Intrahepatic Cholestasis
Andrew Stolz
Search for more papers by this authorNeil Kaplowitz
Search for more papers by this authorAndrew Stolz
Search for more papers by this authorNeil Kaplowitz
Search for more papers by this authorPierre-Alain Clavien MD, PhD, FACS, FRCS
Professor and Chairman, Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplant Surgery, University Hospital Zurich, Zurich, Switzerland
Search for more papers by this authorJohn Baillie MB, ChB, FRCP, FACG
Professor of Medicine, Director of Hepatobiliary and Pancreatic Disorder Service, Wake Forest University Health Sciences Center, Winston-Salem, North Carolina, USA
Search for more papers by this authorSummary
This chapter contains sections titled:
-
Mechanisms for hepatic bile formation
-
Regulation of bile acid synthesis, transport, and metabolism by nuclear transcription factors
-
Regulation of key hepatic transporters in experimental cholestatic conditions
-
Clinical approaches to intrahepatic cholestasis and specific conditions
-
Questions
-
Suggested readings
References
- Arias I M, Che M, Gatmaitan Z, et al. The biology of the bile canaliculus, 1993. Hepatology 1993; 17: 318–29.
- Bahar RJ, Stolz A. Bile acid transport. Gastroenterol Clin North Am 1999; 28: 27–58.
- Kullak-Ublick GA, Stieger B, Meier PJ. Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology 2004; 126: 322–42.
- Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev 2003; 83: 633–71.
- Ballatori N, Truong AT. Glutathione as a primary osmotic driving force in hepatic bile formation. Am J Physiol 1992; 263: G617–G624.
- Trauner M, Meier PJ, Boyer J L. Molecular regulation of hepato-cellular transport systems in cholestasis. J Hepatol 1999; 31: 165–78.
- Hofmann A F. Current concepts of biliary secretion. Dig Dis Sci 1989; 34: 16S–20S.
- Carey MC, Duane WC. Enterohepatic Circ ulation. In: IM Arias, JL Boyer, N Fausto, et al, eds. The Liver: Biology and Pathobiology. New York: Raven Press, 1994: 719–67.
- Hagenbuch B, Stieger B, Foguet M, et al. Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci USA 1991; 88: 10629–33.
- Gartung C, Matern S. Molecular regulation of sinusoidal liver bile acid transporters during cholestasis. Yale J Biol Med 1997; 70: 355–63.
- Mukhopadhayay S, Ananthanarayanan M, Stieger B, et al. cAMP increases liver Na+-tauroc holate cotransport by translocating transporter to plasma membranes. Am J Physiol 1997; 273: G842–8.
- Shneider BL, Fox VL, Schwarz KB, et al. Hepatic basolateral sodium-dependent-bile acid transporter expression in two unusual cases of hypercholanemia and in extrahepatic biliary atresia. Hepatology 1997; 25: 1176–83.
- Ganguly TC, Liu Y, Hyde JF, et al. Prolactin increases hepatic Na+/taurocholate co-transport activity and messenger RNA post partum. Biochem J 1994; 303: 33–6.
- Gartung C, Schuele S, Schlosser SF, et al. Expression of the ratliver Na+/tau roc holateco transporter is regulated in vivo by retention of biliary constituents but not their depletion. Hepatolo-gy 1997; 25: 284–90.
- Hagenbuch B, Meier PJ. Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter. J Clin Invest 1994; 93: 1326–31.
- Wong M H, Oelkers P, Craddock AL, et al. Expression cloning and characterization of the hamster ileal sodium-dependent bile acid transporter. J Biol Chem 1994; 269: 1340–7.
- Wong M H, Rao PN, Pettenati MJ, et al. Localization of the ileal sodium-bile acid cotransporter gene (SLC10A2) to human chromosome 13q33. Genomics 1996; 33: 538–40.
- Lazaridis KN, Pham L, Tietz P, et al. Rat cholangiocytes absorb bile acids at their apical domain via the ileal sodium-dependent bile acid transporter. J Clin Invest 1997; 100: 2714–21.
- Christie DM, Dawson PA, Thevananther S, et al. Comparative analysis of the ontogeny of a sodium-dependent bile ac id transporter in rat kidney and ileum. Am J Physiol 1996; 271: G377–G385.
- von Dippe P, Amoui M, Stellwagen RH, et al. The functional expression of sodium-dependent bile acid transport in Madin-Darby canine kidney cells transfected with the cDNA for microsomal epoxide hydrolase. J Biol Chem 1996; 271: 18176–80.
- Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pfl ugers A rch 2004; 447: 653–65.
- Satlin LM, Amin V, Wolkoff AW. Organic anion transporting polypeptide mediates organic anion/HCO3− exchange. J Biol Chem 1997; 272: 26340–5.
