Ectopic Activity
Javier Saiz
Universidad Politécnica de Valencia, Centro de Investigación e Innovación en Bioingeniería, Valencia, Spain
Search for more papers by this authorMarta Monserrat
Universidad Politécnica de Valencia, Centro de Investigación e Innovación en Bioingeniería, Valencia, Spain
Search for more papers by this authorJosé María Ferrero Jr.
Universidad Politécnica de Valencia, Centro de Investigación e Innovación en Bioingeniería, Valencia, Spain
Search for more papers by this authorJulio Gomis-Tena
Universidad Politécnica de Valencia, Centro de Investigación e Innovación en Bioingeniería, Valencia, Spain
Search for more papers by this authorFrancisco J. Chorro
Hospital Clínico Universitario de Valencia, Servicio de Cardiología, Valencia, Spain
Search for more papers by this authorJavier Saiz
Universidad Politécnica de Valencia, Centro de Investigación e Innovación en Bioingeniería, Valencia, Spain
Search for more papers by this authorMarta Monserrat
Universidad Politécnica de Valencia, Centro de Investigación e Innovación en Bioingeniería, Valencia, Spain
Search for more papers by this authorJosé María Ferrero Jr.
Universidad Politécnica de Valencia, Centro de Investigación e Innovación en Bioingeniería, Valencia, Spain
Search for more papers by this authorJulio Gomis-Tena
Universidad Politécnica de Valencia, Centro de Investigación e Innovación en Bioingeniería, Valencia, Spain
Search for more papers by this authorFrancisco J. Chorro
Hospital Clínico Universitario de Valencia, Servicio de Cardiología, Valencia, Spain
Search for more papers by this authorAbstract
The term ectopic activity is used to indicate situations in which the electrical stimulus responsible for the contraction of the heart originates in a zone of the cardiac tissue (ectopic focus) different from the normal one (the sinoatrial node). Two main mechanisms exist that may induce ectopic activity: automaticity (generally subdivided into normal and abnormal) and triggered activity. Ectopic activity caused by normal automaticity appears in cardiac cells in which the automaticity (spontaneous generation of electrical impulses) is an intrinsic property. In normal situations, the potential pacemaker activity in cells different from those in the sinoatrial node is inactive because the spontaneous frequency of impulse generation is higher in the sinoatrial node. However, when the frequency of the sinoatrial node decreases below the spontaneous frequency of a subsidiary pacemaker, this pacemaker takes the control of the heart rate and becomes an ectopic focus. Under several pathological situations, any cell in the heart, even those that normally have no spontaneous activity, could become abnormally automatic. Another mechanism for ectopic activity is known as triggered activity, which consists of an impulse (or a train of impulses) provoked by after-depolarizations, which are abnormal oscillations of the action potential. Two types of after-depolarizations exist: early (EADs), which appear during the repolarization phase of action potential, and delayed (DADs), which occur when the repolarization phase of the action potential is completed. The main characteristic of the ectopic activity induced by after-depolarizations is that a previous electrical impulse is necessary to trigger one or more ectopic beats.
Bibliography
- 1B. F. Hoffman and M. R. Rosen, Cellular mechanisms for cardiac arrhythmias. Circ. Res 1981; 49: 1–15.
- 2G. Breithardt, A. J. Camm, R. W. F. Campbell, H. A. Fozzard, B. F. Hoffman, M. J. Janse, R. Lazzara, S. Lévy, R. J. Myerburg, D. M. Roden, M. R. Rosen, P. J. Schwartz, H. C. Strauss, A. L. Waldo, A. L. Wit, R. L. Woosley, A. Zaza, and D. P. Zipes, Electrophysiologic mechanisms for cardiac arrhythmias. In: Antiarrhythmic Therapy: A Pathophysiologic Approach. New York: Futura Publishing Company, 1994, pp. 41–84.
- 3O. Binah and M. R. Rosen, Mechanisms of ventricular arrhythmias. Circulation 1992; 85(suppl I): I-25–I-31.
- 4M. N. Levy, Role of calcium in arrhythmogenesis. Circulation 1989; 80(suppl IV): IV-23–IV-30.
- 5D. DiFrancesco and D. Noble, A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Phil. Trans. R. Soc. Lond. B 1985; 307: 353–398.
