Extracellular Matrix
James Melrose
Royal North Shore Hospital, Institute of Bone and Joint Research, New South Wales, Australia
Search for more papers by this authorJohn M. Whitelock
University of New South Wales, Graduate School of Biomedical Engineering, New South Wales, Australia
Search for more papers by this authorJames Melrose
Royal North Shore Hospital, Institute of Bone and Joint Research, New South Wales, Australia
Search for more papers by this authorJohn M. Whitelock
University of New South Wales, Graduate School of Biomedical Engineering, New South Wales, Australia
Search for more papers by this authorAbstract
The extracellular matrix (ECM) is a complex composite biomaterial with critical structural and functional roles to play in connective tissues. The cells embedded within the ECM provide the biosynthetic machinery for the synthesis and secretion of the complex array of interactive molecules that are required for its assembly. The major components of ECMs are glycoproteins, collagens, proteoglycans, and elastin. ECMs are heterogeneous both between connective tissues and within a single tissue type during development/maturation or with ECM remodeling events associated with pathologic processes. Some connective tissues are highly cellular and contain relatively little ECM (e.g., muscle, kidney, liver) whereas others contain an abundant ECM and relatively few cells (e.g., cartilage, tendon). Some tissues contain mineralized matrices (e.g., bone, dentine) whereas the ECM of others have gel-like consistencies (e.g., vitreous humour, synovial fluid, Wharton's jelly), reflecting their relative contributions to weight bearing, internal organ cushioning, or lubrication of joint surfaces. For the purposes of this chapter, cartilage was selected as a representative tissue because of its relatively simple structure, containing ∼5% cells but approximately 90% ECM. The chondrocytes in hyaline cartilage, however, have well-defined pericellular, territorial, and inter-territorial matrices and characteristic cellular arrangements (chondrons) in the superficial, intermediate, and deep zones of this tissue. It is therefore possible to identify different functional compartments in the cartilage ECM and to categorize the proteins within them, which offers heuristic advantages.
Bibliography
- 1M. Yanagashita, Function of proteoglycans in the extracellular matrix. Acta Pathologica Japonica 1993; 43: 283–293.
- 2R. V. Iozzo, Matrix proteoglycans: from molecular design to cellular function. Annu. Rev. Biochem. 1998; 67: 609–652.
- 3R. V. Iozzo, The biology of the small leucine-rich proteoglycans. Functional network of interactive proteins. J. Biol. Chem. 1999; 274: 18843–18846.
- 4R. V. Iozzo, I. R. Cohen, S. Grassel, and A. D. Murdoch, The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. Biochem. J. 1994; 302: 625–639.
- 5R. V. Iozzo, Perlecan: a gem of a proteoglycan. Matrix Biol. 1994; 14: 203–208.
- 6Y. Yamaguchi, Lecticans: organizers of the brain extracellular matrix. Cell Mol. Life Sci. 2000; 57: 276–289.
- 7G. D. Jay, U. Tantravahi, D. E. Britt, H. J. Barrach, and C.-J. Cha, Homology of lubricin and superficial zone protein (SZP): products of megakaryocyte stimulating factor (MSF) gene expression by human synovial fibroblasts and articular chondrocytes localised to chromosome 1 q25. J. Orthop. Res. 2001; 19: 677–687.
- 8K. L. Kramer and H. J. Yost, Heparan sulphate core proteins in cell-cell signaling. Annu. Rev. Genet. 2003; 37: 461–484.
- 9H. Kresse and E. Schonherr, Proteoglycans of the extracellular matrix and growth control. J. Cell Physiol. 2001; 189: 266–274.
- 10N. Perrimon and M. Bernfield, Specificities of heparan sulphate proteoglycans in developmental processes. Nature 2000; 404: 725–728.
- 11J. R. Couchman, Syndecans: proteoglycan regulators of cell-surface microdomains? Nat. Rev. Mol. Cell Biol. 2003; 4: 926–937.
- 12J. C. Adams, Thrombospondins: multifunctional regulators of cell interactions. Annu. Rev. Cell Dev. Biol. 2001; 17: 25–51.
- 13F. Deak, R. Wagener, I. Kiss, and M. Paulsson, The matrilins: a novel family of oligomeric extracellular matrix proteins. Matrix Biol. 1999; 18: 55–64.
- 14D. Segat, M. Paullson, and N. Smyth, Matrilins: structure, expression and function. Osteoarthritis and Cartilage 2001; 9(Suppl A): S29–S35.
- 15M. Winnemoller, P. Schon, P. Vischer, and H. Kresse, Interactions between thrombospondin and the small proteoglycan decorin: interference with cell attachment. Eur. J. Cell Biol. 1992; 59: 47–55.
- 16P. Bornstein, Thrombospondins as matricellular modulators of cell function. J. Clin. Invest. 2001; 107: 929–934.
- 17P. Bornstein and E. H. Sage, Matricellular proteins: extracellular modulators of cell function. Curr. Opin. Cell Biol. 2002; 14: 608–616.
- 18P. Bornstein, Cell-matrix interactions: the view from the outside. Methods Cell Biol. 2002; 69: 7–11.
- 19A. J. Day, (2001). Chapter 16 Understanding HA-protein interactions. Science of Hyaluronan Today (online). Available: http://www.glycoforum.gr.jp/science/hyaluronan/HA16/HA16E.html.
- 20A. J. Day and G. D. Prestwich, Hyaluronan-binding proteins: tying up the giant. J. Biol. Chem. 2002; 277: 4585–4588.
- 21A. P. Spicer and J. Y. L. Tien, Hyaluronan and morphogenesis. Birth Defects Res. (Part C) 2004; 72: 89–108.
- 22F. Ramirez and D. B. Rifkin, Cell signaling events: a view from the matrix. Matrix Biol. 2003; 22: 101–107.
- 23J. P. Urban, The chondrocyte: a cell under pressure. Br. J. Rheumatol. 1994; 33: 901–908.
- 24H. Muir, The chondrocyte, architect of cartilage. Biomechanics, structure, function and molecular biology of cartilage matrix macromolecules. BioEssays 1995; 17: 1039–1048.
- 25J. Myllyharju and K. I. Kivirikko, Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 2004; 20: 33–43.
- 26A. Sudhakar, H. Sugimoto, C. Yang, J. Lively, M. Zeisberg, and R. Kalluri, Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proc. Natl. Acad. Sci. (USA) 2003; 100: 4766–4771.
- 27M. C. Ryan and L. J. Sandell, Differential expression of a cysteine rich domain in the amino terminal propeptide of type II (cartilage) procollagen by alternative splicing of mRNA. J. Biol. Chem. 1990; 265: 10334–10339.
- 28J. Larrain, M. Oelgeschlager, N. I. Keptura, B. Reversade, L. Zakin, and E. M. De Robertis, Proteolytic cleavage of chordin as a switch for the dual activities of twisted gastrulation in BMP signalling. Development 2001; 126: 3715–3723.
- 29J. G. Abreu, N. I. Ketpura, B. Reversade, and E. M. De Robertis, Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta. Nat. Cell Biol. 2002; 4: 599–604.
- 30A. Aspberg, R. Miura, S. Bourdoulous, M. Shimonaka, D. Heinegard, M. Schachner, E. Ruoslahti, and Y. Yamaguchi, The C-type lectin domains of lecticans, a family of aggregating chondroitin sulfate proteoglycans, bind tenascin-R by protein–protein interactions independent of carbohydrate moiety. Proc. Natl. Acad. Sci. (USA) 1997; 94: 10116–10121.
