Pressure Sensors
Rajshree Mootanah
Anglia Ruskin University, Bioengineering Research Group, Department of Design and Technology, Chelmsford, Essex, United Kingdom
Search for more papers by this authorDan L. Bader
Queen Mary, University of London, Interdisciplinary Research Centre in Biomedical Materials & Medical Engineering Division, London, United Kingdom
Search for more papers by this authorRajshree Mootanah
Anglia Ruskin University, Bioengineering Research Group, Department of Design and Technology, Chelmsford, Essex, United Kingdom
Search for more papers by this authorDan L. Bader
Queen Mary, University of London, Interdisciplinary Research Centre in Biomedical Materials & Medical Engineering Division, London, United Kingdom
Search for more papers by this authorAbstract
Pressure sensors in biomedical applications are very important because they provide data that may be used to assess physiological function, diagnose disease, and provide for appropriate treatment regimens. Pressure sensors have a large number of applications in biomedicine, in particular, for the measurement of interface pressures and internal pressures. The interface pressures can be measured using conductive polymer pressure sensors, semiconductor strain gauges, metal strain gauges, capacitive pressure sensors, and optoelectronic pressure sensors. Internal pressures can be measured, using the needle manometer method, the Wick catheter method, integrated circuit implantable sensors, and fiber-optic catheters. The packaging materials of internal pressure sensors are manufactured from biocompatible covering materials to avoid tissue infection and change in sensor characteristics over time. The first section of the chapter outlines the general forms of pressure measurement systems and their characteristics, including performance, accuracy, loading effects, noise, and reliability, which is followed by a detailed summary of instruments and measurement systems in biomedical applications for specific types of pressure measurements. The final section presents the theory behind the components used to form the measurement systems, in particular, the pressure-sensing elements, transduction.
Bibliography
- 1W. Bolton, Instrumentation and Measurement Pocket Book, 3rd ed. Oxford: Newnes, 2000.
- 2J. Olson, Prevention of pressure sores. New York: Adam Hilger. The Adam Hilger Series on Biomedical Engineering, 1991, pp. 121–141.
- 3Enderle et al. 2005.
- 4W. Bolton, Instrumentation and Process Measurements, 1st ed. Harlow, United Kingdom: Longman Group UK Limited, 1991.
- 5M. R. Neuman, Physical measurements. In: J. D. Bronzino, ed. The Biomedical Engineering Handbook, Boca Raton, FL: CRC Press, 1995, pp. 725–745.
- 6J. G. Webster, Tactile Sensors for Robotics and Medicine. New York: Wiley, 1988.
- 7D. Jennings, A. Flint, B. C. H. Turton, and L. D. M. Nokes, Introduction to Medical Electronics Applications, 1st ed. London: Edward Arnold, 1995.
- 8R. A. Peura, Blood pressure and sound. In: J. G. Webster, ed. Medical Instrumentation–Application and Design, 3rd ed. New York: John Wiley and Sons, 1998, pp. 287–331.
- 9G. Harsanyi, Sensors in Biomedical Applications. Lancaster, PA: Techtomic Publishing, 2000.
10.1201/9781420012910 Google Scholar
- 10H. Joseph and B. Swafford, MEMS in the medical world. Sens. Mag. Online 1997.
- 11H. Yanagisawa, T. Chikamori, N. Tanaka, Y. Ushi, K. Takazawa, and A. Yamashina, Application of pressure-derived myocardial fractional flow reserve in assessing the functional severity of coronary artery stenosis in patients with diabetes mellitus. Circ. J. 2004; 68(11): 993–998.
- 12V. Federico, Bedise invasive monitoring techniques in severe brain-injured patients. Neurolog. Res. 2001; Mar/Apr.
- 13J. Piper, A. Barnes, D. Smith, and L. Dunn, The Camino intracranial pressure sensor: is it optimal technology? An internal audit with a review of current intracranial pressure monitoring technologies. Neurosurgery 2001; 49(5): 1158–1164.
- 14C. Moor, M. Braecklein, and N. Jorns, Current status of the development of wireless sensors for medical applications. Biomed. Eng. (Berlin). 2005; 50(7–8): 241–251.
- 15Y. Mendelson, Biomedical sensors. In: J. Enderle, S. Blanchard, and J. Bronzino, eds., Introduction to Biomedical Engineering, 2nd ed. London: Elsevier Academic Press, 2005, pp. 505–548.
10.1016/B978-0-12-238662-6.50011-2 Google Scholar
- 16A. Levin, The use of a fiber optic intercranial pressure monitor in clinical practice. Neurosurgery 1977; 1: 266–271.
- 17S. P. Gopinath, C. Robertson, and C. F. Contant, Clinical evaluation of a miniature strain gage transducer for monitoring intercranial pressure. Neurosurgery 1995; 36: 1137–1140.
