Free Access
References
Book Author(s):Valerio Magnasco,
First published: 13 November 2009

References
- Abbott, P.C. (2007) Asymptotic expansion of the Keesom integral. J. Phys. A: Math. Gen., 40, 8599–8600.
- Abramowitz, M. and Stegun, I.A. (1965) Handbook of Mathematical Functions, Dover, New York.
- Aitken, A.C. (1958) Determinants and Matrices, Oliver and Boyd, Edinburgh.
- Atkin, R.H. (1959) Classical Dynamics, Heinemann, London.
- Atkins, P.W. and Friedman, R.S. (2007) Molecular Quantum Mechanics, 4th edn, Oxford University Press, Oxford.
- Babb, J.F. (1994) Effective oscillator strengths and transition energies for the hydrogen molecular ion. Mol. Phys., 81, 17–29.
- Bacon, G.E. (1969) The applications of neutron diffraction. Endeavour, 25, 129–135.
- Ballinger, R.A. (1959) The electronic structure of hydrogen fluoride. Mol. Phys., 2, 139–157.
- Bartlett, R.J., Shavitt, I., and Purvis, G.D. III (1979) The quartic force field of H2O determined by many-body methods that include quadruple excitation effects. J. Chem. Phys., 71, 281–291.
- Battezzati, M. and Magnasco, V. (2004) Asymptotic evaluation of the Keesom integral. J. Phys. A: Math. Gen., 37, 9677–9684.
- Bishop, D.M. and Cheung, L.M. (1978) Moment functions (including static dipole polarisabilities) and radiative corrections for H2+ . J. Phys. B: Atom. Mol. Phys., 11, 3133–3144.
- Bishop, D.M., Pipin, J., and Cybulski, S.M. (1991) Theoretical investigation of the nonlinear optical properties of H2 and D2: extended basis set. Phys. Rev. A, 43, 4845–4853.
- Born, M. (1962) Atomic Physics, 7th edn, Blackie, London.
- Born, M. and Oppenheimer, R. (1927) Zur Quantentheorie der Molekeln. Ann. Phys. Leipzig, 84, 457–484.
- Boys, S.F. (1950) Electronic wave functions. I. A general method of calculation for stationary states of any molecular system. Proc. R. Soc. London Ser. A, 200, 542–554.
- Briggs, M.P., Murrell, J.N., and Salahub, D.R. (1971) Variational calculations of the static polarizability of H2 and of the dipole–dipole contribution to the dispersion energy between two hydrogen molecules. Mol. Phys., 22, 907–913.
- Brink, D.M. and Satchler, G.R. (1993) Angular Momentum, 3rd edn, Clarendon Press, Oxford.
- Buckingham, A.D. (1982) Closing remarks. Faraday Discuss. Chem. Soc., 73, 421–423.
- Cade, P.E. and Huo, W.H. (1967) Electronic structure of diatomic molecules. VI.A. Hartree–Fock wavefunctions and energy quantities for the ground states of the firstrow hydrides, AH. J. Chem. Phys., 47, 614–648.
- Casimir, H.B.G. and Polder, D. (1948) The influence of retardation on the London–van der Waals forces. Phys. Rev., 73, 360–372.
- Cencek, W. and Rychlewski, J. (1995) Many-electron explicitly correlated Gaussian functions. II. Ground state of the helium molecular ion He2 +. J. Chem. Phys., 102, 2533–2538.
- Clementi, E. (1962) SCF-MO wave functions for the hydrogen fluoride molecule. J. Chem. Phys., 36, 33–44.
- Clementi, E. and Corongiu, G. (1982) Geometrical Basis Set For Molecular Computations, IBM IS&TG, pp. 1–182.
- Clementi, E. and Roetti, C. (1974) Roothaan–Hartree–Fock atomic wave functions. Atom. Data Nucl. Data Tables, 14, 177–478.
- Cooper, D.L., Gerratt, J., and Raimondi, M. (1986) The electronic structure of the benzene molecule. Nature, 323, 699–701.
- Coulson, C.A. (1958) Electricity, 5th edn, Oliver and Boyd, Edinburgh.
- Coulson, C.A. (1961) Valence, 2nd edn, Oxford University Press, Oxford.
- Davies, D.W. (1967) The Theory of the Electric and Magnetic Properties of Molecules, John Wiley & Sons, London.
- Dirac, P.A.M. (1929) Quantum mechanics of many-electron systems. Proc. R. Soc. London Ser. A, 123, 714–733.
- Dixon, R.N. (1965) Spectroscopy and Structure, Methuen, London.
- Dunning, T.H. Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys., 90, 1007–1023.
- Eckart, C. (1930) The theory and calculation of screening constants. Phys. Rev., 36, 878–892.
- Eyring, H., Walter, J., and Kimball, G.E. (1944) Quantum Chemistry, John Wiley & Sons, Inc., New York.
- Figari, G. and Magnasco, V. (2003) On the interpolation of frequency-dependent polar-izabilities through a readily integrable expression. Chem. Phys. Lett., 374, 527–533.
- Figari, G., Rui, M., Costa, C., and Magnasco, V. (2007) C6 dispersion coefficients from reduced dipole pseudospectra. Theor. Chem. Acc., 118, 107–112.
