Molecular Electronics
Ross Rinaldi
National Nanotechnology Laboratory of CNR-INFM, Lecce, Italy
Search for more papers by this authorGiuseppe Maruccio
National Nanotechnology Laboratory of CNR-INFM, Lecce, Italy
Search for more papers by this authorRoss Rinaldi
National Nanotechnology Laboratory of CNR-INFM, Lecce, Italy
Search for more papers by this authorGiuseppe Maruccio
National Nanotechnology Laboratory of CNR-INFM, Lecce, Italy
Search for more papers by this authorAbstract
Moore's Law, the 1965 prediction by Intel co-founder Gordon Moore that manufacturers would double the number of transistors on a chip every 18 months, has been fulfilled for four decades by the semiconductor industry. But the latest edition of the annual International Technology Roadmap for Semiconductors—a joint effort of semiconductor industry associations in Europe, Japan, Korea, Taiwan, and the United States—lists reasons for thinking that this may soon change. The Roadmap explores “technology nodes”—advances needed to keep shrinking the so-called DRAM half-pitch, half the spacing between cells in memory chips. Currently, the industry is moving to a DRAM half-pitch of 120 nanometers. The Roadmap forecasts that researchers must lower that figure to 35 nanometers by 2014, simply to continue doubling the number of transistors.
In various laboratories worldwide, minimum features sizes that are a factor of 10 smaller (or more) than the 120-nm node have been demonstrated. However the SIA (Semiconductor Industry Association) Roadmap projects that even though the miniaturization trend will continue for another 15 to 20 years, it is becoming increasingly difficult to continue to down-scale because of real physical limitations including size of atoms, wavelengths of radiation used for lithography, interconnect scheme. etc.
One of the potential roadblocks to continue the scaling beyond the 50-nm node is the molecular and biomolecular electronics. In this article we report on fundamental concepts and recent advances in the field of molecular electronics.
Bibliography
- 1The Internet Technology Roadmap for Semiconductors (ITRS) is available at http://public.itrs.net.
- 2P. L. Packan, Pushing the limits. Science 1999; 285: 2079–2081.
- 3A. Aviram and M. A. Ratner, Molecular rectifiers. Chem. Phys. Lett. 1974; 29: 277–283.
- 4G. Maruccio, P. Visconti, A. Biasco, and A. Bramanti, A. Della Torre, P. P. Pompa, V. Frascerra, V. Arima, E. D'Amone, R. Cingolani, R. Rinaldi, Nano-scaled biomolecular field-effect transistors: prototypes and evaluations. Electroanalysis 2004; 16: 1853–1862.
- 5K. Keren, M. Krueger, R. Gilad, and G. Ben-Yoseph, U. Sivan, E. Braun, Sequence-specific molecular lithography on single DNA molecules. Science 2002; 297: 72–75.
- 6J. M. Lehn, Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 1988; 27: 89–112.
- 7J. M. Lehn, Supramolecular Chemistry—Concept and Perspectives, VCH, 1995.
- 8L. L. Looger, M. A. Dwyer, J. J. Smith, and H. W. Hellinga, Computational Design of Receptor and Sensor Proteins with Novel Functions. Nature 2003; 423: 185–190.
- 9(a) L. M. Adleman, Molecular computation of solutions to combinatorial problems. Science 1994; 266: 1021–1024; (b) R. S. Braich, N. Chelyapov, C. Johnson, P. W. K. Rothemund, and L. Adleman, Solution of a 20-variable 3-SAT problem on a DNA computer. Science 2002; 296:499–502.
- 10For example, biofuel cell exploiting enzymes that extract energy from compounds (such as glucose) to power life have been reported [T. Chen, S. Calabrese Barton, G. Binyamin, Z. Gao, Y. Zhang, H. Kim, and A. Heller, A miniature biofuel cell. J. Am. Chem. Soc. 2001; 123:8630–8631].
- 11J. K. Gimzewski, C. Joachim, R. R. Schlittler, V. Langlais, H. Tang, and I. Johannsen, Rotation of a single molecule within a supramolecular bearing. Science 1998; 281: 531–533.
