Nova Scotia, Canada
Search for more papers by this authorAbstract
Tissue mechanics is the field of endeavour that seeks to understand and describe the links between structure and mechanical function in the soft and hard tissues of the human body. Much of the research work has been done in the connective tissues of the body (e.g., bone, tendons, cartilage, arteries, and skin) where mechanical demands are greatest; however, all tissues have mechanical features of interest. Approaches to the field have included: (1) use of structural anatomy as a means to understanding natural design, (2) mechanical engineering analysis of structures based on continuum mechanics, and (3) materials science study of detailed links between structure and function. As natural tissues are all composite materials, understanding of their mechanical function demands study of the mechanical properties and architectural arrangement of the individual structural components, particularly: strong, stiff collagen fibers; the physiological rubber elastin; hydroxyapatite mineral; and proteoglycan sol/gels. The mechanical features of tissues include marked anisotropy, nonlinear stress-strain relations, viscoelasticity, preconditioning behavior, and the presence of pre-stress. Most studies of the mechanical behavior of tissues have been carried out in the laboratory, with samples removed from cadavers or animals, cut or machined to shape, and tested either fresh or after storage. Commercial testing machines based on electromechanical or hydraulic systems are widely used, as are custom-built apparatus. Testing is also carried out in living animals or patients. In either case, determination of sample geometry or deformations are difficult. Mathematical description of data is an important part of tissue mechanics, as is modeling of 3-dimensional stress-strain behavior. Soft tissues require the use of large deformation (finite) elasticity equations. Modeling may either be phenomenological (seeking to describe behavior using model systems that do not reference structure) or may be explicitly based on knowledge of tissue architecture. Phenomenological models have often been based on linear or quasilinear viscoelastic theory derived from previous work on polymer materials. Constitutive equations, particularly those based on development of strain energy density functions, have been widely used as a means to describing tissue behavior under arbitrary loading. In a complementary development, finite element analysis has found wide use for analysis of complex structures. Tissue mechanics is a tool both for: (1) the study of natural structures in health and disease, and (2) technological application, which, in recent years, has included design of surgical replacements and surgical technique, evaluation and design of tissue engineered replacements, and analysis/prevention of injuries caused by automobile accidents, blasts, and other trauma.
Bibliography
- 1J. D. Currey, The design of mineralised hard tissues for their mechanical functions. J. Exp. Biol. 1999; 202(23): 3285–3289.
- 2S. A. Wainwright, W. D. Biggs, J. D. Currey, and J. M. Gosline, Mechanical Design in Organisms. London: Edward Arnold, 1976.
- 3J. E. Harris and H. D. Crofton, Internal pressure and cuticular structure in Ascaris. J. Exp. Biol. 1957; 34: 116–130.
- 4T. Weis-Fogh, A rubber-like protein in insect cuticles. J. Exp. Biol. 1960; 37: 889–906.
- 5R. McN. Alexander, Optimization and gaits in the locomotion of vertebrates. Physiol. Rev. 1989; 69: 1199–1227.
- 6D. H. Bergel, Static elastic properties of the arterial wall. J. Physiol. Lond. 1961; 156: 445–457.
- 7Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues, 2nd ed. New York: Springer-Verlag, 1993.
10.1007/978-1-4757-2257-4 Google Scholar
- 8J. D. Humphrey, Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. New York: Springer-Verlag, 2002.
10.1007/978-0-387-21576-1 Google Scholar
- 9C. S. Chen, J. Tan, and J. Tien, Mechanotransduction at cell-matrix and cell-cell contacts. Annu. Rev. Biomed. Eng. 2004; 6: 275–302.
- 10S. L. Woo, R. E. Debski, J. Zeminski, S. D. Abramowitch, S. S. Saw, and J. A. Fenwick, Injury and repair of ligaments and tendons. Annu. Rev. Biomed. Eng. 2000; 2: 83–118.
- 11M. E. Nimni, Collagen: structure, function, and metabolism in normal and fibrotic tissues. Semin. Arthritis Rheum. 1983; 13(1): 1–8.
- 12M. Kjaer, Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol. Rev. 2004; 84(2): 649–698.
- 13H. G. Vogel, Influence of maturation and aging on mechanical and biochemical properties of connective tissue in rats. Mech. Ageing Dev. 1980; 14(3–4): 283–289.
- 14J. Gosline, M. Lillie, E. Carrington, P. Guerette, C. Ortlepp, and K. Savage, Elastic proteins: biological roles and mechanical properties. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2002; 357(1418): 121–132.