- Ballatori N, Rebbeor JF. Roles of MRP2 and oatp1 in hepatocellular export of reduced glutathione. Semin Liver Dis 1998; 18: 377–87.
- Erlinger S. Do intracellular organelles have any role in transport of bile acids by hepatocytes? J Hepatol 1996; 24 (Suppl. 1): 88–93.
- Agellon LB, Torchia EC. Intracellular transport of bile acids. Biochim Biophys Acta 2000; 1486: 198–209.
- Cohen DE. Hepatocellular transport and secretion of biliary phospholipids. Semin Liver Dis 1996; 16: 191–200.
- El-Seaidy AZ, Mills CO, Elias E, et al. Lack of evidence for vesicle trafficking of fluorescent bile salts in rat hepatocyte couplets. Am J Physiol 1997; 272: G298–G309.
- Borst P, Elferink RO. Mammalian ABC transporters in health and disease. Ann Rev Biochem 2002; 71: 537–92.
- Kruh GD, Belinsky MG. The MRP family of drug efflux pumps. Oncogene 2003; 22: 7537–52.
- Bull LN, van Eijk MJ, Pawlikowska L, et al. A gene encoding a P-type ATPase mutated in two forms of hereditary cholestasis. Nature Genet 1998; 18: 219–24.
- van Mil SW, Klomp LW, Bull LN, et al. FIC1 disease: a spectrum of intrahepatic cholestatic disorders. Semin Liver Dis 2001; 21: 535–44.
- Suchy FJ, Sippel CJ, Ananthanarayanan M. Bile acid transport across the hepatocyte canalicular membrane. FASEB J 1997; 11: 199–205.
- Lomri N, Fitz JG, Scharschmidt BF. Hepatocellular transport: role of ATP-binding cassette proteins. Semin Liver Dis 1996; 16: 201–10.
- Gerloff T, Stieger B, Hagenbuch B, et al. The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J Biol Chem 1998; 273: 10046–50.
- Arrese M, Ananthanarayanan M. The bile salt export pump: molecular properties, function and regulation. Pfl ugers Arch 2004; 449: 123–31.
- Strautnieks SS, Kagalwalla AF, Tanner MS, et al. Identification of a locus for progressive familial intrahepatic cholestasis PFIC2 on chromosome 2q24. Am J Hum Genet 1997; 61: 630–3.
- Strautnieks SS, Bull LN, Knisely AS, et al. A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet 1998; 20: 233–8.
- Gatmaitan ZC, Nies AT, Arias IM. Regulation and translocation of ATP-dependent apical membrane proteins in rat liver. Am J Physiol 1997; 272: G1041–9.
- Misra S, Ujhazy P, Varticovski L, et al. Phosphoinositide 3-kinase lipid products regulate ATP-dependent transport by sister of P-glycoprotein and multidrug resistance associated protein 2 in bile canalicular membrane vesicles. Proc Natl Acad Sci USA 1999; 96: 5814–9.
- Smit JJ, Schinkel AH, Oude Elferink RP, et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 1993; 75: 451–62.
- Mauad T H, van Nieuwkerk CM, Dingemans K P, et al. Mice with homozygous disruption of the mdr2 P-glycoprotein gene. A novel animal model for studies of nonsuppurative infl ammatory cholangitis and hepatocarcinogenesis. Am J Pathol 1994; 145: 1237–45.
- Ory DS. Nuclear receptor signaling in the control of cholesterol homeostasis: have the orphans found a home? Circ Res 2004; 95: 660–70.
- Oude Elferink RP, Bakker CT, Roelofsen H, et al. Accumulation of organic anion in intracellular vesicles of cultured rat hepatocytes is mediated by the canalicular multispecific organic an ion transporter. Hepatology 1993; 17: 434–44.
- Jansen PL, Groothuis GM, Peters WH, et al. Selective hepatobiliary transport defect for organic anions and neutral steroids in mutant rats with hereditary-conjugated hyperbilirubinemia. Hepatology 1987; 7: 71–6.
- Paulusma CC, Bosma PJ, Zaman GJ, et al. Congenital jaundice in rats with a mutation in a multidrug resistance-associated protein gene. Science 1996; 271: 1126–8.
- Borst P, Evers R, Kool M, et al. The multidrug resistance protein family. Biochim Biophys Acta 1999; 1461: 347–57.
- Edwards PA, Kast HR, Anisfeld AM. BAREing it all: the adoption of LXR and FXR and their roles in lipid homeostasis. J Lipid Res 2002; 43: 2–12.
- Liu Y, Binz J, Numerick MJ, et al. Hepatoprotection by the farnesoid X receptor agon ist GW4064 in rat models of intra- and extrahepatic cholestasis. J Clin Invest 2003; 112: 1678–87.