- 31Z. Isogai, A. Aspberg, D. R. Keene, R. N. Ono, D. P. Reinhardt, and L. Y. Sakai, Versican interacts with fibrillin-1 and links extracellular microfibrils to other connective tissue networks. J. Biol. Chem. 2002; 277: 4565–4572.
- 32W. L. Parker, M. B. Goldring, and A. Philip, Endoglin is expressed on human chondrocytes and forms a heteromeric complex with betaglycan in a ligand and type II TGF beta receptor independent manner. J. Bone Miner. Res. 2003; 18: 289–302.
- 33F. Charbonnier, C. Chanoine, C. Cifuentes-Diaz, C. L. Gallien, F. Rieger, P. M. Alliel, and J. P. Perin, Expression of the proteoglycan SPOCK during mouse embryo development. Mech. Dev. 2000; 90: 317–321.
- 34L. M. Milstone, L. Hough-Monroe, L. C. Kugelman, J. R. Bender, and J. G. Haggerty, Epican, a heparan/chondroitin sulfate proteoglycan form of CD44, mediates cell-cell adhesion. J. Cell Sci. 1994; 107: 3183–3190.
- 35M. Bernfield, M. Gotte, P. W. Park, O. Reizes, M. L. Fitzgerald, J. Lincecum, and M. Zako, Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 1999; 68: 729–777.
- 36A. Shimazu, H. D. Nah, T. Kirsch, E. Koyama, J. L. Leatherman, E. B. Golden, R. A. Kosher, and M. Pacifici, Syndecan-3 and the control of chondrocyte proliferation during endochondral ossification. Exp. Cell Res. 1996; 229: 126–136.
- 37S. E. Gould, W. B. Upholt, and R. A. Kosher, Syndecan 3: a member of the syndecan family of membrane intercalated proteoglycans that is expressed in high amounts at the onset of chicken limb cartilage differentiation. Proc. Natl. Acad. Sci. (USA) 1992; 89: 3271–3275.
- 38T. Kirsch, E. Koyama, M. Liu, E. E. Golub, and M. Pacifici, Syndecan-3 is a selective regulator of chondrocyte proliferation. J. Biol. Chem. 2002; 277: 42171–42177.
- 39H. H. Song and J. Filmus, The role of glypicans in mammalian development. Biochim. Biophys. Acta. 2002; 1573: 241–246.
- 40C. B. Kirn-Safran, R. R. Gomes, A. J. Brown, and D. D. Carson, Heparan sulphate proteoglycans: co-ordinators of multiple signalling pathways during chondrogenesis. Birth Defects Res. (Part C) 2004; 72: 69–88.
- 41J. Melrose, S. Smith, S. S. Knox, and J. W. Whitelock, Perlecan, the multidomain HS-proteoglycan of basement membranes, is a prominent pericellular component of ovine hypertrophic vertebral growth plate and cartilaginous endplate chondrocytes. Histochem. Cell Biol. 2002; 118: 269–280.
- 42J. Melrose, S. Smith, P. Ghosh, and J. W. Whitelock, Perlecan, the multi domain HS-proteoglycan of basement membranes is a prominent extracellular and pericellular component of the cartilaginous vertebral body rudiments, vertebral growth plates and intervertebral discs of the developing human spinal column. J. Histochem. Cytochem. 2003; 51: 1331–1341.
- 43R. R. Gomes, M. C. Farach-Carson, and D. D. Carson, Perlecan functions in chondrogenesis: insights from in vitro and in vivo models. Cells Tissues Organs 2004; 176: 79–86.
- 44S. Ivkovic, B. S. Yoon, S. N. Popoff, F. F. Safadi, D. E. Libuda, R. C. Stephenson, A. Daluiski, and K. M. Lyons, Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 2003; 130: 2779–2791.
- 45T. Nishida, S. Kubota, T. Fukunaga, S. Kondo, G. Yosimichi, T. Nakanishi, T. Takano-Yamamoto, and M. Takigawa, CTGF/Hcs24, hypertrophic chondrocyte-specific gene product, interacts with perlecan in regulating the proliferation and differentiation of chondrocytes. J. Cell Physiol. 2003; 196: 265–275.
- 46L. Svennson, A. Oldberg, and D. Heinegard, Collagen binding proteins. Osteoarthritis & Cartilage 2001; 9(Suppl A): S23–S28.
- 47K. S. Midwood and D. M. Salter, Expression of NG2/human melanoma proteoglycan in human adult articular chondrocytes. Osteoarthitis & Cartilage 1998; 6: 297–305.
- 48W. B. Stallcup, The NG2 proteoglycan: past insights and future prospects. J. Neurocytol. 2002; 31: 423–435.
- 49B. L. Schumacher, J. A. Block, T. M. Schmid, M. B. Aydelotte, and K. E. Kuettner, A novel proteoglycan synthesised and secreted by chondrocytes of the superficial zone of articular cartilage. Arch. Biochem. Biophys. 1994; 311: 144–152.
- 50L. Ameye and M. Young, Mice deficient in small leucine-rich proteoglycans: novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy, and corneal diseases. Glycobiology 2002; 12: 107R–1016R.
- 51M. F. Young, Y. Bi, L. Ameye, and X. D. Chen, Biglycan knockout mice: new models for musculoskeletal diseases. Glycoconj. J. 2002; 19: 257–262.
- 52S. Chakravarti, Functions of lumican and fibromodulin: lessons from knockout mice. Glycoconj. J. 2003; 19: 287–293.
- 53L. Svensson, A. Aszodi, F. P. Reinholt, R. Fassler, D. Heinegard, and A. Oldberg, Fibromodulin-null mice have abnormal collagen fibrils, tissue organization, and altered lumican deposition in tendon. J. Biol. Chem. 1999; 274: 9636–9647.
- 54K. J. Jepsen, F. Wu, J. H. Peragallo, J. Paul, L. Roberts, Y. Ezura, A. Oldberg, D. E. Birk, and S. Chakravarti, A syndrome of joint laxity and impaired tendon integrity in lumican- and fibromodulin-deficient mice. J. Biol. Chem. 2002; 277: 35532–35540.
- 55Y. Ezura, S. Chakravarti, A. Oldberg, I. Chervoneva, and D. E. Birk, Differential expression of lumican and fibromodulin regulate collagen fibrillogenesis in developing mouse tendons. J. Cell Biol. 2000; 151: 779–787.
- 56E. Schönherr, H. Hausser, L. Beavan, and H. Kresse, Decorin-type I collagen interaction. Presence of separate core protein-binding domains. J. Biol. Chem. 1995; 270: 8877–8883.
- 57E. Hedbom and D. Heinegård, Binding of fibromodulin and decorin to separate sites on fibrillar collagens. J. Biol. Chem. 1993; 268: 7307–7312.
- 58L. Svensson, I. Narlid, and A. Oldberg, Fibromodulin and lumican bind to the same region on collagen type I fibrils. FEBS Lett. 2000; 470: 178–182.
- 59K. Vogel, M. Paulsson, and D. Heinegård, Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem. J. 1984; 223: 587–597.
- 60R. Tenni, M. Viola, F. Welser, P. Sini, C. Giudici, A. Rossi, and M. E. Tira, Interaction of decorin with CNBr peptides from collagens I and II. Evidence for multiple binding sites and essential lysyl residues in collagen. Eur. J. Biochem. 2002; 269: 1428–1437.