- 15B. Li and V. Daggett, Molecular basis for the extensibility of elastin. J. Muscle Res. Cell Motil. 2002; 23(5–6): 561–573.
- 16M. A. Lillie, G. J. David, and J. M. Gosline, Mechanical role of elastin-associated microfibrils in pig aortic elastic tissue. Connect Tissue Res. 1998; 37(1–2): 121–141.
- 17H. C. Dietz, F. Ramirez, and L. Y. Sakai, Marfan's syndrome and other microfibrillar diseases. Adv. Hum. Genet. 1994; 22: 153–186.
- 18T. C. Battaglia, A. C. Tsou, E. A. Taylor, and B. Mikic, Ash content modulation of torsionally derived effective material properties in cortical mouse bone. J. Biomech. Eng. 2003; 125(5): 615–619.
- 19J. D. Currey, The many adaptations of bone. J. Biomech. 2003; 36(10): 1487–1495.
- 20A. J. Grodzinsky, Electromechanical and physicochemical properties of connective tissue. Crit. Rev. Biomed. Eng. 1983; 9(2): 133–199.
- 21J. E. Scott, Elasticity in extracellular matrix ‘shape modules’ of tendon, cartilage, etc. A sliding proteoglycan-filament model. J. Physiol. 2003; 553(Pt 2): 335–343.
- 22V. C. Mow, M. H. Holmes, and W. M. Lai, Fluid transport and mechanical properties of articular cartilage: a review. J. Biomech. 1984; 17(5): 377–394.
- 23J. Kastelic, A. Galeski, and E. Baer, The multicomposite structure of tendon. J. Connective Tissue Res. 1978; 6: 11–23.
- 24J. D. Currey, Bones: Structure and Mechanics. Princeton, NJ: Princeton University Press, 2002.
10.1515/9781400849505 Google Scholar
- 25L. Dalle Carbonare and S. Giannini, Bone microarchitecture as an important determinant of bone strength. J. Endocrinol. Invest. 2004; 27(1): 99–100.
- 26J. M. Lee and D. R. Boughner, Mechanical properties of human pericardium. Differences in viscoelastic response when compared with canine pericardium. Circ. Res. 1985; 57(3): 475–481.
- 27M. R. Roach and A. C. Burton, The reason for the shape of the distensibility curve of arteries. Can. J. Biochem. Physiol. 1957; 35: 681–690.
- 28K. L. Dorrington, The theory of viscoelasticity in biomaterials. Symp. Soc. Exp. Biol. 1980; 34: 289–314.
- 29J. M. Lee, S. A. Haberer, C. A. Pereira, W. A. Naimark, D. W. Courtman, and G. J. Wilson, High strain rate testing and structural analysis of pericardial bioprosthetic materials. In: H. E. Kambic and A. T. Yokobori, eds., ASTM Special Technical Publication 11: Biomaterials’ Mechanical Properties. Philadelphia, PA: ASTM, 1994, pp. 19–42.
- 30J. D. Humphrey, D. L. Vawter, and R. P. Vito, Pseudoelasticity of excised visceral pleura. J. Biomech. Eng. 1987; 109(2): 115–122.
- 31P. M. Buechner, R. S. Lakes, C. Swan, and R. A. Brand, A broadband viscoelastic spectroscopic study of bovine bone: implications for fluid flow. Ann. Biomed. Eng. 2001; 29: 719–728.
- 32P. P. Purslow, T. J. Wess, and D. W. Hukins, Collagen orientation and molecular spacing during creep and stress-relaxation in soft connective tissues. J. Exp. Biol. 1998; 201(Pt 1): 135–142.
- 33J. J. Broz, S. J. Simske, A. R. Greenberg, and M. W. Luttges, Effects of rehydration state on the flexural properties of whole mouse long bones. J. Biomech. Eng. 1993; 115(4A): 447–449.
- 34R. S. Lakes, J. L. Katz, and S. S. Sternstein, Viscoelastic properties of wet cortical bone—I. Torsional and biaxial studies. J. Biomech. 1979; 12(9): 657–678.
- 35C. J. Chuong and Y. C. Fung, On residual stresses in arteries. J. Biomech. Eng. 1986; 108(2): 189–192; Erratum: J. Biomech. Eng. 1990; 112(3):249.
