Electrocardiogram (ECG) Mapping
Gerald Fischer
University for Health Sciences Medical Informatics and Tecnnology (UMIT), Austria
Search for more papers by this authorGerald Fischer
University for Health Sciences Medical Informatics and Tecnnology (UMIT), Austria
Search for more papers by this authorAbstract
Body surface mapping records the electrocardiogram (ECG) on the entire body (torso) surface using a grid of many leads (more than 30) on the torso surface. Although many studies have demonstrated that mapping provides more information than the standard 12-lead ECG, it is still only a powerful scientific tool but not in widespread clinical use. The challenge is to retrieve and display diagnostic information such that it can be assessed by the naked eye. This chapter first provides an overview on basic tools and standards for ECG mapping. Here, more careful data preprocessing and better instrumentation is required than for the 12-lead ECG. Mathematical tools for estimating the number of independent signals are discussed. The classical potential and parameter maps are addressed shortly. Recently, the model-based back projection of the body surface ECG data onto the cardiac surface (inverse problem, functional imaging) has been successfully validated in in vitro models and humans. A short introduction to the basics of functional imaging is provided and two promising approaches are highlighted. Limitations and potential for further improvement are discussed. Thus, the additional information in many leads needs sophisticated methods for displaying the source pattern on the actual cardiac geometry. The sole improvement of instrumentation in terms of more leads without the support of tailored algorithms does not provide any new diagnostic information.
Bibliography
- 1J. Bailey, A. Berson, A. Garson, Jr., L. Horan, P. Macfarlane, D. Mortara, and C. Zywietz, Recommendations for standardization and specifications in automated electrocardiography: bandwidth and digital signal processing. A report for health professionals by an ad hoc writing group of the Committee on Electrocardiography and Cardiac Electrophysiology of the Council on Clinical Cardiology, American Heart Association. Circulation 1990; 81(2): 730–739.
- 2P. Rijnbeek, J. Kors, and M. Witsenburg, Minimum bandwidth requirements for recording of pediatric electrocardiograms. Circulation 2001; 104: 3087–3090.
- 3B. Taccardi, B. Punske, R. Lux, R. MacLeod, P. Ershler, T. Dustman, and Y. Vyhmeister, Useful lessons from body surface mapping. J. Cardiovasc. Electrophysiol. 1998; 9(7): 773–786.
- 4M. Potse, A. Linnenbank, H. Peeters, A. SippensGroenewegen, and C. Grimbergen, Continuous localization of cardiac activation sites using a database of multichannel ECG recordings. IEEE Trans. Biomed. Eng. 2000; 47: 682–689.
- 5K. Kim and S. Kim, Noise characteristic design of cmos source follower and voltage amplifier for active semiconductor micro-electrodes for neural signal recording. Med. Biolog. Eng. Comput. 2000; 38(4): 469–472.
- 6E. Marbán, Cardiac channelopathies. Nature 2002; 415: 213–218.
- 7U. Leder, R. Unger, V. Baier, J. Haueisen, H. Nowak, and H. Figulla, Effect of choice of baseline correction interval on localization of electrical heart activity (in german). Biomedizinische Technik 2000; 45: 114–118.
- 8S. Gozolits, G. Fischer, T. Berger, F. Hanser, M. Abou-Harb, B. Tilg, O. Pachinger, F. Hintringer, and F. Roithinger, The global P-wave duration in the 65-lead ECG: single and dual site pacing in the structurally normal human atria. J. Cardiovasc. Electrophysiol. 2002; 13(12): 1240–1245.
- 9M. Potse, A. Linnenbank, and C. Grimbergen, Software design for analysis of multichannel intracardial and body surface electrocardiograms. Comput. Meth. Progr. Biomed. 2002; 69: 225–236.
- 10G. Fischer, F. Hanser, B. Pfeifer, M. Seger, C. Hintermller, R. Modre, B. Tilg, T. Trieb, T. Berger, F. Roithinger, and F. Hintringer, A signal processing pipeline for noninvasive imaging of ventricular preexcitation. Meth. Inform. Med. 2005; 44: 508–515.
- 11A. Peper, R. Jonges, C. Grimbergen, T. Losekoot, and J. Strackee, Method for the computation of an accurate zero reference for ECG signals. Med. Biolog. Eng. Comput. 1990; 28(2): 105–112.
- 12D. Geselowitz, The zero of potential. IEEE Eng. Med. Biol. Mag. 1998; 17: 128–132.
- 13G. Fischer, B. Tilg, R. Modre, F. Hanser, B. Messnarz, and P. Wach, On modeling the Wilson terminal in the boundary and finite element method. IEEE Trans. Biomed. Eng. 2002; 49: 217–224.
- 14R. Hoekema, G. Uijen, and A. van Oosterom, The number of independent signals in body surface maps. Meth. Inform. Med. 1999; 38: 119–124.
- 15R. Hoekema, G. Uijen, and A. van Oosterom, On selecting a body surface mapping procedures. J. Electrocardiol. 1999; 32: 93–101.
- 16M. Fuller, G. Sándor, B. Punske, B. Taccardi, R. MacLeod, P. Ershler, L. Green, and R. Lux, Estimates of repolarization dispersion from electrocardiographic measurements. Circulation 2000; 102(6): 685–691.