- 18S. A. Mayer and J. Y. Chong, Critical care management of increased intracranial pressure. J. Intensive Care Med. 2002; 17(2): 55–67.
- 19D. Otter, S. Ansermet, and C. Werner, A monolithic compensated silicon pressure transducer with temperature output for biomedical applications. Sens. Actuators B 1991; 4: 251–255.
- 20T. Lisec, M. Kreutzer, and B. Wagner, Surface micromachined piezoresistive pressure sensors with step-type bent and flat membrane structures. IEEE Trans. Electron. Devic. 1996; 43(9): 1547–1552.
- 21Y. Matsui, K. Yano, T. Horiuchi, M. Nagura, and M. Urano, Silver urinary catheter system is key to significant reduction and postponement of urinary tract infections. Am. J. Infection Control 2004; 32(3): E95–E96.
10.1016/j.ajic.2004.04.144 Google Scholar
- 22C. Lockwood, T. Page, T. Conroy-Hiller, and Z. Florence, Management of short-term indwelling urethral catheters to prevent urinary tract infections. JBI Reports 2004; 2(8): 271–291.
10.1111/j.1365-2788.2004.00014.x Google Scholar
- 23T. Hayashi, S. Kuramoto, E. Honda, and S. Anegawa, A new instrument for noninvasive measurement of intracranial pressure through the anterior fontanel. I. Preliminary report. Childs Nerv. Syst. 1987; 3(3): 151–155.
- 24R. Wolthius, G. Mitchell, J. Hartl, and E. Saaski, Development of a dual function sensor system for measuring pressure and temperature at the tip of a single optical fiber. IEEE Trans. Biomed. Eng. 1993; 40(3): 298–302.
- 25W. D. Belville, S. J. 3. Swierzewski, G. Wedemeyer, and E. J. McGuire, Fiberoptic microtransudcer pressure technology: urodynamic implications. Neurol. Urodynam. 1993; 12(2): 171–178.
- 26R. C. Ostrup, T. G. Luerssen, L. F. Marshall, and M. H. Zornow, Continuous monitoring of intracranial pressure with a miniaturized fiberoptic device. J. Neurosurg. 1987; 67(2): 206–209.
- 27M. Bochicchio, N. Latronico, S. Zappa, A. Beindorf, and A. Candiani, Bedside burr hole for intracranial pressure monitoring performed by intensive care physicians. A 5-year experience. Intens. Care Med. 1996; 22(10): 1070–1074.
- 28G. McGregor, Blood pressure measurement: millimeters of mercury or feet of blood? Positive pressure, the official magazine of blood pressure association. 2001; 2:6–7.
- 29J. W. Bellville and C. S. Weaver, Techniques in Clinical Physiology. New York: Macmillan, 1969.
- 30H. F. Stegall, M. B. Kardon, and W. T. Kemmerer, Indirect measurement of arterial blood pressure by Doppler ultrasonic sphygmomanometry. J. Appl. Physiol. 1968; 25: 793–798.
- 31D. Bloor, K. Donnelly, P. J. Hands, P. Laughlin, and D. Lussey, A metal-polymer composite with unusual properties. J. Phys. D: Appl. Phys. 2005; 16: 2851–2860.
- 32B. J. Sangeorzan, R. M. Harrington, C. R. Wyss, J. M. Czerniecki, and F. A. Matsen, Circulation and mechanical response of skin to loading. J. Orthop. Res. 1989; 7: 425–431.
- 33D. L. Bader and S. H. White, Soft tissues in elderly subjects undergoing surgery. Age Ageing 1998; 27: 217–221.
- 34N. Maalej and J. G. Webster, A miniature electrooptical force transducer. IEEE Trans. Biomed. Eng. 1988; 35(2): 93–98.
- 35R. A. Pax, J. G. Webster, and R. G. Radwin, A Pressure Sensing Glove Using Conductive Polymer Pressure Sensors. Madison, WI: University of Wisconsin Press, 1989.
- 36D. J. Beebe, D. D. Denton, R. G. Radwin, and J. G. Webster, A silicon-based tactile sensor for finger-mounted applications. IEEE Trans. Biomed. Eng. 1998; 45(2): 151–159.
- 37T. R. Jensen, R. G. Radwin, and J. G. Webster, A conductive polymer sensor for measuring external finger forces. J. Biomech. 1991; 24(9): 851–858.
- 38D. J. Beebe and D. D. Denton, A flexible polyimide-based package for silicon sensors. Sens. Actuators B 1994; 44: 57–64
- 39Soames et al. 1982.