- 36A. Sverdlik and Y. Lanir, Time-dependent mechanical behavior of sheep digital tendons, including the effects of preconditioning. J. Biomech. Eng. 2002; 124(1): 78–84.
- 37B. K. Graf, R. Vanderby, Jr., M. J. Ulm, R. P. Rogalski, and R. J. Thielke, Effect of preconditioning on the viscoelastic response of primate patellar tendon. Arthroscopy 1994; 10(1): 90–96.
- 38J. M. Lee and D. R. Boughner, Tissue mechanics of canine pericardium in different test environments. Evidence for time-dependent accommodation, absence of plasticity, and new roles for collagen and elastin. Circ. Res. 1981; 49(2): 533–544.
- 39P. F. Gratzer and J. M. Lee, Altered mechanical properties in aortic elastic tissue using glutaraldehyde/solvent solutions of various dielectric constant. J. Biomed. Mater. Res. 1997; 37(4): 497–507.
10.1002/(SICI)1097-4636(19971215)37:4<497::AID-JBM8>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 40C. Lally, A. J. Reid, and P. J. Prendergast, Elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension. Ann. Biomed. Eng. 2004; 32(10): 1355–1364.
- 41D. J. Patel and D. L. Fry, Longitudinal tethering of arteries in dogs. Circ. Res. 1966; 19(6): 1011–1021.
- 42S. M. Wells, B. L. Langille, and S. L. Adamson, In vivo and in vitro mechanical properties of the sheep thoracic aorta in the perinatal period and adulthood. Am. J. Physiol. 1998; 274(5 Pt 2): H1749–H1760.
- 43S. E. Langdon, R. Chernecky, C. A. Pereira, D. Abdulla, and J. M. Lee, Biaxial mechanical/structural effects of equibiaxial strain during crosslinking of bovine pericardial xenograft materials. Biomaterials 1999; 20(2): 137–153.
- 44Y. Lanir and Y. C. Fung, Two-dimensional mechanical properties of rabbit skin. I. Experimental system. J. Biomech. 1974; 7(1): 29–34.
- 45M. C. Lee, Y. C. Fung, R. Shabetai, and M. M. LeWinter, Biaxial mechanical properties of human pericardium and canine comparisons. Am. J. Physiol. 1987; 253(1 Pt 2): H75–H78.
- 46S. D. Waldman and J. M. Lee, Boundary conditions during biaxial testing. Part I: Dynamic behavior. J. Mater. Sci. Mater. Med. 2002; 13: 933–938.
- 47P. B. Dobrin, Biaxial anisotropy of dog carotid artery: estimation of circumferential elastic modulus. J. Biomech. 1986; 19(5): 351–358.
- 48M. L. Weygang, Mechanical properties of canine arteries and polyurethane vascular grafts before and after implantation, M.A.Sc. thesis, Department of Metallurgy & Materials Science, University of Toronto, Toronto, Canada, 1990.
- 49O. S. Sobelman, J. C. Gibeling, S. M. Stover, S. J. Hazelwood, O. C. Yeh, D. R. Shelton, and R. B. Martin, Do microcracks decrease or increase fatigue resistance in cortical bone? J. Biomech. 2004; 37(9): 1295–1303.
- 50F. Linde, I. Hvid, and F. Madsen, The effect of specimen geometry on the mechanical behavior of trabecular bone specimens. J. Biomech. 1992; 25(4): 359–368.
- 51C. M. Bellingham, J. M. Lee, E. L. Moran, and E. R. Bogoch, Bisphosphonate (pamidronate/APD) prevents arthritis-induced loss of fracture toughness in the rabbit femoral diaphysis. J. Orthop. Res. 1995; 13(6): 876–880.
- 52C. H. Turner and D. B. Burr, Basic biomechanical measurements of bone: a tutorial. Bone 1993; 14(4): 595–608.
- 53E. A. Trowbridge and C. E. Crofts, The standardisation of gauge length: its influence on the relative extensibility of natural and chemically modified pericardium. J. Biomech. 1986; 19(12): 1023–1033.
- 54E. O. Carew and I. Vesely, A new method of estimating gauge length for porcine aortic valve test specimens. J. Biomech. 2003; 36(7): 1039–1042.
- 55J. M. Lee and S. E. Langdon, Thickness measurement of soft tissue biomaterials: a comparison of five methods. J. Biomech. 1996; 29(6): 829–832.