- Moschetta A, Bookout AL, Mangelsdorf DJ. Prevention of cholesterol gallstone disease by FXR agonists in a mouse model. Nat Med 2004; 10: 1352–8.
- Handschin C, Meyer UA. Regulatory network of lipid-sensing nuclear receptors: roles for CAR, PXR, LXR, and FXR. Arch Bio-chem Biophys 2005; 433: 387–96.
- Eloranta JJ, Kullak-Ublick GA. Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Arch Biochem Biophys 2005; 433: 397–412.
- Zhang J, Huang W, Qatanani M, et al. The constitutive androstane receptor and pregnane X receptor function coordinately to prevent bile acid-induced hepatotoxicity. J Biol Chem 2004; 279: 49517–22.
- Simon FR, Fortune J, Iwahashi M, et al. Ethinyl estradiol cholestasis involves alterations in expression of liver sinusoidal transporters. Am J Physiol 1996; 271: G1043–52.
- Lee JM, Trauner M, Soroka CJ, et al. Expression of the bile salt export pump is maintained after chronic cholestasis in the rat. Gastroenterology 2000; 118: 163–72.
- Kullak-Ublick GA. Regulation of organic anion and drug transporters of the sinusoidal membrane. J Hepatol 1999; 31: 563–73.
- Green RM, Beier D, Gollan JL. Regulation of hepatocyte bile salt transporters by endotoxin and inflammatory cytokines in rodents. Gastroenterol 1996; 111: 193–8.
- Zollner G, Fickert P, Silbert D, et al. Adaptive changes in hepato-biliary transporter expression in primary biliary cirrhosis. J Hepatol 2003; 38: 717–27.
- Jansen PL, Sturm E. Genetic cholestasis, causes and consequences for hepatobiliary transport. Liver Int 2003; 23: 315–22.
- Clayton RJ, Iber FL, Ruebner BH, et al. Byler disease. Fatal familial intrahepatic cholestasis in an Amish kindred. Am J Dis Child 1969; 117: 112–24.
- Klomp LW, Vargas JC, van Mil SW, et al. Characterization of mutations in ATP8B1 associated with hereditary cholestasis. Hepatology 2004; 40: 27–38.
- Kagalwalla A F, AlAmir AR, Khalifa A, et al. Progressive familial intrahepatic cholestasis (Byler's disease) in Arab children. Annual Trop Paediatr 1995; 15: 321–7.
- Jacquemin E, Hadchouel M. Genetic basis of progressive familial intrahepatic cholestasis. J Hepatol 1999; 31: 377–81.
- Jansen PL, Strautnieks SS, Jacquemin E, et al. Hepatocanalicular bile salt export pump deficiency in patients with progressive familial intrahepatic cholestasis see comments. Gastroenterology 1999; 117: 1370–9.
- de Vree JM, Jacquemin E, Sturm E, et al. Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis. Proc Natl Acad Sci USA. 1998; 95: 282–7.
- Bijleveld CM, Vonk RJ, Kuipers F, et al. Benign recurrent intra-hepatic cholestasis: altered bile acid metabolism. Gastroenterology 1989; 97: 427–32.
- van Mil SW, vander Woerd W L, vander Brugge G, et al. Ben ign recurrent intrahepatic cholestasis type 2 is caused by mutations in ABCB11. Gastroenterology 2004; 127: 379–84.
- Fein BI, Holt PR. Hepatobiliary complications of total parenteral nutrition. J Clin Gastroenterol 1994; 18: 62–6.
- Quigley EM, Marsh MN, Shaffer JL, et al. Hepatobiliary complications of total parenteral nutrition see comments. Gastroenterology 1993; 104: 286–301.
- Tazuke Y, Kiristioglu I, Heidelberger KP, et al. Hepatic P-glycoprotein changes with total parenteral nutrition administration. JPEN J Parenter Enteral Nutr 2004; 28: 1–6.
- Reyes H, Simon FR. Intrahepatic cholestasis of pregnancy: an estrogen-related disease. Semin Liver Dis 1993; 13: 289–301.
- Glantz A, Marschall HU, Mattsson LA. Intrahepatic cholestasis of pregnancy: Relationships between bile acid levels and fetal complication rates. Hepatology 2004; 40: 467–74.
- Palma J, Reyes H, Ribalta J, et al. Ursodeoxycholic acid in the treatment of cholestasis of pregnancy: a randomized, double-blind study controlled with placebo. J Hepatol 1997; 27: 1022–8.
- Lucena JF, Herrero JI, Quiroga J, et al. A multidrug resistance 3 gene mutation causing cholelithiasis, cholestasis of pregnancy, and adulthood biliary cirrhosis. Gastroenterology 2003; 124: 1037–42.
