Elasticity Imaging
Michael F. Insana
University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois
Search for more papers by this authorMichael F. Insana
University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois
Search for more papers by this authorAbstract
Basic principles and examples of elasticity imaging are summarized. The chapter focuses on static ultrasonic methods, and it discusses the advantages and limitations of this approach in the context of dynamic methods and alternative imaging modalities from the literature. We review the physics of continuum deformations as a way to evaluate various experimental approaches. A general strategy for the design of ultrasonic elasticity imaging algorithms for static deformations is also described. The objective is to summarize and critically assess a subset of current approaches to this exciting new field.
Bibliography
- 1K. J. Parker, L. S. Taylor, S. Gracewski, and D. J. Rubens, A unified view of imaging the elastic properties of tissue. J. Acoust. Soc. Am. 2005; 117: 2705–2712.
- 2J. F. Greenleaf, M. Fatemi, and M. Insana M, Selected methods for imaging elastic properties of biological tissues. Annu. Rev. Biomed. Eng. 2003; 5: 57–58.
- 3T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, Elastic moduli of breast and prostate tissues under compression. Ultrasonic Imaging 1998; 20: 260–274.
- 4R. J. Coates, R. J. Uhler, D. J. Brogan, M. D. Gammon, K. E. Malone, C. A. Swanson, E. W. Flagg, and L. A. Brinton, Patterns and predictors of the breast cancer detection methods in women under 45 years of age (United States). Cancer Causes Contr. 2001; 12: 431–442.
- 5Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues, 2nd ed. New York: Springer-Verlag, 1993.
10.1007/978-1-4757-2257-4 Google Scholar
- 6P. Chaturvedi, M. F. Insana, and T. J. Hall, 2-D companding for noise reduction in strain imaging. IEEE Trans. Ultrason. Ferrom. Freq. Contr. 1998; UFFC-45: 179–191.
- 7F. Kallel and M. Bertrand, Tissue elasticity reconstruction using linear perturbation method. IEEE Trans. Med. Imaging 1996; 15: 299–313.
- 8R. J. Dickinson and C. R. Hill, Measurement of soft tissue motion using correlation between A-scans. Ultrasound Med. Biol. 1982; 8: 263–271.
- 9L.S. Wilson and D. E. Robinson, Ultrasonic measurement of small displacements and deformations of tissue, Ultrason. Imag. 1982; 4: 71–82.
- 10J. Ophir, I. Cespedes, H. Ponnekanto, Y. Yazdi, and X. Li, Elastography: A quantitative method for imaging the elasticity of biological tissues. Ultrason. Imag. 1991; 13: 111–134.
- 11E.I. Cespedes, C. L. de Korte, A. F. van der Steen, C. von Birgelen, and C. T. Lancee, Intravascular elastography: principles and potentials. Semin. Interv. Cardiol. 1997; 2: 55–62.
- 12D. L. Cochlin, R. H. Ganatra, and D. F. Griffiths, Elastography in the detection of prostatic cancer. Clin. Radiol. 2002; 57: 1014–1020.
- 13T. A. Krouskop, D. R. Doughtery, and S. F. Vinson, A pulsed Doppler ultrasonic system for making noninvasive measurements of the mechanical properties of soft tissue. J. Rehabil. Res. Dev. 1987; 24: 1–8.
- 14Y. Yamakoshi, J. Sato, and T. Sato, Ultrasonic imaging of internal vibrations of soft tissues under forced vibration. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 1990; 37: 45–53.
- 15R. M. Lerner, K. J. Parker, R. Holen, R. Gramiak, and R. C. Waag, Sonoelasticity images derived from ultrasound signals in mechanically vibrated targets. Ultrasound Med. Biol. 1990; 16: 231–239.
- 16R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 1995; 269: 1854–1857.
- 17D. B. Plewes, J. Bishop, A. Samani, and J. Sciarretta, Visualization and quantification of breast cancer biomechanical properties with MRE. Phys. Med. Biol. 2000; 45: 1591–1610.
- 18R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz, High resolution tensor MR elastography for breast tumor detection. Phys. Med. Biol. 2000; 45: 1649–1664.
- 19L. Sandrin, M. Catheline, M. Tanter, X. Hennegin, and M. Fink, Time-resolved pulsed elastography with ultrafast ultrasonic imaging, Ultrason. Imag. 1999; 21: 259–272.
- 20W. F. Walker, F. J. Fernandez, and L. A. Negron, A method of imaging viscoelastic parameters with acoustic radiation force. Phys. Med. Biol. 2000; 45: 1437–1447.
- 21K. R. Nightingale, M. L. Palmeri, R. W. Nightingale, and G. E. Trahey, On the feasibility of remote palpation using acoustic radiation force. J. Acoust. Soc. Am. 2001; 110: 625–634.
- 22M. Fatemi and J. F. Greenleaf, Ultrasound-stimulated vibro-acoustic spectrography. Science 1998; 280: 82–85.
- 23N. F. Osman and J. L. Prince, Visualizing myocardial function using HARP MRI. Phys. Med. Biol. 2000; 45: 1683–1702.
- 24Y. Miyasaka, M. Haiden, H. Kamihata, T. Nishiue, and T. Iwasaka, Usefulness of strain rate imaging in detecting ischemic myocardium during dobutamine stress. Int. J. Cardiol. 2005; 102: 225–231.
- 25J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues. Heart 2004; 90: 556–562.
- 26J. Zlatanova and S. H. Leuba, Stretching and imaging single DNA molecules and chromatin. J. Muscle Rec. Cell. Motil. 2002; 23: 377–395.
- 27T. Varghese, J. Ophir, and I. Cespedes, Noise reduction in elastograms using temporal stretching with multicompression averaging. Ultrasound Med. Biol. 1996; 22: 1043–1052.
- 28N. W. Tschoegl, The Phenomenological Theory of Linear Viscoelastic Behavior. Berlin: Spinger-Verlag, 1989.
10.1007/978-3-642-73602-5 Google Scholar
- 29Y. C. Fung, Biomechanics: Circulation, 2nd ed. New York: Springer; 1997.
10.1007/978-1-4757-2696-1 Google Scholar
- 30S. Temkin, Elements of Acoustics. Melville, NY: AIP Publishing Center; 2001.
- 31M. Bilgen and M. F. Insana, Elastostatics of a spherical inclusion in homogeneous biological media. Phys. Med. Biol. 1998; 43: 1–20.
- 32J. Liu, C. K. Abbey, and M. F. Insana, Linear approach to axial resolution in elasticity imaging. IEEE Trans. Ultrason. Ferroelectron. Freq. Contr. 1990; 37: 45–53.
- 33C. Pellot-Barakat, F. Frouin, M. F. Insana, and A. Herment, Ultrasound elastography based on multi-scale estimations of displacement regularized fields. IEEE Trans. Med. Imaging. 2004; 23: 153–163.
- 34G. C. Carter, Coherence and Time Delay Estimation: An Applied Tutorial for Research, Development, Test, and Evaluation Engineers. Piscataway NJ: IEEE Press; 1993.
- 35P. L. Chandran and V. H. Barocas, Microstructural mechanics of collagen gels in confined compression: Poroelasticity, viscoelasticity, and collapse. Trans. ASME. 2004; 126: 152–166.