- 56C. Gillis, N. Sharkey, S. M. Stover, R. R. Pool, D. M. Meagher, and N. Willits, Ultrasonography as a method to determine tendon cross-sectional area. Am. J. Vet. Res. 1995; 56(10): 1270–1274.
- 57C. B. Frank, D. A. Hart, and N. G. Shrive, Molecular biology and biomechanics of normal and healing ligaments-a review. Osteoarth. Cart. 1999; 7(1): 130–140.
- 58A. C. Swann and B. B. Seedhom, Improved techniques for measuring the indentation and thickness of articular cartilage. Proc. Inst. Mech. Eng. (H) 1989; 203(3): 143–150.
- 59M. A. Adams, Mechanical testing of the spine. An appraisal of methodology, results, and conclusions. Spine 1995; 20(19): 2151–2156.
- 60B. K. Graf, K. Fujisaki, R. Vanderby, Jr., and A. C. Vailas, The effect of in situ freezing on rabbit patellar tendon. A histologic, biochemical, and biomechanical analysis. Am. J. Sports Med. 1992; 20(4): 401–405.
- 61P. Clavert, J. F. Kempf, F. Bonnomet, P. Boutemy, L. Marcelin, and J. L. Kahn, Effects of freezing/thawing on the biomechanical properties of human tendons. Surg. Radiol. Anat. 2001; 23(4): 259–262.
- 62D. W. Courtman, C. A. Pereira, S. Omar, S. E. Langdon, J. M. Lee, and G. J. Wilson, Biomechanical and ultrastructural comparison of cryopreservation and a novel cellular extraction of porcine aortic valve leaflets. J. Biomed. Mater. Res. 1995; 29(12): 1507–1516.
- 63M. Salai, T. Brosh, N. Keller, M. Perelman, and I. Dudkiewitz, The effects of prolonged cryopreservation on the biomechanical properties of bone allografts: a microbiological, histological and mechanical study. Cell Tissue Bank 2000; 1(1): 69–73.
- 64J. Downs, H. R. Halperin, J. Humphrey, and F. Yin, An improved video-based computer tracking system for soft biomaterials testing. IEEE Trans. Biomed. Eng. 1990; 37(9): 903–907.
- 65J. D. Humphrey, T. Kang, P. Sakarda, and M. Anjanappa, Computer-aided vascular experimentation: a new electromechanical test system. Ann. Biomed. Eng. 1993; 21(1): 33–43.
- 66J. B. Finlay, R. B. Bourne, and J. McLean, A technique for the in vitro measurement of principal strains in the human tibia. J. Biomech. 1982; 15(10): 723–729.
- 67T. C. Lam, N. G. Shrive, and C. B. Frank, Variations in rupture site and surface strains at failure in the maturing rabbit medial collateral ligament. J. Biomech. Eng. 1995; 117(4): 455–461.
- 68E. A. Talman and D. R. Boughner, Glutaraldehyde fixation alters the internal shear properties of porcine aortic heart valve tissue. Ann. Thorac. Surg. 1995; 60(2 Suppl): S369–S373.
- 69M. S. Sacks, Z. He, L. Baijens, S. Wanant, P. Shah, H. Sugimoto, and A. P. Yoganathan, Surface strains in the anterior leaflet of the functioning mitral valve. Ann. Biomed. Eng. 2002; 30(10): 1281–1290.
- 70G. Whan, J. Phillips, S. Bullock, R. J. Runciman, S. Pearce, and M. Hurtig, Development and testing of a modular strain measurement clip. J. Biomech. 2003; 36(11): 1669–1674.
- 71J. Schatzker, G. Sumner-Smith, J. Hoare, and R. McBroom, A telemetric system for the strain gauge determination of strain in bone in vivo. Arch. Orthop. Trauma Surg. 1980; 96(4): 309–311.
- 72B. C. Fleming and B. D. Beynnon, In vivo measurement of ligament/tendon strains and forces: a review. Ann. Biomed. Eng. 2004; 32(3): 318–328.
- 73G. Selvik, Roentgen stereophotogrammetry. A method for the study of the kinematics of the skeletal system. Acta Orthop. Scand. Suppl. 1989; 232: 1–51.
- 74C. J. Chuong and Y. C. Fung, Compressibility and constitutive equation of arterial wall in radial compression experiments. J. Biomech. 1984; 17(1): 35–40.
- 75I. M. Ward and J. Sweeney, An Introduction to the Mechanical Properties of Solid Polymers. New York: John Wiley & Sons, 1993.