- 6D. Escande, E. Coraboeuf, and C. Planche, Abnormal pacemaking is modulated by sarcoplasmic reticulum in partially depolarized myocardium from dilated right atria in humans. J. Mol. Cell. Cardiol. 1987; 19: 231–241.
- 7C. Luo and Y. Rudy, A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentrations changes. Circ. Res 1994; 74: 1071–1096.
- 8J. Zeng and Y. Rudy, Early afterdepolarizations in cardiac myocytes: mechanism and rate dependence. Biophys. J. 1995; 68: 949–964.
- 9C. Antzelevitch and S. Sicouri, Clinical relevance of cardiac arrhythmias generated by afterdepolarizations. Role of M cells in the generation of U waves, triggered activity and torsade de pointes. Am. J. Cardiol. 1994; 23: 259–277.
- 10A. L. Wit and M. R. Rosen, Afterdepolarizations and triggered activity: distinction from automaticity as an arrhythmogenic mechanisms. In: H. A. Fozzard, E. Haber, R. B. Jennings, A. M. Katz, and H. E. Morgan, eds., The Heart and Cardiovascular System. 2nd ed., New York: Raven Press, 1992, pp. 2113–2163.
- 11P. F. Cranefield and R. S. Aronson, Cardiac Arrhythmias: The Role of Triggered Activity and Other Mechanisms. New York: Futura Publishing Company, 1988.
- 12C. T. January and J. M. Riddle, Early afterdepolarizations: mechanisms of induction and block. A role for L-type Ca2+ current. Circ. Res. 1989; 64: 977–990.
- 13J. Saiz, J. M. Ferrero, Jr., M. Monserrat, J. M. Ferrero, and N. V. Thakor, Influence of electrical coupling on early afterdepolarizations in ventricular myocytes. IEEE Trans. Biomed. Eng. 1999; 46: 138–147.
- 14B. P. Damiano and M. R. Rosen, Effects of pacing on triggered activity induced by early afterdepolarizations. Circulation 1984; 69: 1013–1025.
- 15C. Méndez and M. Delmar, Triggered activity: its possible role in cardiac arrhythmias. In: D. P. Zipes and J. Jalife, eds., Cardiac Electrophysiology and Arrhythmias. Orlando, FL: Grune and Stratton, 1985, pp. 311–313.
- 16P. Brugada and H. J. J. Wellens, Early afterdepolarizations: role in conduction block, prolonged repolarization-dependent reexcitation, and tachyarrhythmias in the human heart. P.A.C.E 1985; 8: 889–896.
- 17M. Monserrat, J. Saiz, J. M. Ferrero, Jr., J. M. Ferrero, and N. V. Thakor, Ectopic activity in ventricular cells induced by early afterdepolarizations developed in Purkinje cells. Ann. Biomed. Eng. 2000; 28: 1343–1351.
- 18Z. Y . Li, C. Maldonado, C. Zee-Cheng, S. Hiromasa, and J. Kupersmith, Purkinje fibre-papillary muscle interaction in the genesis of triggered activity in a guinea pig model. Cardiovasc. Res. 1992; 26: 543–548.
- 19P. G. A. Volders, M. A. Vos, B. Szabo, K. R. Sipido, S. H. Marieke de Groot, A. P. M. Gorgels, H. J. J. Wellens, and R. Lazzara, Progress in the understanding of cardiac early after-depolarizations and torsades de pointes: time to revise current concepts. Cardiovasc. Res. 2000; 46: 376–392.
- 20A. Coulombe, E. Coraboeuf, C. Malecot, and E. Deroubaix, Role of the Na window current and other ionic currents in triggering early after-depolarizations and resulting reexcitations in Purkinje fibers. In: D. P. Zipes and J. Jalife, eds., Cardiac Electrophysiology and Arrhythmias. Orlando, FL: Grune and Stratton, 1985, pp. 43–49.
- 21B. Szabo, R. Sweidan, C. V. Rajagopalan, and R. Lazzara, Role of Na+:Ca2+ exchange current in Cs+-induced early after-depolarizations in Purkinje fibers. J. Cardiovasc. Electrophysiol. 1994; 5: 933–944.
- 22C. O. Lee, D. H. Kang, J. H. Sokol, and K. S. Lee, Relation between intracellular Na+ ion activity and tension of sheep cardiac Purkinje fibers exposed to dihydro-ouabain. Biophys. J. 1980; 29: 315–330.