- 12K. Ziemelis, Putting it on plastic. Nature 1998; 393: 619–620.
- 13C. D. Muller, A. Falcou, N. Reckefuss, and M. Rojahn, V. Wiederhirn, P. Rudati, H. Frohne, O. Nuyken, H. Becker, and K. Meerholz, Multi-colour organic light-emitting displays by solution processing. Nature 2003; 421: 829–833.
- 14B. Crone, A. Dodabalapur, Y. Y. Lin, and R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, and W. Li, Large-scale complementary integrated circuits based on organic transistors. Nature 2000; 403: 521–524.
- 15 G. Cuniberti, G. Fagas (Eds.), Introducing Molecular Electronics, Series: Lecture Notes in Physics, Vol. 680, Spinger, 2005.
10.1007/3-540-31514-4 Google Scholar
- 16Y. V. Kervennic, H. S. J. Van der Zant, A. F. Morpurgo, and L. Gurevich, L. P. Kouwenhoven, Nanometer-spaced electrodes with calibrated separation. Appl. Phys. Lett. 2002; 80: 321–323.
- 17J. Park, A. N. Pasupathy, J. I. Goldsmith, and C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, J. P. Sethna, H. D. Abruna, P. L. McEuen, and D. C. Ralph, Coulomb blockade and the Kondo effect in single-atom transistors. Nature 2002; 417: 722–725.
- 18M. A. Reed, C. Zhou, C. J. Muller, and T. P. Burgin, J. M. Tour, Conductance of a molecular junction. Science 1997; 278: 252–254.
- 19A. R. Champagne, A. N. Pasupathy and D. C. Ralph, Mechanically adjustable and electrically gated single-molecule transistors. Nano Lett. 2005; 5: 305–308.
- 20H. W. Zandbergen, R. J. H. A. van Duuren, P. F. A. Alkemade, and G. Lientschnig, O. Vasquez, C. Dekker, and F. D. Tichelaar, Sculpting nanoelectrodes with a transmission electron beam for electrical and geometrical characterization of nanoparticles. Nano Lett. 2005; 5: 549–553.
- 21P. Z. Coura, On the structural and stability features of linear atomic suspended chains formed from gold nanowires stretching. Nano Lett. 2004; 4: 1187–1191.
- 22G. Maruccio, P. Visconti, S. D’Amico, and P. Calogiuri, E. D’Amone, R. Cingolani, and R. Rinaldi, Planar nanotips as probes for transport experiments in molecules. Microelectronic Engineering 2003; 67–68: 838.
- 23J. P. Silverman, X-ray lithography: Status, challenges, and outlook for 0.13 μm. J. Vac. Sci. Technol. B. 1997; 15: 2117.
- 24For a review see: Y. Xia and G. M. Whitesides, Soft lithography. Angew. Chem. Int. Ed. 1998; 37: 550–575.
10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 25D. Piner, J. Zhu, F. Xu, and S. Hong, C. A. Mirkin, Dip-pen nanolithography. Science 1999; 283: 661–663.
- 26S. Hla, K. Braun, B. Wassermann, and K. Rieder, Controlled low-temperature molecular manipulation of sexiphenyl molecules on Ag(111) using scanning tunneling microscopy. Phys. Rev. Lett. 2004; 93: 208–302.
- 27S. Fölsch, P. Hyldgaard, R. Koch, and K. H. Ploog, Quantum confinement in monatomic Cu chains on Cu(111). Phys. Rev. Lett. 2004; 92: 756–803,
- 28R. Krahne, A. Yacoby, H. Shtrikman, I. Bar-Joseph, T. Dadosh, and J. Sperling, Fabrication of nanoscale gaps in integrated circuits. Appl. Phys. Lett. 2002; 81: 730–732.
- 29J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Electronic structure of atomically resolved carbon nanotubes. Nature 1998; 391: 59–62.
- 30S. J. Tans, A .R. M. Verschueren, and C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature 1998; 393: 49–52.