- 76W. A. Naimark, J. M. Lee, H. Limeback, and D. T. Cheung, Correlation of structure and viscoelastic properties in the pericardia of four mammalian species. Am. J. Physiol. 1992; 263(4 Pt 2): H1095–H1106.
- 77S. L. Woo, G. A. Johnson, and B. A. Smith, Mathematical modeling of ligaments and tendons. J. Biomech. Eng. 1993; 115(4B): 468–473.
- 78L. P. Li and W. Herzog, The role of viscoelasticity of collagen fibers in articular cartilage: theory and numerical formulation. Biorheology 2004; 41(3–4): 181–194.
- 79S. R. Toms, G. J. Dakin, J. E. Lemons, and A. W. Eberhardt, Quasi-linear viscoelastic behavior of the human periodontal ligament. J. Biomech. 2002; 35(10): 1411–1415.
- 80E. O. Carew, E. A. Talman, D. R. Boughner, and I. Vesely, Quasi-linear viscoelastic theory applied to internal shearing of porcine aortic valve leaflets. J. Biomech. Eng. 1999; 121(4): 386–392.
- 81J. M. Huyghe, D. H. van Campen, T. Arts, and R. M. Heethaar, The constitutive behavior of passive heart muscle tissue: a quasi-linear viscoelastic formulation. J. Biomech. 1991; 24(9): 841–849.
- 82L. E. Bilston, Z. Liu, and N. Phan-Thien, Linear viscoelastic properties of bovine brain tissue in shear. Biorheology 1997; 34(6): 377–385.
- 83Y. Lanir, The rheological behavior of the skin: experimental results and a structural model. Biorheology 1979; 16(3): 191–202.
- 84M. Sacks, Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. J. Biomech. Eng. 2003; 125: 280–287.
- 85M. S. Sacks, D. B. Smith, and E. D. Hiester, A small angle light scattering device for planar connective tissue microstructural analysis. Ann. Biomed. Eng. 1997; 25(4): 678–689.
- 86C. Hurschler, B. Loitz-Ramage, and R. Vanderby, Jr., A structurally based stress-stretch relationship for tendon and ligament. J. Biomech. Eng. 1997; 119(4): 392–399.
- 87M. A. Zulliger, P. Fridez, K. Hayashi, and N. Stergiopulos, A strain energy function for arteries accounting for wall composition and structure. J. Biomech. 2004; 37(7): 989–1000.
- 88J. F. Manschot and A. J. Brakkee, The measurement and modeling of the mechanical properties of human skin in vivo—II. The model. J. Biomech. 1986; 19(7):517–521.
- 89S. M. Belkoff and R. C. Haut, A structural model used to evaluate the changing microstructure of maturing rat skin. J. Biomech. 1991; 24(8): 711–720.
- 90J. W. Pugh, R. M. Rose, and E. L. Radin, A structural model for the mechanical behavior of trabecular bone. J. Biomech. 1973; 6(6): 657–670.
- 91K. S. Jensen, L. Mosekilde, and L. Mosekilde, A model of vertebral trabecular bone architecture and its mechanical properties. Bone 1990; 11(6): 417–423.
- 92J. Melbin, S. Summerfield, and A. Noordergraaf, Nonlinear structural and material properties and models: the pulmonary trunk. Ann. Biomed. Eng. 1988; 16(2): 175–200.
- 93P. Flaud and D. Quemada, A structural viscoelastic model of soft tissues. Biorheology 1988; 25(1–2): 95–105.
- 94J. A. Weiss and J. C. Gardiner, Computational modeling of ligament mechanics. Crit. Rev. Biomed. Eng. 2001; 29(3): 303–371.
- 95M. S. Sacks and W. Sun, Multiaxial mechanical behavior of biological materials. Annu. Rev. Biomed. Eng. 2003; 5: 251–284.
- 96P. Tong and Y. C. Fung, The stress-strain relationship for the skin. J. Biomech. 1976; 9(10): 649–657.
- 97J. D. Humphrey, R. K. Strumpf, and F. C. P. Yin, A constitutive theory for biomembranes: application to epicardium. ASME. J. Biomech. Eng. 1992; 114: 461–466.
- 98T. Kang, J. D. Humphrey, and F. C. P. Yin, Comparision of biaxial mechanical properties of excised endocardium and epicardium. Am. J. Physiol. 1996; 270: H2169–H2176.