- 17R. Modre, B. Tilg, G. Fischer, F. Hanser, B. Messnarz, M. Schocke, T. Berger, F. Hintringer, and F. Roithinger, Atrial noninvasive activation mapping of paced rhythm data. J. Cardiovas. Electrophysiol. 2003; 14: 712–719.
- 18G. Fischer, B. Pfeifer, M. Seger, C. Hintermüller, F. Hanser, R. Modre, B. Tilg, T. Trieb, C. Kremser, F. Roithinger, and F. Hintringer, Computationally efficient noninvasive cardiac activation time imaging. Meth. Inform. Med., 2005; 44: 674–686.
- 19C. Ramanathan, R. Ghanem, P. Jia, K. Ryu, and Y. Rudy, Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat. Med. 2004; 10(4): 422–428.
- 20B. Taccardi, E. Macchi, R. Lux, P. Ershler, S. Spaggiari, S. Baruffi, and Y. Vyhmeister. Effect of myocardial fiber direction on epicardial potentials. Circulation 1994; 90: 3076–3090.
- 21B. He and R. Cohen, Body surface laplacian electrocardiographic mapping–a review. Crit. Rev. Biomed. Eng. 1995; 23: 475–510.
- 22R. Lux, P. Urie, M. B. MJ, and J. Abildskov, Variability of the body surface distributions of qrs, st-t and qrst deflection areas with varied activation sequence in dogs. Cardiovasc. Res. 1980; 14: 607–612.
- 23R. Hoekema, G. Uijen, L. van Erning, and A. van Oosterom, Interindividual variability of multilead electrocardiographic recordings: influence of heart position. J. Electrocardiol. 1999; 32: 137–148.
- 24R. Schilling, Which patient should be referred to an electrocardiologist: supraventricular tachycardia. Heart 2002; 36(3): 299–304.
- 25M. Seger, G. Fischer, R. Modre, B. Messnarz, F. Hanser, and B. Tilg, Lead field computation for the electrocardiographic inverse problem – finite elements versus boundary elements. Comput. Meth. Progr. Biomed. 2005; 77(3): 241–252.
- 26B. Pfeifer, G. Fischer, F. Hanser, M. Seger, C. Hintermüller, R. Modre-Osprian, T. Trieb, and B. Tieg, Atrial and Venticultar Myocardium Extraction Using Model-based Techniques Meth. Meth. Inform. Med. 2006; 45: 19–26.
- 27G. Fischer, B. Tilg, R. Modre, G. Huiskamp, J. Fetzer, W. Rucker, and P. Wach, A bidomain model based bem-fem coupling formulation for anisotropic cardiac tissue. Ann. Biomed. Eng. 2000; 28: 1229–1243.
- 28C. Johnson, Computational and numerical methods for bioelectric field problems. Crit. Rev. Biomed. Eng. 1997; 25: 1–81.
- 29R. Hren, J. Nenonen, and B. Horáĉek, Simulated epicardial potential maps during paced activation reflect myocardial fibrous structure. Ann. Biomed. Eng. 1998; 26: 1022–1035.
- 30A. Pullan, L. Cheng, M. Nash, C. Bradley, and D. Paterson, Noninvasive electrical imaging of the heart: theory and model development. Ann. Biomed. Eng. 2001; 29: 817–836.
- 31F. Greensite, Cardiac electromagnetic imaging as an inverse problem. Electromagnetics 2001; 21: 559–577.
- 32G. Fischer, B. Tilg, P. Wach, R. Modre, U. Leder, and H. Nowak, Application of high-order boundary elements to the electrocardiographic inverse problem. Comput. Meth. Progr. Biomed. 1999; 58(2): 119–131.
- 33Y. Yamashita, Theoretical studies on the inverse problem in electrocardiography and the uniqueness of the solution. IEEE Trans. Biomed. Eng. 1982; BME-29:719–725.
- 34C. Ramanathan, P. Jia, R. Ghanem, D. Calvetti, and Y. Rudy, Noninvasive electrocardiographic imaging (ECGi): application of the generalized minimal residual (gmres) method. Ann. Biomed. Eng. 2003; 31: 981–994.
- 35J. Cuppen and A. van Oosterom, Model studies with the inversely calculated isochrones of ventricular depolarization. IEEE Trans. Biomed. Eng. 1984; 31: 652–659.
- 36G. Huiskamp and F. Greensite, A new method for myocardial activation imaging. IEEE Trans. Biomed. Eng. 1997; 44(6): 433–446.
- 37P. van Dam and A. van Oosterom, Atrial excitation assuming uniform propagation. J. Cardiovasc. Electrophysiol. 2003; 14: 166–171.
- 38B. Messnarz, B. Tilg, R. Modre, G. Fischer, and F. Hanser, A new spatiotemporal regularization approach for reconstruction of cardiac transmembrane potential patterns. IEEE Trans. Biomed. Eng. 2004; 51: 273–281.
- 39B. Messnarz, M. Seger, R. Modre, G. Fischer, F. Hanser, and B. Tilg, A comparison of noninvasive reconstruction of epicardial versus transmembrane potentials in consideration of the null space. IEEE Trans. Biomed. Eng. 2004; 51: 1609–1618.