Abstract
We review the inverse problem of electrocardiography. The methods for solving the inverse problems and development in the electrocardiography (ECG) inverse problems are introduced.
Bibliography
- 1S. Rush, On the independence of magnetic and electric body surface recordings. IEEE Trans. BME 1975; 22: 157–167.
- 2R. C. Barr and M. S. Spach, Inverse solutions directory in terms of potentials. In: V. Nelson and D. B. Geselowitz, eds., The Theoretical Basis of Electrocardiology. Oxford, UK: Clarendon Press, 1976, pp. 294–304, chapt. 12.
- 3T. C. Pilkington, M. N. Morrow, and P. C. Stanley, A comparison of finite element and integral equation formulations for the calculation of electrocardiographic potentials. IEEE Trans. BME 1985; 32: 166–173.
- 4D. A. Brody, J. C. Bradshaw, and J. W. Evans, A theoretical basis for determining heart-lead relationship of the equivalent cardiac multipole. IRE Trans. Bio-Med. Electron. 1961; 8: 139–143.
- 5R. M. Arthur, D. B. Geselowitz, S. A. Briller, and R. F. Trost, Quadrupole components of the human surface electrocardiogram. Am. Heart J. 1972; 83: 663–677.
- 6R. Plonsey, Bioelectric Phenomena. New York: McGraw-Hill, 1969, pp. 324–332, sec. 6.13.
- 7Y. Okamoto, M. Aoki, T. Musha, and K. Harumi, On the relations between the excitation fronts propagating in the heart and the equivalent dipoles. IEEE Trans. BME 1988; 35: 52–56.
- 8D. Gabor and C. V. Nelson, Determination of the resultant dipole of the heart from measurements on the body surface. J. Appl. Phys. 1954; 25: 413–416.
- 9L. G. Horan and N. C. Flowers, Recovery of the moving dipole from surface potential recordings. Am. Heart J. 1971; 82: 207–214.
- 10D. B. Geselowitz, Two theorems concerning the quadrupole applicable to electrocardiography. IEEE Trans. BME 1965; 12: 164–168.
- 11R. M. Arthur and D. B. Geselowitz, Effect of inhomogeneities on the apparent location and magnitude of a cardiac current dipole source. IEEE Trans. BME 1970; 17: 141–146.
- 12K. A. Levenberg, A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 1944; 2: 164–168.
10.1090/qam/10666 Google Scholar
- 13D. W. Marquardt, An algorithm for least-squares estimation of non-linear parameters. J. Soc. Ind. Appl. Math. 1963; 11: 431–441.
- 14J. A. Nelder and R. Mead, A simplex method for function minimization. Comp. J. 1965; 7: 308–313.
- 15E. Frank, An accurate, clinically practical system for spatial vectorcardiography. Circulation 1956; 13: 373–449.
10.1161/01.CIR.13.5.737 Google Scholar
- 16Y. Okamoto, Y. Teramachi, and T. Musha, Limitation of the inverse problem in body surface potential mapping. IEEE Trans. BME 1983; 30: 749–754.
- 17D. A. Brody, O. S. Warr, III, J. R. Wennemark, J. W. Cox, Jr, F. W. Keller, and F. H. Terry, Studies of the equivalent cardiac generator behavior of isolated turtle hearts. Circ. Res. 1971; 29: 512–524.
- 18P. Savard, F. A. Roberge, J. B. Perry, and R. A. Nadeau, Representation of cardiac electrical activity by a moving dipole for normal and ectopic beats in the intact dog. Circ. Res. 1980; 46: 415–425.
- 19R. M. Gulrajani, H. Pham-Huy, R. A. Nadeau, P. Savard, R. E. Primeau, and F. A. Roberge, Application of the single moving dipole inverse solution to the study of Wolff-Parkinson-White syndrome in man. J. Electrocardiol. 1984; 17: 271–287.
- 20J. Guise, R. M. Gulrajani, P. Savard, R. Guardo, and F. A. Roberge, Inverse recovery of two moving dipoles from simulated surface potential distributions on a realistic human torso model. IEEE Trans. BME 1985; 32: 126–135.
- 21R. O. Martin, J. W. Cox, Jr, F. W. Keller, F. H. Terry, and D. A. Brody, Equivalent cardiac generators: two moving dipoles and moving dipole and quadrupole. Ann. Biomed. Eng. 1974; 2: 164–182.