- 99J. D. Humphrey, R. K. Strumpf, and F. C. Yin, Determination of a constitutive relation for passive myocardium: II. Parameter estimation. J. Biomech. Eng. 1990; 112: 340–346.
- 100M. J. Fagan, S. Julian, and A. M. Mohsen, Finite element analysis in spine research. Proc. Inst. Mech. Eng. (H) 2002; 216(5): 281–298.
- 101R. Huiskes and S. J. Hollister, From structure to process, from organ to cell: recent developments of FE-analysis in orthopaedic biomechanics. J. Biomech. Eng. 1993; 115(4B): 520–527.
- 102R. Huiskes, If bone is the answer, then what is the question? J. Anat. 2000; 197(Pt 2): 145–156.
- 103M. Viceconti and F. Taddei, Automatic generation of finite element meshes from computed tomography data. Crit. Rev. Biomed. Eng. 2003; 31(1–2): 27–72.
- 104B. Van Rietbergen, R. Muller, D. Ulrich, P. Ruegsegger, and R. Huiskes, Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions. J. Biomech. 1999; 32(4): 443–451.
- 105H. D. Durr, H. Martin, C. Pellengahr, M. Schlemmer, M. Maier, and V. Jansson, The cause of subchondral bone cysts in osteoarthrosis: a finite element analysis. Acta Orthop. Scand. 2004; 75(5): 554–558.
- 106J. M. Guccione, K. D. Costa, and A. D. McCulloch, Finite element stress analysis of left ventricular mechanics in the beating dog heart. J. Biomech. 1995; 28(10): 1167–1177.
- 107H. C. Wu, S. Y. Chen, S. G. Shroff, and J. D. Carroll, Stress analysis using anatomically realistic coronary tree. Med. Phys. 2003; 30(11): 2927–2936.
- 108D. R. Carter, G. S. Beaupre, N. J. Giori, and J. A. Helms, Mechanobiology of skeletal regeneration. Clin. Orthop. 1998; 355 Suppl:S41–S55.
- 109T. D. Brown, M. J. Rudert, and N. M. Grosland, New methods for assessing cartilage contact stress after articular fracture. Clin. Orthop. 2004; 423: 52–58.
- 110W. Wilson, C. C. van Donkelaar, B. van Rietbergen, K. Ito, and R. Huiskes, Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. J. Biomech. 2004; 37(3): 357–366.
- 111S. M. Wells and M. S. Sacks, Effects of fixation pressure on the biaxial mechanical behavior of porcine bioprosthetic heart valves with long-term cyclic loading. Biomaterials 2002; 23(11): 2389–2399.
- 112M. S. Sacks, The biomechanical effects of fatigue on the porcine bioprosthetic heart valve. J. Long Term Eff. Med. Implants 2001; 11(3–4): 231–247.
- 113N. Vyavahare, M. Ogle, F. J. Schoen, R. Zand, D. C. Gloeckner, M. Sacks, and R. J. Levy, Mechanisms of bioprosthetic heart valve failure: fatigue causes collagen denaturation and glycosaminoglycan loss. J. Biomed. Mater. Res. 1999; 46(1): 44–45.
10.1002/(SICI)1097-4636(199907)46:1<44::AID-JBM5>3.0.CO;2-D CAS PubMed Web of Science® Google Scholar
- 114I. Vesely, The evolution of bioprosthetic heart valve design and its impact on durability. Cardiovasc. Pathol. 2003; 12(5): 277–286.
- 115K. H. Lim, J. Candra, J. H. Yeo, and C. M. Duran, Flat or curved pericardial aortic valve cusps: a finite element study. J. Heart Valve Dis. 2004; 13(5): 792–797.
- 116J. Stolk, N. Verdonschot, L. Cristofolini, A. Toni, and R. Huiskes, Finite element and experimental models of cemented hip joint reconstructions can produce similar bone and cement strains in pre-clinical tests. J. Biomech. 2002; 35(4): 499–510.
- 117K. Sun and M. A. Liebschner, Evolution of vertebroplasty: a biomechanical perspective. Ann. Biomed. Eng. 2004; 32(1): 77–79.
- 118B. Melsen, Tissue reaction to orthodontic tooth movement—a new paradigm. Eur. J. Orthod. 2001; 23(6): 671–678.
- 119R. M. Nerem, Role of mechanics in vascular tissue engineering. Biorheology 2003; 40(1–3): 281–287.