- 61B. Font, D. Eichenberger, D. Goldschmidt, M. M. Boutillon, and D. J. Hulmes, Structural requirements for fibromodulin binding to collagen and the control of type I collagen fibrillogenesis-critical roles for disulphide bonding and the C-terminal region. Eur. J. Biochem. 1998; 254: 580–587.
- 62S. Chakravarti, T. Magnuson, J. H. Lass, K. J. Jepsen, C. LaMantia, and H. Carroll, Lumican regulates collagen fibril assembly: skin fragility and corneal opacity in the absence of lumican. J. Cell. Biol. 1998; 141: 1277–1286.
- 63G. Pins, D. Christiansen, R. Patel, and F. Silver, Self-assembly of collagen fibers. Influence of fibrillar alignment and decorin on mechanical properties. Biophys. J. 1997; 73: 2164–2172.
- 64C. Wiberg, D. Heinegard, C. Wenglen, R. Timpl, and M. Morgelin, Biglycan organizes collagen VI into hexagonal-like networks resembling tissue structures. J. Biol. Chem. 2002; 277: 49120–49126.
- 65M. Winnemoller, G. Schmidt, and H. Kresse, Influence of decorin on fibroblast adhesion to fibronectin. Eur. J. Cell. Biol. 1991; 54: 10–17.
- 66K. Lewandowska, H. U. Choi, L. C. Rosenberg, L. Zardi, and L. A. Culp, Fibronectin-mediated adhesion of fibroblasts: inhibition by dermatan sulfate proteoglycan and evidence for a cryptic glycosaminoglycan-binding domain. J. Cell. Biol. 1987; 105: 1443–1454.
- 67B. Merle, L. Malaval, J. Lawler, P. Delmas, and P. Clezardin, Decorin inhibits cell attachment to thrombospondin-1 by binding to a KKTR-dependent cell adhesive site present within the N-terminal domain of thrombospondin-1. J. Cell Biochem. 1997; 67: 75–83.
10.1002/(SICI)1097-4644(19971001)67:1<75::AID-JCB8>3.0.CO;2-T CAS PubMed Web of Science® Google Scholar
- 68G. Westergren-Thorsson, P. O. Onnervik, L. A. Fransson, and A. Malmstrom, Proliferation of cultured fibroblasts is inhibited by L-iduronate-containing glycosaminoglycans. J. Cell. Physiol. 1991; 147: 523–530.
- 69G. Westergren-Thorsson, S. Persson, A. Isaksson, P. O. Onnervik, A. Malmstrom, and L. A. Fransson, L-iduronate-rich glycosaminoglycans inhibit growth of normal fibroblasts independently of serum or added growth factors. Exp. Cell Res. 1993; 206: 93–99.
- 70D. Bidanset, R. Lebaron, L. Rosenberg, and J. Murphy-Ullrich, Regulation of cell substrate adhesion: effects of small galactosaminoglycan-containing proteoglycans. J. Cell. Biol. 1992; 118: 1523–1531.
- 71L. E. Dahners, G. E. Lester, and P. Caprise, The pentapeptide NKISK affects collagen fibril interactions in a vertebrate tissue. J. Orthop. Res. 2000; 18: 532–536.
- 72P. A. Caprise, G. E. Lester, P. Weinhold, J. Hill, and L. E. Dahners, The effect of NKISK on tendon in an in vivo model. J. Orthop. Res. 2001; 19: 858–861.
- 73M. L. Wood, W. N. Luthin, G. E. Lester, and L. E. Dahners, Tendon creep is potentiated by NKISK and relaxin which produce collagen fiber sliding. Iowa Orthop. J. 2003; 23: 75–79.
- 74N. Burton-Wurster, W. Liu, G. L. Matthews, G. Lust, P. J. Roughley, T. T. Glant, and G. Cs-Szabo, TGF beta 1 and biglycan, decorin, and fibromodulin metabolism in canine cartilage. Osteoarthritis & Cartilage 2003; 11: 167–176.
- 75H. Hausser, A. Groning, A. Hasilik, E. Schonherr, and H. Kresse, Selective inactivity of TGF-beta/decorin complexes. FEBS Lett. 1994; 353: 243–245.
- 76A. Hildebrand, M. Romaris, L. M. Rasmussen, D. Heinegard, D. R. Twardzik, W. A. Border, and E. Ruoslahti, Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem. J. 1994; 302: 527–534.
- 77Y. Takeuchi, Y. Kodama, and T. Matsumoto, Bone matrix decorin binds transforming growth factor-beta and enhances its bioactivity. J. Biol. Chem. 1994; 269: 32634–32638.
- 78Y. Yamaguchi, D. Mann, and E. Ruoslahti, Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature 1990; 346: 281–284.
- 79R. Sztrolovics, R. J. White, A. R. Poole, J. S. Mort, and P. J. Roughley, Resistance of small leucine-rich repeat proteoglycans to proteolytic degradation during interleukin-1-stimulated cartilage catabolism. Biochem. J. 1999; 339: 571–577.
- 80C. Wiberg, A. R. Klatt, R. Wagener, M. Paulsson, J. F. Bateman, D. Heinegard, and M. Morgelin, Complexes of matrilin-1 and biglycan or decorin connect collagen VI microfibrils to both collagen II and aggrecan. J. Biol. Chem. 2003; 278: 37698–37704.
- 81J. Durr, P. Lammi, S. L. Goodman, T. Aigner, and K. von der Mark, Identification and immunolocalisation of laminin in cartilage. Exp. Cell. Res. 1996; 222: 225–233.
- 82S. K. Lee, M. Malpeli, R. Cancedda, A. Utani, Y. Yamada, and H. K. Kleinman, Laminin chain expression by chick chondrocytes and mouse cartilaginous tissues in vivo and in vitro. Exp. Cell Res. 1997; 236: 212–222.
- 83A. M. DeLise, L. Fischer, and R. S. Tuan, Cellular interactions and signalling in cartilage development. Osteoarthritis & Cartilage 2000; 8: 309–334.
- 84E. H. Danen and K. M. Yamada, Fibronectin, integrins, and growth control. J. Cell. Physiol. 2001; 189: 1–13.
- 85R. Pankov and K. M. Yamada, Fibronectin at a glance. J. Cell. Sci. 2002; 115: 3861–3863.
- 86P. Tunggal, N. Smyth, M. Paulsson, and M.-C. Ott, Laminins: structure and genetic regulation. Micros. Res. Tech. 2000; 51: 214–227.
- 87E. Engvall and U. M. Wewer, Domains of laminin. J. Cell. Biochem. 1996; 61: 493–501.
10.1002/(SICI)1097-4644(19960616)61:4<493::AID-JCB2>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- 88D. Edgar, The expression and interaction of laminin in the developing nervous system. Cell Differ. Dev. 1990; 32: 377–381.
- 89A. M. Belkin and M. A. Stepp, Integrins as receptors for laminins. Micros. Res. Tech. 2000; 51: 280–301.
- 90E. H. Danen and A. Sonnenberg, Integrins in regulation of tissue development and function. J. Pathol. 2003; 201: 632–641.
- 91K. M. Yamada and S. Even-Ram, Integrin regulation of growth factor receptors. Nat. Cell Biol. 2002; 4: E75–E76.
- 92K. Kusafuka, Y. Hiraki, C. Shukunami, T. Kaayano, and T. Takemura, Cartilage specific matrix protein, chondromodulin-I (ChM-I) is a strong angio-inhibibitor in endochondral ossification of human neonatal vertebral tissues in vivo: relationship with angiogenic factors in the cartilage. Acta Histochem. 2002; 104: 167–175.