- 40E. H. Ledet, M. P. Tymeson, D. J. DiRisio, B. Cohen, and R. L. Uhl, Direct real-time measurement of in vivo forces in the lumbar spine. Spine J. 2005; 5(1): 85–94.
- 41R. A. Peura and J. G. Webster, Basic sensors and principles. In: J. Webster, ed. Medical Instrumentation–Application and Design, 3rd ed., New York: John Wiley and Sons, 1998, pp. 44–88.
- 42Neuman et al. 1984.
- 43M. J. Hessert, M. Vyas, J. Leach, K. Hu, L. A. Lipsitz, and V. Novak, Foot pressure distribution during walking in young and old adults. BMC. Geriatr. 2005; 5(1): 8.
- 44T. W. Kernozek, P. A. Wilder, A. Amundson, and J. Hummer, The effects of body mass index on peak seat-interface pressure of institutionalized elderly. Arch. Phys. Med. Rehabil. 2002; 83(6): 868–871.
- 45J. Alihanka, K. Vaahtoranta, and S. E. Bjorkqvist, Apparatus in medicine for the monitoring and/or recording of body movements of a person on a bed, for instance of a patient, U.S. Patent 4,320,766, 1982.
- 46Muller et al. 2004.
- 47B. Lyndon, Compact tactile sensors for robot fingers. NASA Tech Briefs—Engineering Solutions for Design and Manufacturing, NASA, 2004: 29–30.
- 48 Peratech Ltd. (2004). QTC force sensors. (online). Available: http://www.peratech.co.uk/sensors.htm.
- 49Pearce 1971.
- 50McGouern 1987.
- 51D. E. Gyi, J. M. Porter, and N. K. Robertson, Seat pressure measurement technologies: considerations for their evaluation. Appl. Ergon. 1998; 29(2): 85–91.
- 52D. L. Bader and M. B. Hawken, Pressure distribution under the ischium of normal subjects. J. Biomed. Eng. 1986; 8: 353–357.
- 53Zhou, 1997.
- 54Roger and Chung, 1985.
- 55S. Salvatore, V. Khullar, L. Cardozo, K. Anders, G. Zocchi, and M. Soligo, Evaluating ambulatory urodynamics: a prospective study in asymptomatic women. BJOG 2001; 108(1): 107–111.
- 56Jamsa et al. 1990.
- 57Hahm and Webster, 1989.
- 58Brienza et al. 1989.
- 59Olson, 1998.
- 60H. L. Chau and K. D. Wise, An ultraminiature solid-state pressure sensor for a cardiovascular catheter. IEEE Trans. Electron. Devic. 1988; ED-235: 2355–2362.
- 61Wold back et al. 2003.
- 62B. R. Bannister and D. G. Whitehead, Instrumentation—Transducers and Interfacing, 2nd ed. London: Chapman & Hall, 1991.
- 63L. Bowman and J. D. Meindl, In: J. Webster, ed., Encyclopaedia of Medical Devices and Instrumentation. New York: Wiley, 1988.
Reading list
- K. Shah, H. Thumu, V. Vibhute, J. Singh, and H. E. Le, A MEMS vertical fringe comb capacitive pressure sensor for biomedical application. Nano Science and Technology Institute, Danville, pp. 379–382.
- R. Aissaoui, C. Kauffmann, J. Dansereau, and J. A. de Guise, Analysis of pressure distribution at the body-seat interface in able-bodied and paraplegic subjects using a deformable active contour algorithm. Med. Eng. Phys. 2001; 23(6): 359–367.
- M. Bohnsack, C. Hurschler, T. Demirtas, O. Ruhmann, C. Stukenborg-Colsman, and C. J. Wirth, Infrapatellar fat pad pressure and volume changes of the anterior compartment during knee motion: possible clinical consequences to the anterior knee pain syndrome. Knee. Surg. Sports Traumatol. Arthrosc. 2005; 13(2): 135–141.
- E. Bullister, S. Reich, P. d’Entremont, N. Silverman, and J. Sluetz, A blood pressure sensor for long-term implantation. Artific. Org. 2001; 25(5): 376–379.
- J. P. Coles, L. A. Steiner, J. Martin, T. Donovan, P. J. Hutchinson, T. A. Carpenter, and D. K. Menon, Assessment of the ventrix parenchymal intracranial pressure monitoring probe (NL950-P) and monitor (NL950-100) in a 3 Tesla magnetic resonance scanner. Anaesthesia 2003; 58(2): 143–148.
- M. G. Forbes, G. J. Pico, and B. Grolman, A noncontact applanation tonometer, description and clinical evaluation. Arch. Ophthalmol. 1975; 91: 134–140.
- J. J. Ho, The design and fabrication of a micro-thermal/pressure-sensor for medical electro-skin application. Solid-State Electron. 2002; 46(8): 1205–1209.