- Eloranta ML, Hakli T, Hiltunen M, et al. Association of single nucleotide polymorphisms of the bile salt export pump gene with intrahepatic cholestasis of pregnancy. Scand J Gastroenterol 2003; 38: 648–52.
- Schiff ER. Atypical clinical manifestations of hepatitis A. Vaccine 1992; 10: S18–20.
- Edoute Y, Baruch Y, Lachter J, et al. Severe cholestatic jaundice induced by Epstein-Barr virus infection in the elderly. J Gastroenterol Hepatol 1998; 13: 821–4.
- Serna-Higuera C, Gonzalez-Garcia M, Milicua JM, et al. Acute cholestatic hepatitis by cytomegalovirus in an immunocompe-tent patient resolved with ganciclovir. J Clin Gastroenterol 1999; 29: 276–7.
- Glover SC, McPhie JL, Brunt PW. Cholestasis in acute alcoholic liver disease. Lancet 1977; 2: 1305–7.
- Morgan MY, Sherlock S, Scheuer PJ. Acute cholestasis, hepatic failure, and fatty liver in the alcoholic. Scand J Gastroenterol 1978; 13: 299–303.
- Nissenbaum M, Chedid A, Mendenhall C, et al. Prognostic significance of cholestatic alcoholic hepatitis. VA Cooperative Study Group #119. Dig Dis Sci 1990; 35: 891–6.
- Maldonado O, Demasi R, Maldonado Y, et al. Extremely high levels of alkaline phosphatase in hospitalized patients. J Clin Gastroenterol 1998; 27: 342–5.
- te Boekhorst T, Urlus M, Doesburg W, et al. Etiologic factors of jaundice in severely ill patients. A retrospective study in patients admitted to an intensive care unit with severe trauma or with septic intra-abdominal complications following surgery and without evidence of bile duct obstruction. J Hepatol 1988; 7: 111–17.
- Franson TR, Hierholzer WJ, Jr, LaBrecque DR. Frequency and characteristics of hyperbilirubinemia associated with bactere-mia. Rev Infect Dis 1985; 7: 1–9.
- Watterson J, Priest JR. Jaundice as a paraneoplastic phenomenon in a T-cell lymphoma. Gastroenterology 1989; 97: 1319–22.
-
Blay JY,
Rossi JF,
Wijdenes J, et al.
Role of interleukin-6 in the paraneoplastic infl ammatory syndrome associated with renal-cell carcinoma.
I nt J Cancer
1997;
72: 424–30.
10.1002/(SICI)1097-0215(19970729)72:3<424::AID-IJC9>3.0.CO;2-R CAS PubMed Web of Science® Google Scholar
- Fisher B, Keenan AM, Garra BS, et al. Interleukin-2 induces profound reversible cholestasis: a detailed analysis in treated cancer patients. J Clin Oncol 1989; 7: 1852–62.
- Karakolios A, Kasapis C, Kallinikidis T, et al. Cholestatic jaundice as a paraneoplastic manifestation of prostate adenocarcinoma. Clin Gastroenterol Hepatol 2003; 1: 480–3.
- Peters RA, Koukoulis G, Gimson A, et al. Primary amyloidosis and severe intrahepatic cholestatic jaundice. Gut 1994; 35: 1322–5.
- Zimmerman H. Hepatotoxicity: The adverse effects of drugs and other chemicals on the liver, 2nd edn. Philadelphia: Lippincott Williams and Wilkins, 1999.
- Andrade RJ, Lucena MI, Alonso A, et al. HLA class II genotype influences the type of liver injury in drug-induced idiosy ncratic liver disease. Hepatology 2004; 39: 1603–12.
- Stieger B, Fattinger K, Madon J, et al. Drug-and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterol 2000; 118: 422–30.
- Klintmalm GB, Iwatsuki S, Starzl TE. Cyclosporin A hepato-toxicity in 66 renal allograft recipients. Transplant 1981; 32: 488–9.
- Kassianides C, Nussenblatt R, Palestine AG, et al. Liver injury from cyclosporine A. Dig Dis Sci 1990; 35: 693–7.
- Bolder U, Trang NV, Hagey LR, et al. Sulindac is excreted into bile by a canalicular bile salt pump and undergoes a cholehepatic circulation in rats. Gastroenterology 1999; 117: 962–71.
- Kuipers F, Claudel T, Sturm E, et al. The farnesoid X receptor (FXR) as modulator of bile acid metabolism. Rev Endocr Metab Disord 2004; 5: 319–26.
- Goodwin B, Kliewer SA. Nuclear receptors. I. Nuclear receptors and bile acid homeostasis. Am J Physiol Gastrointest Liver Physiol 2002; 282: G926–31.