- 93P. J. Neame, H. Tapp, and A. Azizan, Noncollagenous, nonproteoglycan macromolecules of cartilage. Cell. Mol. Life Sci. 1990; 55: 1327–1340.
- 94M. van der Rest, L. C. Rosenberg, B. R. Olsen, and A. R. Poole, Chondrocalcin is identical with the C-propeptide of type II procollagen. Biochem. J. 1986; 237: 923–925.
- 95A. R. Poole, I. Pidoux, A. Reiner, H. Choi, and L. C. Rosenberg, Association of an extracellular protein (chondrocalcin) with the calcification of cartilage in endochondral bone formation. J. Cell. Biol. 1984; 98: 54–65.
- 96A. R. Poole and L. C. Rosenberg, Chondrocalcin and the calcification of cartilage. A review. Clin. Orthop. 1986; 208: 114–118.
- 97S. Shibata, K. Fukuda, S. Suzuki, T. Ogawa, and Y. Yamashita, In-situ hybridisation and immunohistochemistry of bone sialoprotein and secreted phosphoprotein-1 (osteopontin) in the developing mouse mandibular and condylar cartilage compared with limb buds. J. Anat. 2002; 200: 309–320.
- 98O. Pullig, G. Weseloh, S. Gauer, and B. Swoboda, Osteopontin is expressed by adult human osteoarthritic chondrocytes: protein and mRNA analysis of normal and osteoarthritic cartilage. Matrix Biol. 2000; 19: 245–255.
- 99H. Sugiyama, M. Imada, A. Sasaki, Y. Ishino, T. Kawata, and K. Tanne, The expression of osteopontin with condylar remodeling in growing rats. Clin. Orthod. Res. 2001; 4: 194–199.
- 100M. G. Attur, M. N. Dave, S. Stuchin, A. J. Kowalski, G. Steiner, S. B. Abramson, D. T. Denhardt, and A. R. Amin, Osteopontin: an intrinsic inhibitor of inflammation in cartilage. Arthritis Rheum. 2001; 44: 578–584.
- 101K. Yumoto, M. Ishijima, S. R. Rittling, K. Tsuji, Y. Tsuchiya, S. Kon, A. Nifuji, T. Uede, D. T. Denhardt, and M. Noda, Osteopontin deficiency protects joints against destruction in anti-type II collagen antibody-induced arthritis in mice. Proc. Natl. Acad. Sci. (USA) 2002; 99: 4556–4561.
- 102A. D. Recklies, C. White, and H. Ling, The chitinase 3-like protein human cartilage glycoprotein 39 (HC-gp39) stimulates proliferation of human connective-tissue cells and activates both extracellular signal-regulated kinase- and protein kinase B-mediated signalling pathways. Biochem. J. 2002; 365: 119–126.
- 103H. Ling and A. D. Recklies, The chitinase 3-like protein HC-gp39 inhibits cellular responses to the inflammatory cytokines interleukin 1 and tumour necrosis factor-alpha. Biochem. J. 2004 Mar 12th (Epub ahead of print).
- 104B. E. Hakala, C. White, and A. D. Recklies, Human cartilage gp-39. A major secretory product of articular chondrocytes and synovial cells, is a mammalian member of the chitinase family. J. Biol. Chem. 1993; 268: 25803–25810.
- 105J. S. Johansen, J. Hvolris, M. Hansen, V. Backer, I. Lorenzen, and P. A. Price, Serum YKL-40 levels in healthy children and adults. Comparison with serum and synovial fluid lvels of YKL-40 in patients with osteoarthritis or trauma of the knee joint. Br. J. Rheumatol. 1996; 35: 553–559.
- 106L. Camper, D. Heinegard, and E. Lundgren-Akerlund, Integrin alpha 2 beta 1 is a receptor for the cartilage matrix protein chondroadherin. J. Cell. Biol. 1997; 138: 1159–1167.
- 107P. J. Neame, Y. Sommarin, R. E. Boynton, and D. Heinegard, The structure of a 38-kDa leucine-rich protein (chondroadherin) isolated from bovine cartilage. J. Biol. Chem. 1994; 269: 21547–21554.
- 108U. H. Dietz and L. J. Sandell, Cloning of a retinoic acid-sensitive mRNA expressed in cartilage and during chondrogenesis. J. Biol. Chem. 1996; 271: 3311–3316.
- 109M. Moser, A. K. Bosserhoff, E. B. Hunziker, L. Sandell, R. Fassler, and R. Buettner, Ultrastructural cartilage abnormalities in MIA/CD-RAP-deficient mice. Mol. Cell. Biol. 2002; 22: 1438–1445.
- 110N. Tsumaki, K. Tanaka, E. Arikawa-Hirasawa, T. Nakase, T. Kimura, J. T. Thomas, T. Ochi, F. P. Luyten, and Y. Yamada, Role of CDMP-1 in skeletal morphogenesis: promotion of mesenchymal cell recruitment and chondrocyte differentiation. J. Cell. Biol. 1999; 144: 161–173.
- 111S. C. Chang, B. Hoang, J. T. Thomas, S. Vukicevic, F. P. Luyten, N. J. Ryba, C. A. Kozak, A. H. Reddi, and M. Moos, Cartilage-derived morphogenetic proteins. New members of the transforming growth factor-beta superfamily predominantly expressed in long bones during human embryonic development. J. Biol. Chem. 1994; 269: 28227–28234.
- 112J. Mollenhauer, J. A. Bee, M. A. Lizarbe, and K. von der Mark, Role of anchorin CII, a 31,000-mol-wt membrane protein, in the interaction of chondrocytes with type II collagen. J. Cell. Biol. 1984; 98: 1572–1579.
- 113K. von der Mark and J. Mollenhauer, Annexin V interactions with collagen. Cell. Mol. Life Sci. 1997; 53: 539–545.
- 114T. Kirsch and M. Pfaffle, Selective binding of anchorin CII (annexin V) to type II and X collagen and to chondrocalcin (C-propeptide of type II collagen). Implications for anchoring function between matrix vesicles and matrix proteins. FEBS Lett. 1992; 310: 143–147.
- 115M. Pfaffle, M. Borchert, R. Deutzmann, K. von der Mark, M. P. Fernandez, O. Selmin, Y. Yamada, G. Martin, F. Ruggiero, and R. Garrone, Anchorin CII, a collagen-binding chondrocyte surface protein of the calpactin family. Prog. Clin. Biol. Res. 1990; 349: 147–157.
- 116A. H. White, R. E. Watson, B. Newman, A. J. Freemont, and G. A. Wallis, Annexin VIII is differentially expressed by chondrocytes in the mammalian growth plate during endochondral ossification and in osteoarthritic cartilage. J. Bone Miner. Res. 2002; 17: 1851–1858.
- 117M. Pilar-Fernandez, O. Selmin, G. R. Martin, Y. Yamada, M. Pfaffle, R. Deutzmann, J. Mollenhauer, and K. von der Mark, The structure of anchorin CII, a collagen binding protein isolated from chondrocyte membrane. J. Biol. Chem. 1988; 263: 5921–5925.
- 118T. Kirsch, G. Harrison, E. E. Golub, and H. D. Nah, The roles of annexins and types II and X collagen in matrix vesicle-mediated mineralization of growth plate cartilage. J. Biol. Chem. 2000; 275: 35577–35583.