- 22D. M. Mirvis, F. W. Keller, and J. W. Cox, Jr., Experimental comparison of four inverse electrocardiographic constructs in the isolated rabbit heart. J. Electrocardiol. 1978; 11: 57–65.
- 23A. A. Armoundas, A. B. Feldman, R. Mukkamala, B. He, T. J. Mullen, P. A. Belk, Y. Z. Lee, and R. J. Cohen, Statistical accuracy of a moving equivalent dipole method to identify sites of origin of cardiac electrical activation. IEEE Trans. BME 2003; 50(12): 1360–1370.
- 24M. R. Barber and E. J. Fischmann, Heart dipole regions and the measurement of dipole moment. Nature 1961; 192: 141–142.
- 25C. L. Rogers and T. C. Pilkington, Free-moment current dipoles in inverse electrocardiography. IEEE Trans. BME 1968; 15: 312–323.
- 26M. S. Lynn, A. C. L. Barnard, J. H. Holt, and L. T. Sheffield, A proposed method for the inverse problem in electrocardiology. Biophys. J. 1967; 7: 925–945.
- 27J. H. Holt, Jr., A. C. L. Barnard, M. S. Lynn, and P. A. Svendsen, A study of the human heart as a multiple dipole electrical source, I. Normal adult male subjects. Circulation 1969; 40: 687–696.
- 28D. A. Brody and J. A. Hight, Test of an inverse electrocardiographic solution based on accurately determined model data. IEEE Trans. BME 1972; 19: 221–228.
- 29R. E. Ideker, D. A. Brody, J. W. Cox, Jr., and F. W. Keller, Examination of a multiple dipole inverse cardiac generator based on accurately determined model data. J. Electrocardiol. 1973; 6: 197–209.
- 30R. C. Barr, T. C. Pilkington, J. P. Boineau, and C. L. Rogers, An inverse electrocardiographic solution with an ON-OFF model. IEEE Trans. BME 1970; 17: 49–56.
- 31R. C. Barr and T. C. Pilkington, Computing inverse solution for an on-off heart model. IEEE Trans. BME 1969; 16: 205–214.
- 32Y. Yamashita and T. Takahashi, Use of the finite element method to determine epicardial from body surface potentials under realistic torso model. IEEE Trans. BME 1984; 31: 611–621.
- 33L. T. Hersh, R. C. Barr, and M. S. Spach, An analysis of transfer coefficients calculated directory from epicardial and body surface potential measurements in the intact dog. IEEE Trans. BME 1978; 25: 446–461.
- 34R. O. Martin, T. C. Pilkington, and M. N. Morrow, Statistically constrained inverse electrocardiography. IEEE Trans. BME 1975; 22: 487–492.
- 35R. C. Barr and M. S. Spach, Inverse calculation of QRS-T epicardial potentials from body surface potential distributions for normal and ectopic beats in the intact dog. Circ. Res. 1978; 42: 661–675.
- 36R. D. Throne and L. G. Olson, A generalized eigensystem approach to the inverse problem of electrocardiography. IEEE Trans. BME 1994; 41: 592–600.
- 37R. D. Throne, L. G. Olson, and J. R. Windle, A new method for incorporating weighted temporal and spatial smoothing in the inverse problem of electrocardiography. IEEE Trans. BME 2002; 49: 1054–1059.
- 38B. He and D. Wu, A bioelectric inverse imaging technique based on surface laplacians. IEEE Trans. BME 1997; 44: 529–538.
- 39F. Greensite and G. Huiskamp, An improved method for estimating epicardial potentials from the body surface. IEEE Trans. BME 1998; 45: 98–104.
- 40F. Greensite, The temporal prior in bioelectromagnetic source imaging problems. IEEE Trans. BME 2003; 50: 1152–1159.
- 41R. S. MacLeod and D. H. Brooks, Recent progress in inverse problems in electrocardiology. IEEE Eng. Med. Biol. Mag. 1998; 17(1): 73–83.
- 42D. H. Brooks, G. F. Ahmad, R. S. MacLeod, and G. M. Maratos, Inverse electrocardiography by simultaneous imposition of multiple constraints. IEEE Trans. BME 1999; 46: 3–18.
- 43L. K. Cheng, J. M. Bodley, and A. J. Pullan, Comparison of potential- and activation-based formulations for the inverse problem of electrocardiology. IEEE Trans. BME 2003; 50: 11–22.
- 44F. Greensite, Heart surface electrocardiographic inverse problem. In: B. He, ed., Modeling and Imaging of Bioelectric Activity – Principles and Applications. New York: Kluwer Academic/Plenum Publishers, 2004, pp. 119–160.