- 23M. R. Rosen and P. Danilo, Effects of tetrodotoxin, lidocaine, verapamil and AHR-266 on ouabain induced delayed after-depolarizations in canine Purkinje fibers. Circ. Res. 1980; 46: 117–124.
- 24R. S. Aronson, P. F. Cranefield, and A. L. Wit, The effects of caffeine and ryanodine on the electrical activity of the canine coronary sinus. J. Physiol. (Lond.) 1985; 368: 593–610.
- 25G.-N. Tseng and A. L. Wit, Characteristics of a transient inward current that causes delayed afterdepolarizations in atrial cells of the canine coronary sinus. J. Mol. Cell. Cardiol. 1987; 19: 1105–1119.
- 26J. A. Wasserstrom and G. R. Ferrier, Voltage dependence of digitalis afterpotentials, aftercontractions, and inotropy. Am. J. Physiol. 1981; 241: H646–H653.
- 27A. O. Verkerk, M. W. Veldkamp, N. de Jonge, R. Wilders, and A. C. G. van Ginneken, Injury current modulates afterdepolarizations in single human ventricular cells. Cardiovasc. Res. 2000; 47: 124–132.
- 28D. S. Lindblad, C. R. Murphey, J. W. Clark, and W. R. Giles, A model of the action potential and underlying membrane currents in a rabbit atrial cell. Am. J. Physiol. 1996; 271: H1666–H1696.
- 29M. D. Stern, H. S. Silverman, S. R. Houser, R. A. Josephson, M. C. Capogrossi, C. G. Nichols, W. J. Lederer, and E. G. Lakatta, Anoxic contractile failure in rat heart myocytes is caused by failure of intracellular calcium release due to alteration of the action potential. Proc. Natl. Acad. Sci. USA 1988; 85: 6954–6958.
- 30P. Lipp and E. Niggli, Modulation of Ca2+ release in cultured neonatal rat cardiac myocytes. Insight from subcellular release patterns revealed by confocal microscopy. Circ. Res. 1994; 74: 979–990.
- 31A. O. Verkerk, M. W. Veldkamp, L. N. Bouman, and A. C. G. van Ginneken, Calcium-activated Cl- current contributes to delayed afterdepolarizations in single purkinje and ventricular myocytes. Circulation 2000; 101: 2639–2644.
- 32R. M. Egdell and K. T. MacLeod, Calcium extrusion during aftercontractions in cardiac myocytes: the role of the sodium-calcium exchanger in the generation of the transient inward current. J. Mol. Cell. Cardiol. 2000; 32: 85–93.
- 33A. C. Zygmunt, Intracellular calcium activates a chloride current in canine ventricular myocytes. Am. J. Physiol. 1994; 267: H1984–H1995.
- 34N. Saoudi, F. Cosio, A. Waldo, S. A. Chen, Y. Iesaka, M. Lesh, S. Saksena, J. Salerno, and W. Schoels, Classification of atrial flutter and regular atrial tachycardia according to electrophysiologic mechanism and anatomic bases: a statment form a Joint expert group from the Working group of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. J. Cardiovasc. Electrophysiol. 2001; 12: 852–866.
10.1046/j.1540-8167.2001.00852.x Google Scholar
- 35C. F. Tsai, C. T. Tai, M. H. Hsieh, W. S. Lin, W. C. Yu, K. C. Ueng, Y. A. Ding, M. S. Chang, and S. A. Chen, Initiation of atrial fibrillation by ectopic beats originating from the superior vena cava. Circulation 2000; 102: 67–74.
- 36M. Haissaguerre, P. Jais, D. C. Shah, A. Takahashi, M. Hocini, G. Quiniou, S. Garrigue, A. Le Mouroux, P. Le Metayer, and J. Clementy, Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 1998; 339: 659–666.
- 37A. J. Moss, W. Zareba, J. Benhorin, E. H. Locati, W. J. Hall, J. L. Robinson, P. J. Schwartz, J. A. Towbin, G. M. Vincent, and M. H. Lehmann, ECG T-wave patterns in genetically distinct forms of the hereditary long QT syndrome. Circulation 1995; 92: 2929–2934.
- 38C. E. Chiang and D. M. Roden, The long QT syndromes: genetics basis and clinical implications. J. Am. Coll. Cardiol. 2000; 36: 1–12.