- 119W. Wang, J. Xu, and T. Kirsch, Annexin-mediated Ca2+ influx regulates growth plate chondrocyte maturation and apoptosis. J. Biol. Chem. 2003; 278: 3762–3769.
- 120P. Lorenzo, P. Aman, Y. Sommarin, and D. Heinegard, The human CILP gene: exon/intron organization and chromosomal mapping. Matrix Biol. 1999; 18: 445–454.
- 121P. Lorenzo, M. T. Bayliss, and D. Heinegard, A novel cartilage protein (CILP) present in the mid-zone of human articular cartilage increases with age. J. Biol. Chem. 1998; 273: 23463–23468.
- 122P. Lorenzo, P. Neame, Y. Sommarin, and D. Heinegard, Cloning and deduced amino acid sequence of a novel cartilage protein (CILP) identifies a proform including a nucleotide pyrophosphohydrolase. J. Biol. Chem. 1998; 273: 23469–23475.
- 123I. Nakamura, A. Okawa, S. Ikegawa, K. Takaoka, and Y. Nakamura, Genomic organization, mapping, and polymorphisms of the gene encoding human cartilage intermediate layer protein (CILP). J. Hum. Genet. 1990; 44: 203–205.
- 124S. Mundlos and B. Zabel, Developmental expression of human cartilage matrix protein. Dev. Dyn. 1994; 199: 241–252.
- 125A. R. Klatt, M. Paulsson, and R. Wagener, Expression of matrilins during maturation of mouse skeletal tissues. Matrix Biol. 2002; 21: 289–296.
- 126E. Hedbom, P. Antonsson, A. Hjerpe, D. Aeschlimann, M. Paulsson, E. Rosa-Pimentel, Y. Sommarin, M. Wendel, A. Oldberg, and D. Heinegard, Cartilage matrix proteins. An acidic oligomeric protein (COMP) detected only in cartilage. J. Biol. Chem. 1992; 267: 6132–6136.
- 127G. Muller, A. Michel, and E. Altenburg, COMP (Cartilage oligomeric matrix protein) is synthesised in ligament, tendon, meniscus, and articular cartilage. Connect Tiss. Res. 1998; 39: 233–244.
- 128C. Fang, C. S. Carlson, M. P. Leslie, H. Tulli, E. Stolerman, R. Perris, L. Ni, and P. E. DiCesare, Molecular cloning, sequencing and tissue and developmental expression of mouse cartilage oligomeric protein (COMP). J. Orthop. Res. 2000; 18: 593–603.
- 129S. Ghatak, S. Misra, and B. P. Toole, Hyaluronan oligosaccharides inhibit anchorage dependent growth of tumor cells by suppressing the phosphoinositide3-kinase/Akt cell survival pathway. J. Biol. Chem. 2002; 277: 38013–38020.
- 130J. A. Ward, L. Huang, H. Guo, S. Ghatak, and B. P. Toole, Perturbation of hyaluronan interactions inhibits malignant properties of glioma cells. Am. J. Pathol. 2003; 162: 1403–1409.
- 131M. S. Sy, Y. J. Guo, and I. Stamenkovic, Inhibition of tumor growth in vivo with a soluble CD-44 immunoglobulin fusion protein. J. Exp. Med. 1992; 176: 623–627.
- 132Y. J. Guo, G. Liu, X. Wang, D. Jin, M. Wu, J. Ma, and M. S. Sy, Potential use of soluble CD-44 in serum as an indicator of tumor burden and metastasis in patients with gastric or colon carcinoma. Cancer Res. 1994; 54: 422–426.
- 133S. Mohaptra, X. Yang, J. A. Wright, E. A. Turley, and A. H. Greenberg, Soluble hyaluronan receptor RHAMM induces mitotic arrest by suppressing Cdc-2 and cyclin B1 expression. J. Exp. Med. 1996; 183: 1663–1668.
- 134D. N. Sauder, J. Dekoven, P. Champagne, D. Croteau, and E. Dupont, Neovastat (AE-941), an inhibitor of angiogenesis: randomized phase I/II clinical trial results in patients with plaque psoriasis. J. Am. Acad. Dermatol. 2002; 47: 535–541.
- 135G. Batist, F. Patenaude, P. Champagne, D. Croteau, C. Levinton, C. Hariton, B. Escudier, and E. Dupont, Neovastat (AE-941) in refractory renal cell carcinoma patients: report of a phase II trial with two dose levels. Ann. Oncol. 2002; 13: 1259–1263.
- 136P. Falardeau, P. Champagne, P. Poyet, C. Hariton, and E. Dupont, Neovastat, a naturally occurring multifunctional antiangiogenic drug, in phase III clinical trials. Semin. Oncol. 2001; 28: 620–625.
- 137N. Liu, R. K. Lapcevich, C. B. Underhill, Z. Han, F. Gao, G. Swartz, S. M. Plum, L. Zhang, and S. J. Gree, Metstatin, a hyaluronan-binding complex from cartilage that inhibits tumor growth. Cancer Res. 2001; 61: 1022–1028.
- 138X.-M. Xu, Y. Chen, J. Chen, S. Yang, F. Gao, C. B. Underhill, K. Creswell, and L. Zhang, A peptide with three hyaluronan binding motifs inhibits tumor growth and induces apoptosis. Cancer Res. 2003; 63: 5685–5690.
- 139M. E. Mummert, M. Mohamadzadeh, D. I. Mummert, N. Mizumoto, and A. Takashima, Development of a peptide inhibitor of hyaluronan-mediated leukocyte trafficking. J. Exp. Med. 2000; 192: 769–779.
- 140D. A. Carrino, P. Onnerfjord, J. D. Sandy, G. Cs-Szabo, P. G. Scott, J. M. Sorrell, D. Heinegard, and A. I. Caplan, Age-related changes in the proteoglycans of human skin. Specific cleavage of decorin to yield a major catabolic fragment in adult skin. J. Biol. Chem. 2003; 278: 17566–17572.
- 141T. F. Heathfield, P. Onnerfjord, L. Dahlberg, and D. Heinegard, Cleavage of fibromodulin in cartilage explants involves removal of the N-terminal tyrosine sulphate rich region by proteolysis at a site that is sensitive to MMP-13. J. Biol. Chem. 2004; 279: 6286–6295.
- 142P. Onnerfjord, T. F. Heathfield, and D. Heinegard, Identification of tyrosine sulfation in extracellular leucine-rich repeat proteins using mass spectrometry. J. Biol. Chem. 2004; 279: 26–33.
- 143F. Guilak and V. C. Mow, The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage. J. Biomech. 2000; 33: 1663–1673.
- 144M. Charlebois, M. D. McKee, and M. D. Buschmann, Nonlinear tensile properties of bovine articular cartilage and their variation with age and depth. J. Biomech. Eng. 2004; 126: 129–137.
- 145S. S. Chen, Y. H. Falcovitz, R. Schneiderman, A. Maroudas, and R. L. Sah, Depth-dependent compressive properties of normal aged human femoral head articular cartilage: relationship to fixed charge density. Osteoarthritis Cartilage 2001; 9: 561–569.
- 146C. Glaser and R. Putz, Functional anatomy of articular cartilage under compressive loading quantitative aspects of global, local and zonal reactions of the collagenous network with respect to the surface integrity. Osteoarthritis Cartilage 2002; 10: 83–99.