- 120J. D. Berglund, R. M. Nerem, and A. Sambanis, Incorporation of intact elastin scaffolds in tissue-engineered collagen-based vascular grafts. Tissue Eng. 2004; 10(9–10): 1526–1535.
- 121J. S. Cartmell and M. G. Dunn, Development of cell-seeded patellar tendon allografts for anterior cruciate ligament reconstruction. Tissue Eng. 2004; 10(7–8): 1065–1075.
- 122Y. Shi and I. Vesely, Characterization of statically loaded tissue-engineered mitral valve chordae tendineae. J. Biomed. Mater. Res. 2004; 69A(1): 26–39.
- 123C. A. Powell, B. L. Smiley, J. Mills, and H. H. Vandenburgh, Mechanical stimulation improves tissue-engineered human skeletal muscle. Am. J. Physiol. Cell Physiol. 2002; 283(5): C1557–C1565.
- 124S. D. Waldman, C. G. Spiteri, M. D. Grynpas, R. M. Pilliar, and R. A. Kandel, Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage. Tissue Eng. 2004; 10(9–10): 1323–1331.
- 125P. Kannus, Etiology and pathophysiology of chronic tendon disorders in sports. Scand. J. Med. Sci. Sports 1997; 7(2): 78–85.
- 126R. B. Martin, Fatigue microdamage as an essential element of bone mechanics and biology. Calcif. Tissue Int. 2003; 73(2): 101–107.
- 127D. Chachra, J. M. Lee, M. Kasra, and M. D. Grynpas, Differential effects of ovariectomy on the mechanical properties of cortical and cancellous bone in rat femora and vertebrae. Biomed. Sci. Instrum. 2000; 36: 123–128.
- 128J. S. Day, M. Ding, P. Bednarz, J. C. van der Linden, T. Mashiba, T. Hirano, C. C. Johnston, D. B. Burr, I. Hvid, D. R. Sumner, and H. Weinans, Bisphosphonate treatment affects trabecular bone apparent modulus through micro-architecture rather than matrix properties. J. Orthop. Res. 2004; 22(3): 465–471.
- 129Y. C. Fung, R. T. Yen, Z. L. Tao, and S. Q. Liu, A hypothesis on the mechanism of trauma of lung tissue subjected to impact load. J. Biomech. Eng. 1988; 110(1): 50–56.
- 130J. D. Rupp and L. W. Schneider, Injuries to the hip joint in frontal motor-vehicle crashes: biomechanical and real-world perspectives. Orthop. Clin. North Am. 2004; 35(4): 493–504.
- 131K. Voo, S. Kumaresan, F. A. Pintar, N. Yoganandan, and A. Sances, Jr., Finite-element models of the human head. Med. Biol. Eng. Comput. 1996; 34(5): 375–381.
- 132J. D. Humphrey, Continuum biomechanics of soft biological tissues. Proc. Royal Soc. London A, 2003; 459: 3–46.
FURTHER READING
- J. D. Currey, Bones: Structure and Mechanics. Princeton, NJ: Princeton University Press, 2002.
10.1515/9781400849505 Google Scholar
- Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues, 2nd ed. New York: Springer-Verlag, 1993.
10.1007/978-1-4757-2257-4 Google Scholar
- Y. C. Fung, First Course in Continuum Mechanics, 3rd ed. New York: Prentice Hall, 1993.
- J. D. Humphrey, Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. New York: Springer-Verlag, 2002.
10.1007/978-0-387-21576-1 Google Scholar
- J. D. Humphrey, Continuum biomechanics of soft biological tissues. Proc. Royal Soc. London A 2003; 459: 3–46.
- R. B. Martin, D. B. Burr, and N. A. Sharkey, Skeletal Tissue Mechanics. New York: Springer, 1998.
10.1007/978-1-4757-2968-9 Google Scholar
- V. C. Mow and R. Huiskers, Basic Orthopaedic Biomechanics. Philadelphia, PA: Lippincott Williams & Wilkins, 2005.
- J. F. V. Vincent, Structural Biomaterials. London: MacMillan Press, 1982.
10.1007/978-1-349-16673-2 Google Scholar
- S. A. Wainwright, W. D. Biggs, J. D. Currey, and J. M. Gosline, Mechanical Design in Organisms. London: Edward Arnold, 1976.
- I. M. Ward and J. Sweeney, An Introduction to the Mechanical Properties of Solid Polymers. New York: John Wiley & Sons, 1993.