- 39N. El-Sherif, Mechanism of ventricular arrhythmias in the long QT syndrome: on hermeneutics. J. Cardiovasc. Electrophysiol. 2001; 12: 973–976.
- 40P. J. Schwartz, S. G. Priori, C. Spazzolini, A. J. Moss, G. M. Vincent, C. Napolitano, I. Denjoy, P. Guicheney, G. Breithardt, M. T. Keating, J. A. Towbin, A. H. Beggs, P. Brink, A. A. Wilde, L. Toivonen, W. Zareba, J. L. Robinson, K. W. Timothy, V. Corfield, D. Wattanasirichaigoon, C. Corbett, W. Haverkamp, E. Schulze-Bahr, M. H. Lehmann, K. Schwartz, P. Coumel, and R. Bloise, Genotype-phenotype correlation in the long-QT syndrome. Gene-specific triggers for life-threatening arrhythmias. Circulation 2001; 103: 89–95.
- 41S. G. Priori, C. Napolitano, M. Memmi, B. Colombi, F. Drago, M. Gasparini, L. DeSimone, F. Coltorti, R. Bloise, R. Keegan, F. E. Cruz Filho, G. Vignati, A. Benatar, and A. DeLogu, Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation 2002; 106: 69–74.
- 42P. Brugada and J. Brugada, Right bundle branch block, persistent ST segment elevation and sudden cardiac death: A distinct clinical and electrocardiographic syndrome, J. Am. Coll. Cardiol. 1992; 20: 1391–1396.
- 43J. Brugada, R. Brugada, C. Antzelevitch, J. Towbin, K. Nademanee, and P. Brugada, Long-term follow-up of individuals with the electrocardiographic pattern of right bundle branch block and ST segment elevation in precordial leads V1 to V3. Circulation 2002; 105: 73–78.
- 44G. Fontaine, F. Fontaliran, J. L. Hebert, D. Chemla, O. Zenati, Y. Lecarpentier, and R. Frank, Arrhythmogenic right ventricular dysplasia. Ann. Rev. Med. 1999; 50: 17–35.
- 45N. El-Sherif, M. Chinushi, E. B. Caref, and M. Restivo, Electrophysiological mechanism of the characteristic electrocardiographic morphology of torsade de pointes tachyarrhythmias in the long QT syndrome. Detailed analysis of ventricular tridimensional activation patterns. Circulation 1997; 96: 4392–4399.
- 46R. Arora, S. Verheule, L. Scott, A. Navarrete, V. Katari, E. Wilson, D. Vaz, and J. E. Olgin, Arrhythmogenic substrate of the pulmonary veins assessed by high-resolution optical mapping. Circulation 2003; 107: 1816–1821.
- 47N. El-Sherif, E. B. Caref, H. Yin, and M. Restivo, The electrophysiological mechanism of ventricular arrhythmias in the long QT syndrome. Tridimensional mapping of activation and recovery patterns. Circ. Res. 1996; 79: 474–492.
- 48S. G. Priori, P. J. Schwartz, C. Napolitano, R. Bloise, E. Ronchetti, M. Grillo, A. Vicentini, C. Spazzolini, J. Nastoli, G. Bottelli, R. Folli, and D. Cappelletti, Risk stratification in the long-QT syndrome. N. Engl. J. Med 2003; 348: 1866–1874.
- 49A. J. Moss, W. Zareba, W. J. Hall, P. J. Schwartz, R. S. Crampton, J. Benhorin, G. M. Vincent, E. H. Locati, S. G. Priori, C. Napolitano, A. Medina, L. Zhang, J. L. Robinson, K. Timothy, J. A. Towbin, and M. L. Andrews, Effectiveness and limitations of beta-blocker therapy in congenital long QT syndrome. Circulation 2000; 101: 616–623.
- 50W. Zareba, A. J. Moss, J. P. Daubert, W. J. Hall, J. L. Robinson, and M. Andrews, Implantable cardioverter-defibrillator in high-risk long QT syndrome patients. J. Cardiovasc. Electrophysiol. 2003; 14: 337–341.
- 51D. C. Shah, M. Haissaguerre, P. Jais, M. Hocini, T. Yamane, I. Deisenhofer, S. Garrigue, and J. Clementy, Electrophysiologically guided ablation of the pulmonary veins for the curative treatment of atrial fibrillation. Ann. Med. 2000; 32: 408–416.