- 147J. P. Arokoski, M. M. Hyttinen, T. Lapvetelainen, P. Takacs, B. Kosztaczky, L. Modis, V. Kovanen, and H. Helminen, Decreased birefringence of the superficial zone collagen network in the canine knee (stifle) articular cartilage after long distance running training, detected by quantitative polarised light microscopy. Ann. Rheum. Dis. 1996; 55: 253–264.
- 148H. E. Panula, M. M. Hyttinen, J. P. Arokoski, T. K. Langsjo, A. Pelttari, I. Kiviranta, and H. J. Helminen, Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis. Ann. Rheum. Dis. 1998; 57: 237–245.
- 149A. J. Almarza and K. A. Athanasiou, Design characteristics for the tissue engineering of cartilaginous tissues. Ann. Biomed. Eng. 2004; 32: 2–17.
- 150A. Williams, A. Gillis, C. McKenzie, B. Po, L. Sharma, L. Micheli, B. McKeon, and D. Burstein, Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): potential clinical applications. AJR Am. J. Roentgenol. 2004; 182: 167–172.
- 151J. E. Kurkijarvi, M. J. Nissi, I. Kiviranta, J. S. Jurvelin, and M. T. Nieminen, Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 characteristics of human knee articular cartilage: topographical variation and relationships to mechanical properties. Magn. Reson. Med. 2004; 52: 41–46.
- 152J. T. Samosky, D. Burstein, E. W. Grimson, R. Howe, S. Martin, and M. L. Gray, Spatially-localized correlation of dGEMRIC-measured GAG distribution and mechanical stiffness in the human tibial plateau. J. Orthop. Res. 2005; 23: 93–101.
- 153P. E. Beaule, E. Zaragoza, and N. Copelan, Magnetic resonance imaging with gadolinium arthrography to assess acetabular cartilage delamination. A report of four cases. J. Bone Joint Surg. [Am]. 2004; 86-A: 2294–2298.
- 154C. J. Tiderius, L. E. Olsson, F. Nyquist, and L. Dahlberg, Cartilage glycosaminoglycan loss in the acute phase after an anterior cruciate ligament injury: delayed gadolinium-enhanced magnetic resonance imaging of cartilage and synovial fluid analysis. Arthritis Rheum. 2005; 52: 120–127.
- 155H. A. Alhadlaq, Y. Xia, J. B. Moody, and J. R. Matyas, Detecting structural changes in early experimental osteoarthritis of tibial cartilage by microscopic magnetic resonance imaging and polarised light microscopy. Ann. Rheum. Dis. 2004; 63: 709–717.
- 156H. A. Alhadlaq and Y. Xia, The structural adaptations in compressed articular cartilage by microscopic MRI (microMRI) T(2) anisotropy. Osteoarthritis Cartilage 2004; 12: 887–894.
- 157M. T. Nieminen, J. Toyras, M. S. Laasanen, J. Silvennoinen, H. J. Helminen, and J. S. Jurvelin, Prediction of biomechanical properties of articular cartilage with quantitative magnetic resonance imaging. J. Biomech. 2004; 37: 321–328.
- 158F. Eckstein, Noninvasive study of human cartilage structure by MRI. Methods Mol. Med. 2004; 101: 191–217.
- 159F. Eckstein and C. Glaser, Measuring cartilage morphology with quantitative magnetic resonance imaging. Semin. Musculoskelet. Radiol. 2004; 8: 329–353.
- 160H. Graichen, D. Al-Shamari, S. Hinterwimmer, R. von Eisenhart-Rothe, T. Vogl, and F. Eckstein, Accuracy of quantitative MRI in the detection of ex vivo focal cartilage defects. Ann. Rheum. Dis. 2005 Jan 7; (Epub ahead of print).
- 161H. Graichen, R. von Eisenhart-Rothe, T. Vogl, K. H. Englmeier, and F. Eckstein, Quantitative assessment of cartilage status in osteoarthritis by quantitative magnetic resonance imaging: technical validation for use in analysis of cartilage volume and further morphologic parameters. Arthritis Rheum. 2004; 50: 811–816.
- 162H. Shinar, Y. Seo, K. Ikoma, Y. Kusaka, U. Eliav, and G. Navon, Mapping the fiber orientation in articular cartilage at rest and under pressure studied by 2H double quantum filtered MRI. Magn. Reson. Med. 2002; 48: 322–330.
- 163K. Keinan-Adamsky, H. Shinar, and G. Navon, The effect of detachment of the articular cartilage from its calcified zone on the cartilage microstructure, assessed by 2H-spectroscopic double quantum filtered MRI. J. Orthop. Res. 2005; 23: 109–117.
- 164K. A. Beattie, P. Boulos, M. Pui, J. O’Neill, D. Inglis, C. E. Webber, and J. D. Adachi, Abnormalities identified in the knees of asymptomatic volunteers using peripheral magnetic resonance imaging. Osteoarthritis Cartilage 2005; 13: 181–186.
- 165T. J. Mosher and B. J. Dardzinski, Cartilage MRI T2 relaxation time mapping: overview and applications. Semin. Musculoskelet. Radiol. 2004; 8: 355–368.
- 166T. C. Dunn, Y. Lu, H. Jin, M. D. Ries, and S. Majumdar, T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology 2004; 232: 592–598.
- 167S. Marlovits, G. Striessnig, C. T. Resinger, S. M. Aldrian, V. Vecsei, H. Imhof, and S. Trattnig, Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high resolution magnetic resonance imaging. Eur. J. Radiol. 2004; 52: 310–319.
- 168K. Y. Lee, T. C. Dunn, L. S. Steinbach, E. Ozhinsky, M. D. Ries, and S. Majumdar, Computer-aided quantification of focal cartilage lesions of osteoarthritic knee using MRI. Magn. Reson. Imag. 2004; 22: 1105–1115.
- 169P. D. Gatehouse, R. W. Thomas, M. D. Robson, G. Hamilton, A. H. Herlihy, and G. M. Bydder, Magnetic resonance imaging of the knee with ultrashort TE pulse sequences. Magn. Reson. Imag. 2004; 22: 1061–1067.
- 170G. E. Gold, T. F. Besier, C. E. Draper, D. S. Asakawa, S. L. Delp, and G. S. Beaupre, Weight-bearing MRI of patellofemoral joint cartilage contact area. J. Magn. Reson. Imag. 2004; 20: 526–530.
- 171C. G. Peterfy, A. Guermazi, S. Zaim, P. F. Tirman, Y. Miaux, D. White, M. Kothari, Y. Lu, K. Fye, S. Zhao, and H. K. Genant, Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 2004; 12: 177–190.
- 172E. Calvo, I. Palacios, E. Delgado, O. Sanchez-Pernaute, R. Largo, J. Egido, and G. Herrero-Beaumont, Histopathological correlation of cartilage swelling detected by magnetic resonance imaging in early experimental osteoarthritis. Osteoarthritis Cartilage 2004; 12: 878–886.
- 173L. M. Lesperance, M. L. Gray, and D. Burstein, Determination of fixed charge density in cartilage using nuclear magnetic resonance. J. Orthop. Res. 1992; 10: 1–13.
- 174A. Minassian, D. O’Hare, K. H. Parker, J. P. Urban, K. Warensjo, and C. P. Winlove, Measurement of the charge properties of articular cartilage by an electrokinetic method. J. Orthop. Res. 1998; 16: 720–725.
- 175S. M. Malmonge and A. C. Arruda, Artificial articular cartilage: mechanoelectrical transduction under dynamic compressive loading. Artif. Organs 2000; 24: 174–178.