10.1007/978-0-387-49963-5_4 Google Scholar
- 45J. E. Burnes, N. G. Raja, A. L. Waldo, and Y. Rudy, Imaging dispersion of myocardial repolarization, I comparison of body-surface and epicardial measures. Circulation 2001; 104: 1299–1305.
- 46C. Ramanathan, N. G. Raja, P. Jia, K. Ryu, and Y. Rudy, Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nature Med. 2004; 10: 422–428.
- 47J. J. M. Cuppen and A. Van Oosterom, Model studies with inversely calculated isochrones of ventricular depolarization. IEEE Trans. BME 1984; 31: 652–659.
- 48G. Huiskamp and F. Greensite, A new method for myocardial activation imaging. IEEE Trans. BME 1997; 44: 433–446.
- 49B. Tilg, G. Fischer, R. Modre, F. Hanser, B. Messnarz, M. Schocke, C. Kremser, T. Berger, F. Hintringer, and F. X. Roithinger, Model-based imaging of cardiac electrical excitation in humans. IEEE Trans. Med. Imaging 2002; 21: 1031–1039.
- 50R. Modre, B. Tilg, G. Fischer, and P. Wach, Noninvasive myocardial activation time imaging: a novel inverse algorithm applied to clinical ECG mapping data. IEEE Trans. BME 2002; 49: 1153–1161.
- 51B. He and D. Wu, Three-dimensional source imaging of cardiac electrical activity, Proc. World Congress on Medical Physics and Biomedical Engineering, CD-ROM, 2000.
- 52B. He and D. Wu, Imaging and visualization of 3D cardiac electric activity. IEEE Trans. Inform. Technol. Biomed. 2001; 5: 181–186.
- 53R. D. Pascual-Marqui, C. M. Michel, and D. Lehmann, Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int. J. Psychophysiol. 1994; 18: 49–65.
- 54O. Skipa, N. F. Sachse, C. Werner, and O. Dossel, Transmembrane potential reconstruction in anisotropic heart model. Proc. International Conference on Bioelectromagnetism, 2002: 17–18.
- 55G. Li and B. He, Localization of sites of origins of cardiac activation by means of a new heart-model-based electrocardiographic imaging approach. IEEE Trans. BME 2001; 48: 660–669.
- 56G. Li, X. Zhang, J. Lian, and B. He, Noninvasive localization of the origin of paced cardiac activation in a patient with pacemaker by means of a heart-excitation-model. IEEE Trans. BME 2003; 50: 1117–1120.
- 57B. He, G. Li, and X. Zhang, Noninvasive three-dimensional activation time imaging of ventricular excitation by means of a heart-excitation-model. Phys. Med. Biol. 2002; 47: 4063–4078.
- 58S. Ohyu, Y. Okamoto, and S. Kuriki, Use of ventricular propagated excitation model in the magnetocardiographic inverse problem for reconstruction of electrophysiological properties. IEEE Trans. BME 2002; 49: 509–519.
- 59B. He and G. Li, Noninvasive three-dimensional myocardial activation time imaging by means of a heart-excitation-model. Int. J. Bioelectromag. 2002; 4(2): 87–88.
- 60B. He, G. Li, and X. Zhang, Noninvasive imaging of ventricular transmembrane potentials within three-dimensional myocardium by means of a realistic geometry anisotropic heart model. IEEE Trans. BME 2003; 50: 1190–1202.
- 61G. Li and B. He, Noninvasive estimation of myocardial infarction by means of a heart-model-based imaging approach – a simulation study. Med. Biol. Eng. Comput. 2004; 42(1): 128–136.
- 62B. He, Three-dimensional electrocardiographic tomographic imaging. In: B. He, ed., Modeling and Imaging of Bioelectric Activity – Principles and Applications. New York: Kluwer Academic/Plenum Publishers, 2004, pp. 161–182.
10.1007/978-0-387-49963-5_5 Google Scholar
- 63X. Zhang, I. Ramachandra, Z. Liu, B. Muneer, S. M. Pogwizd, and B. He, Noninvasive three-dimensional electrocardiographic imaging of ventricular activation sequence. Am. J. Phys. – Heart Circ. Phys. 2005.
- 64C. Liu, G. Li, and B. He, Localization of site of origin of reentrant arrhythmia from BSPMs: a model study. Phys. Med. Biol. 2005; 50(7): 1421–1432.