- 31J. Appenzeller, J. Knoch, V. Derycke, and R. Martel, S. Wind, and Ph. Avouris, “Field-modulated carrier transport in carbon nanotube transistors. Phys. Rev. Lett. 2002; 89: 126–801.
- 32H. W. C. Postma, T. Teepen, Z. Yao, and M. Grifoni, C. Dekker, Carbon nanotube single-electron transistors at room temperature. Science 2001; 293: 76–79.
- 33L. P. Kouwenhoven, D. G. Austing, and S. Tarucha, Few-electron quantum dots. Rep. Prog. Phys. 2001; 64: 701–736.
- 34A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, Logic circuits with carbon nanotube transistors. Science 2001; 294: 1317–1320.
- 35A. N. Pasupathy, J. Park, C. Chang, A. V. Soldatov, S. Lebedkin, R. C. Bialczak, J. E. Grose, L. A. K. Donev, J. P. Sethna, D. C. Ralph, and P. L. McEuen, Vibration-assisted electron tunneling in C140 transistors. Nano Lett. 2005; 5: 203–207.
- 36S. G. Lemay, J. W. Janssen, M. van den Hout, M. Mooij, M. J. Bronikowski, P. A. Willis, R. E. Smalley, L. P. Kouwenhoven, and C. Dekker, Two-dimensional imaging of electronic wavefunctions in carbon nanotubes. Nature 2001; 412: 617–620.
- 37J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Electronic structure of atomically resolved carbon nanotubes. Nature 1998; 391: 59–62.
- 38S. Ghosh, A. K. Sood, and N. Kumar, Carbon nanotube flow sensors. Science 2003; 299: 1042–1044.
- 39S. S. Wong, J. D. Harper, P. T. Lansbury, and C. M. Lieber, Carbon nanotube tips: High-tesolution probes for imaging biological systems. J. Am. Chem. Soc. 1998; 120: 603–604.
- 40Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. Kim, and C. M. Lieber, Logic gates and computation from assembled nanowire building blocks. Science 2001; 294: 1313–1317.
- 41Z. Zhong, Y. Fang, W. Lu, and C. Lieber, Coherent single charge transport in molecular-scale silicon nanowires. Nano Lett. 2005; 5: 1143–1146.
- 42R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. v. d. Hart, T. Stoica, and H. Lüth, Size-dependent photoconductivity in MBE-grown GaN-nanowires. Nano Lett. 2005; 5: 981–984.
- 43M. T. Björk, C. Thelander, A. E. Hansen, L. E. Jensen, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, Few-electron quantum dots in nanowires. Nano Lett. 2004; 4: 1621–1625.
- 44C. Thelander, H. A. Nilsson, L. E. Jensen, and L. Samuelson, Nanowire single-electron memory. Nano Lett. 2005; 5: 635–638.
- 45Y. Cui, U. Banin, M. T. Bjork, and A. P. Alivisatos, Electrical transport through a single nanoscale semiconductor branch point. Nano Lett. 2005; 5: 1519–1523.
- 46G. Maruccio, R. Cingolani, and R. Rinaldi, Projecting the nanoworld – Concepts, results and perspectives of molecular electronics. J. Mat. Chem. 2004; 14: 542–554.
- 47S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J. Brédas, N. Stuhr-Hansen, P. Hedegard, and T. Bjørnholm, Single-electron transistor of a single organic molecule with access to several redox states. Nature 2003; 425: 698–701.
- 48P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, T. O. Graham, A. Curioni, and W. Andreoni, N-type organic thin-film transistor with high field-effect mobility based on a N,N′-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative. Appl. Phys. Lett. 2002; 80: 2517–2519.
- 49T. Dadosh, Y. Gordin, R. Krahne, I. Khivrich, D. Mahalu, V. Frydman, J. Sperling, A. Yacoby, and I. Bar-Joseph, Measurement of the conductance of single conjugated molecules. Nature 2005; 436: 677.
- 50R. G. Endres, D. L. Cox, and R. R. P. Singh, Colloquium: The quest for high-conductance DNA. Rev. Mod. Phys. 2004; 76: 195.