- 176X. L. Lu, D. D. Sun, X. E. Guo, F. H. Chen, W. M. Lai, and V. C. Mow, Indentation determined mechanoelectrochemical properties and fixed charge density of articular cartilage. Ann. Biomed. Eng. 2004; 32: 370–379.
- 177M. Stolz, R. Raiteri, A. U. Daniels, M. R. VanLandingham, W. Baschong, and U. Aebi, Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophys. J. 2004; 86: 3269–3283.
- 178D. M. Allen and J. J. Mao, Heterogeneous nanostructural and nanoelastic properties of pericellular and interterritorial matrices of chondrocytes by atomic force microscopy. J. Struct. Biol. 2004; 145: 196–204.
- 179C. R. Chu, D. Lin, J. L. Geisler, C. T. Chu, F. H. Fu, and Y. Pan, Arthroscopic microscopy of articular cartilage using optical coherence tomography. Am. J. Sports Med. 2004; 32: 699–709.
- 180K. Hattori, Y. Takakura, M. Ishimura, T. Habata, K. Uematsu, and K. Ikeuch, Quantitative arthroscopic ultrasound evaluation of living human cartilage. Clin. Biomech. (Bristol, Avon) 2004; 19: 213–216.
- 181N. A. Patel, J. Zoeller, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, Monitoring osteoarthritis in the rat model using optical coherence tomography. IEEE Trans. Med. Imag. 2005; 24: 155–159.
- 182Z. P. Luo, Y. L. Sun, T. Fujii, and K. N. An, Single molecule mechanical properties of type II collagen and hyaluronan measured by optical tweezers. Biorheology 2004; 41: 247–254.
- 183R. Gomes, C. Kirn-Safran, M. C. Farach-Carson, and D. D. Carson, Perlecan: an important component of the cartilage pericellular matrix. J. Musculoskelet. Neuronal Interact. 2002; 2: 511–516.
- 184J. Melrose, S. Smith, M. Cake, R. Read, and J. Whitelock, Perlecan displays variable spatial and temporal immunolocalisation patterns in the Articular and Growth Plate Cartilages of the Ovine Stifle Joint. Histochem. Cell Biol., in press.
- 185C. B. Knudson, Hyaluronan and CD44: strategic players for cell-matrix interactions during chondrogenesis and matrix assembly. Birth Defects Res. C Embryo. Today 2003; 69: 174–196.
- 186C. I. Bargmann, Molecular mechanisms of mechanosensation? Cell 1994; 78: 729–731.
- 187J. Garcia-Anoveros and D. P. Corey, The molecules of mechanosensation. Annu. Rev. Neurosci. 1997; 20: 567–594.
- 188D. E. Ingber, Mechanosensation through integrins: cells act locally but think globally. Proc. Natl. Acad. Sci. USA 2003; 100: 1472–1474.
- 189J. Deschner, C. R. Hofman, N. P. Piesco, and S. Agarwal, Signal transduction by mechanical strain in chondrocytes. Curr. Opin. Clin. Nutr. Metab. Care 2003; 6: 289–293.
- 190F. H. Silver and G. Bradica, Mechanobiology of cartilage: how do internal and external stresses affect mechanochemical transduction and elastic energy storage? Biomech. Model Mechanobiol. 2003; 1: 219–238.
- 191F. H. Silver and L. M. Siperko, Mechanosensing and mechanochemical transduction: how is mechanical energy sensed and converted into chemical energy in an extracellular matrix? Crit. Rev. Biomed. Eng. 2003; 31: 255–331.
- 192C. G. Jensen, C. A. Poole, S. R. McGlashan, M. Marko, Z. I. Issa, K. V. Vujcich, and S. S. Bowser, Ultrastructural, tomographic and confocal imaging of the chondrocyte primary cilium in situ. Cell Biol. Int. 2004; 28: 101–110.
- 193C. A. Poole, C. G. Jensen, J. A. Snyder, C. G. Gray, V. L. Hermanutz, and D. N. Wheatley, Confocal analysis of primary cilia structure and colocalization with the Golgi apparatus in chondrocytes and aortic smooth muscle cells. Cell Biol. Int. 1997; 21: 483–494.
- 194C. A. Poole, Z. J. Zhang, and J. M. Ross, The differential distribution of acetylated and detyrosinated alpha-tubulin in the microtubular cytoskeleton and primary cilia of hyaline cartilage chondrocytes. J. Anat. 2001; 199: 393–405.
- 195F. J. Alenghat, S. M. Nauli, R. Kolb, J. Zhou, and D. E. Ingber, Global cytoskeletal control of mechanotransduction in kidney epithelial cells. Exp. Cell Res. 2004; 301: 23–30.
- 196P. Delmas, Polycystins: from mechanosensation to gene regulation. Cell 2004; 118: 145–148.
- 197S. M. Nauli, F. J. Alenghat, Y. Lu, E. Williams, P. Vassilev, X. Li, A. E. Elia, W. Lu, E. M. Brown, S. J. Quinn, D. E. Ingber, and J. Zhou, Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 2003; 33: 129–137.
- 198M. Shakibaei and H. J. Merker, Beta1-integrins in the cartilage matrix. Cell Tissue Res. 1999; 296: 565–573.
- 199H. A. Praetorius, J. Praetorius, S. Nielsen, J. Frokiaer, and K. R. Spring, Beta1-integrins in the primary cilium of MDCK cells potentiate fibronectin-induced Ca2+ signaling. Am. J. Physiol. Renal. Physiol. 2004; 287: F969–F978.
- 200E. Ettner, W. Göhring, T. Sasaki, K. Mann, and R. Timpl, The N-terminal globular domain of the laminin alpha1 chain binds to alpha1beta1 and alpha 2 beta 1 integrins and to the heparan sulfate-containing domains of perlecan. FEBS Lett. 1988; 430: 217–221.
- 201J. C. Brown, T. Sasaki, W. Göhring, Y. Yamada, and R. Timpl, The C-terminal domain V of perlecan promotes β1 integrin-mediated cell adhesion, binds heparin, nidogen and fibulin-2 and can be modified by glycosaminoglycans. Eur. J. Biochem. 1997; 250: 39–46.
- 202O. Horikawa, H. Nakajima, T. Kikuchi, S. Ichimura, H. Yamada, K. Fujikawa, and Y. Toyama, Distribution of type VI collagen in chondrocyte microenvironment: study of chondrons isolated from human normal and degenerative articular cartilage and cultured chondrocytes. J. Orthop. Sci. 2004; 9: 29–36.
- 203G. M. Lee, C. A. Poole, S. S. Kelley, J. Chang, and B. Caterson, Isolated chondrons: a viable alternative for studies of chondrocyte metabolism in vitro. Osteoarthritis Cartilage 1997; 5: 261–274.
- 204C. A. Poole, M. H. Flint, and B. W. Beaumont, Chondrons in cartilage: ultrastructural analysis of the pericellular microenvironment in adult human articular cartilages. J. Orthop. Res. 1987; 5: 509–522.
- 205C. A. Poole, T. T. Glant, and J. R. Schofield, Chondrons from articular cartilage. (IV). Immunolocalization of proteoglycan epitopes in isolated canine tibial chondrons. J. Histochem. Cytochem. 1991; 39: 1175–1187.
- 206C. A. Poole, S. Ayad, and R. T. Gilbert, Chondrons from articular cartilage. V. Immunohistochemical evaluation of type VI collagen organisation in isolated chondrons by light, confocal and electron microscopy. J. Cell Sci. 1992; 103: 1101–1110.