- 51G. Maruccio, P. Visconti, V. Arima, S. D’Amico, A. Biasco, E. D’Amone, R. Cingolani, R. Rinaldi, S. Masiero, T. Giorgi, and G. Gottarelli, Field effect transistor based on a modified DNA base. Nano Lett. 2003; 3: 479–483,
- 52S. Yasutomi, T. Morita, Y. Imanishi, and S. Kimura, A molecular photodiode system that can switch photocurrent direction. Science. 2004; 304: 1944–1947.
- 53I. Lee, J. W. Lee, and E. Greenbaum, Biomolecular electronics: Vectorial arrays of photosynthetic reaction centers. Phys. Rev. Lett. 1997; 79: 3294–3297.
- 54G. Maruccio, A. Biasco, P. Visconti, A. Bramanti, P. P. Pompa, F. Calabi, R. Cingolani, R. Rinaldi, S. Corni, R. Di Felice, E. Molinari, M. P. Verbeet, and G. W. Canters, Towards protein field-effect transistors: Report and model of a prototype. Adv. Mat. 2005; 17: 816–822.
- 55A. Alessandrini, M. Gerunda, G. W. Canters, M. P. Verbeet, and P. Facci, Electron tunnelling through azurin is mediated by the active site Cu ion. Chem. Phys. Lett. 2003; 376: 625.
- 56P. Facci, D. Alliata, and S. Cannistraro, Potential-induced resonant tunneling through a redox metalloprotein investigated by electrochemical scanning probe microscopy. Ultramicroscopy, 2001; 89: 291.
- 57V. Frascerra, F. Calabi, G. Maruccio, P. P. Pompa, R. Cingolani, and R. Rinaldi, Resonant electron tunneling through azurin in air and liquid by scanning tunneling microscopy. IEEE Trans. Nanotechnol. 2005; 4: 637–640.
- 58J. Zhao, J. J. Davis, M. S. P. Sansom, and A. Hung, Exploring the electronic and mechanical properties of protein using conducting atomic force microscopy. J. Am. Chem. Soc. 2004; 126: 5601–5609.
- 59D. Xu, G. D. Watt, J. H. Harb, and R. C. Davis, Electrical conductivity of ferritin proteins by conductive AFM. Nano Lett. 2005; 5: 571–577.
- 60F. Chen, J. He, C. Nuckolls, and T. Roberts, J. E. Klare, and S. Lindsay, A molecular switch based on potential-induced changes of oxidation state. Nano Lett. 2005; 5: 503–506.
- 61K. Keren, R. S. Berman, E. Buchstab, U. Sivan, and E. Braun, DNA-templated carbon nanotube field-effect transistor. Science 2003; 302: 1380–1382.
- 62S. Lee, C. Mao, C. E. Flynn, and A. M. Belcher, Ordering of quantum dots using genetically engineered viruses. Science 2002; 296: 892–895.
- 63M. C. Pirrung, How to make a DNA chip. Angew. Chem. Int. Ed. 2002; 41: 1276–1289.
10.1002/1521-3773(20020415)41:8<1276::AID-ANIE1276>3.0.CO;2-2 CAS PubMed Web of Science® Google Scholar
- 64A. R. Rocha, V. M. Garcia-Suarez, S. W. Bailey, C. J. Lambert, J. Ferrer, and S. Sanvito, Towards molecular spintronics. Nature J. Mat. Chem. 2005; 4: 335.
- 65J. R. Petta, S. K. Slater, and D. C. Ralph, Spin-dependent transport in molecular tunnel junctions. Phys. Rev. Lett. 2004; 93: 136601.
- 66C. S. Lent, B. Isaksen, and M. Liederman, Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 2003; 125: 1056–1063.
- 67C. Hettich, C. Schmitt, J. Zitzmann, S. Kuhn, I. Gerhardt, and V. Sandoghdar, Nanometer resolution and coherent optical dipole coupling of two individual molecules. Science 2002; 298: 385–389.