- 207C. A. Poole, Articular cartilage chondrons: form, function and failure. J. Anat. 1997; 191: 1–13.
- 208C. A. Poole, R. T. Gilbert, D. Herbage, and D. J. Hartmann, Immunolocalization of type IX collagen in normal and spontaneously osteoarthritic canine tibial cartilage and isolated chondrons. Osteoarthritis Cartilage 1997; 5: 191–204.
- 209C. A. Poole, S. F. Wotton, and V. C. Duance, Localization of type IX collagen in chondrons isolated from porcine articular cartilage and rat chondrosarcoma. Histochem. J. 1988; 20: 567–574.
- 210C. A. Poole, S. Ayad, and J. R. Schofield, Chondrons from articular cartilage: I. Immunolocalization of type VI collagen in the pericellular capsule of isolated canine tibial chondrons. J. Cell Sci. 90: 635–643.
- 211J. Chang and C. A. Poole, Sequestration of type VI collagen in the pericellular microenvironment of adult chrondrocytes cultured in agarose. Osteoarthritis Cartilage 1996; 4: 275–285.
- 212M. M. Knight, J. M. Ross, A. F. Sherwin, D. A. Lee, D. L. Bader, and C. A. Poole, Chondrocyte deformation within mechanically and enzymatically extracted chondrons compressed in agarose. Biochim. Biophys. Acta. 2001; 1526: 141–146.
- 213W. A. Hing, A. F. Sherwin, and C. A. Poole, The influence of the pericellular microenvironment on the chondrocyte response to osmotic challenge. Osteoarthritis Cartilage 2002; 10: 297–307.
- 214R. D. Graff, S. S. Kelley, and G. M. Lee, Role of pericellular matrix in development of a mechanically functional neocartilage. Biotechnol. Bioeng. 2003; 82: 457–464.
- 215C. M. Larson, S. S. Kelley, A. D. Blackwood, A. J. Banes, and G. M. Lee, Retention of the native chondrocyte pericellular matrix results in significantly improved matrix production. Matrix Biol. 2002; 21: 349–359.
- 216T. M. Quinn, P. Schmid, E. B. Hunziker, and A. J. Grodzinsky, Proteoglycan deposition around chondrocytes in agarose culture: construction of a physical and biological interface for mechanotransduction in cartilage. Biorheology 2002; 39: 27–37.
- 217L. G. Alexopoulos, G. M. Williams, M. L. Upton, L. A. Setton, and F. Guilak, Osteoarthritic changes in the biphasic mechanical properties of the chondrocyte pericellular matrix in articular cartilage. J. Biomech. 2005; 38: 509–517.
- 218R. K. Korhonen, M. S. Laasanen, J. Toyras, R. Lappalainen, H. J. Helminen, and J. S. Jurvelin, Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. J. Biomech. 2003; 36: 1373–1379.
- 219L. Li, M. D. Buschmann, and A. Shirazi-Adl, The role of fibril reinforcement in the mechanical behavior of cartilage. Biorheology 2002; 39: 89–96.
- 220L. Li, A. Shirazi-Adl, and M. D. Buschmann, Investigation of mechanical behavior of articular cartilage by fibril reinforced poroelastic models. Biorheology 2003; 40: 227–233.
- 221L. P. Li, A. Shirazi-Adl, and M. D. Buschmann, Alterations in mechanical behaviour of articular cartilage due to changes in depth varying material properties—a nonhomogeneous poroelastic model study. Comput. Methods Biomech. Biomed. Eng. 2002; 5: 45–52.
- 222E. G. Loboa, T. A. Wren, G. S. Beaupre, and D. R. Carter, Mechanobiology of soft skeletal tissue differentiation—a computational approach of a fiber-reinforced poroelastic model based on homogeneous and isotropic simplifications. Biomech. Model Mechanobiol. 2003; 2: 83–96.
- 223W. Wilson, C. C. van Donkelaar, B. van Rietbergen, K. Ito, and R. Huiskes, Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. J. Biomech. 2004; 37: 357–366.
- 224S. Olsen, A. Oloyede, and C. Adam, A finite element formulation and program to study transient swelling and load-carriage in healthy and degenerate articular cartilage. Comput. Methods Biomech. Biomed. Eng. 2004; 7: 111–120.
- 225J. E. Scott, Elasticity in extracellular matrix shape modules of tendon, cartilage etc. A sliding proteoglycan-filament model. J. Physiol. 2003; 553.2: 335–343.
- 226A. K. Williamson, A. C. Chen, K. Masuda, E. J. Thonar, and R. L. Sah, Tensile mechanical properties of bovine articular cartilage: variations with growth and relationships to collagen network components. J. Orthop. Res. 2003; 21: 872–880.
- 227J. H. Lee, J. Kisiday, and A. J. Grodzinsky, Tissue-engineered versus native cartilage: linkage between cellular mechano-transduction and biomechanical properties. Novartis Found Symp. 2003; 249: 52–64; discussion 64-9, 170-4, 239-41.
Reading List
- T. Kreis and R. Vale, eds., Guidebook to the Extracellular Matrix and Adhesion Proteins. New York: Oxford University Press, 1993. A collection of short informative reviews on ECM molecules and adhesive proteins.
- The IHOP (information hyperlinked over proteins) website. Available: http://www.pdg.cnb.uam.es/UniPub/iHOP/.
- Extracellular matrix of cartilage website. Available: http://www.cmb.lu.se/ctb/html/Cartilage.htm.
- The following review has some excellent information on cell-ECM interactions. J. C. Adams (2002). Molecular organisation of cell-matrix contacts: essential multiprotein assemblies in cell and tissue function. Exp. Rev. Mol. Med. Available: http://www-ermm.cbcu.cam.ac.uk/02004039h.htm.
- The integrin page website. Available: http://integrins.hypermart.net/.
- Mechanisms of Signal Transduction websites. Available: http://www-isu.indstate.edu/thcme/mwking/signal-transduction.html.
Extracellular matrix
This very useful website provides extensive information on a network of genes and proteins with the search engine hyperlinking data by physiology–interaction-pathology-phenotypic categories and rapid access to millions of abstracts.
Interactive website with clear, precise, definitive and up-to-date information on components of the pericellular territorial and interterritorial matrix of cartilage and their functional structural roles in cartilage.
Cell-ECM interactions
The role of integrins in linking the plasma membrane to the extracellular matrix.
Clear, illustrated summaries of the various mechanisms of signal transduction.
The signal transduction knowledge environment website covers all aspects of signal transduction research. Available: http://stke.sciencemag.org/.
Cell adhesion to ECM, cytoskeleton, and motility websites
The WWW Virtual Library of Cell Biology contains links to websites on cell adhesion, ECM, the cytoskeleton, and cell motility. Available: http://www.vlib.org/Science/Cell_Biology/.
Preclinical and Clinical studies on cell-ECM research website. Available: http://www.medscape.com/. The Medscape Website has information about preclinical and clinical studies related to various fields including cell-extracellular matrix research.
Wound healing and cell-ECM website. Available: http://www.woundheal.org.
The Wound Healing Society website has links to relevant journals and other links to cell-matrix research related to wound healing.
Hyaluronan and the ECM website.
Hyaluronan Today. Available: http://www.glycoforum.gr.jp/science/hyaluronan/hyaluronanE.html.
The Glycoforum website of The Seikegaku Corporation, Japan contains useful information and short reviews on ECM carbohydrates and proteoglycans plus many useful links.