-
Fock, V. (1930) Näherungsmethode zur Lösung des quantenmechanischen Mehrkörper-problems. Z. Phys, 61, 126–148.
10.1007/BF01340294 Google Scholar
- Frankowski, K. and Pekeris, C.L. (1966) Logarithmic terms in the wave functions of the ground state of two-electron atoms. Phys. Rev., 146, 46–49.
- Hall, G.G. (1951) The molecular orbital theory of chemical valency. VIII. A method of calculating ionization potentials. Proc. R. Soc. London Ser. A, 205, 541–552.
- Hartree, D.R. (1928a) The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods. Proc. Cambridge Phil. Soc., 24, 89–110.
- Hartree, D.R. (1928b) The wave mechanics of an atom with a non-Coulomb central field. Part II. Some results and discussion. Proc. Cambridge Phil. Soc., 24, 111–132.
- Heisenberg, W. (1930) Die Physikalische Prinzipien der Quantentheorie, Hirzel, Leipzig.
- Heitler, W. und London, F. (1927) Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Z. Phys., 44, 455–472.
- Hobson, E.W. (1965) The Theory of Spherical and Ellipsoidal Harmonics, 2nd edn, Chelsea, New York.
- Hohenberg, P. and Kohn, W. (1964) Inhomogeneous electron gas. Phys. Rev., 136, B864–B871.
- Hohn, F.E. (1964) Elementary Matrix Algebra, 2nd edn, MacMillan, New York.
-
Huber, K.P. and Herzberg, G. (1979) Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules, Van Nostrand-Reinhold, New York.
10.1007/978-1-4757-0961-2 Google Scholar
- Hückel, E. (1931) Quantentheoretische Beiträge zum Benzolproblem. I. Die Elektronenkonfiguration des Benzols und verwandter Verbindungen. Z. Phys., 70, 204–286.
- Ince, E.L. (1963) Integration of Ordinary Differential Equations, 7th edn, Oliver and Boyd, Edinburgh.
- Karplus, M. and Kolker, H.J. (1961) Magnetic interactions in lithium hydride. J. Chem. Phys., 35, 2235–2236.
- Karplus, M. and Kolker, H.J. (1963) Magnetic susceptibility of diatomic molecules. J. Chem. Phys., 38, 1263–1275.
- Kato, T. (1957) On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math., 10, 151–177.
- Keesom, W.H. (1921) Die van der Waalsschen Kohäsionkräfte. Phys. Z., 22, 129–141.
- Klopper, W. and Kutzelnigg, W. (1991) Wave functions with terms linear in the inter-electronic coordinates to take care of the correlation cusp. III. Second-order Møller– Plesset (MP2-R12) calculations on molecules of first row atoms. J. Chem. Phys., 94, 2020–2031.
- Koga, T. and Matsumoto, S. (1985) An exact solution of the Van der Waals interaction between two ground-state hydrogen atoms. J. Chem. Phys., 82, 5127–5132.
- Kohn, W. and Sham, L.J. (1965) Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, A1133–A1138.
- Kutzelnigg, W. (1985) r12-Dependent terms in the wave function as closed sums of partial wave amplitudes for large l. Theor. Chim. Acta Berlin, 68, 445–469.
- Lazzeretti, P. and Zanasi, R. (1981) On the theoretical determination of molecular first hyperpolarizability. J. Chem. Phys., 74, 5216–5224.
- Lennard-Jones, J.E. (1931) Wave functions of many-electron atoms. Proc. Cambridge Phil. Soc., 27, 469–480.
- Lennard-Jones, J.E. (1937) The electronic structure of some polyenes and aromatic molecules. I. The nature of the links by the method of molecular orbitals. Proc. R. Soc. London Ser. A, 158, 280–296.
- Liu, B. and McLean, A.D. (1973) Accurate calculation of the attractive interaction of two ground state helium atoms. J. Chem. Phys., 59, 4557–4558.
- Longuet-Higgins, H.C. (1956) The electronic states of composite systems. Proc. R. Soc. London Ser. A, 235, 537–543.
- Longuet-Higgins, H.C. (1961) Some recent developments in the theory of molecular energy levels. Adv. Spectr., 2, 429–472.
- Löwdin, P.O. (1955) Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys. Rev., 97, 1474–1489.
-
MacDonald, J.K.L. (1933) Successive approximations by the Rayleigh–Ritz variation method. Phys. Rev., 43, 830–833.
10.1103/PhysRev.43.830 Google Scholar
- MacRobert, T.M. (1947) Spherical Harmonics, 2nd edn, Methuen, London.
- Magnasco, V. (1978) A generalised London formula for dispersion coefficients. Chem. Phys. Lett., 57, 573–578.
- Magnasco, V. (2002) On the α and β parameters in Hückel theory including overlap for simple s molecular systems. Chem. Phys. Lett., 363, 544–549.
- Magnasco, V. (2003) A model for the heteropolar bond. Chem. Phys. Lett., 380, 397–403.
- Magnasco, V. (2004a) A model for the chemical bond. J. Chem. Edu., 81, 427–435.
- Magnasco, V. (2004b) A model for the van der Waals bond. Chem. Phys. Lett., 387, 332–338.
- Magnasco, V. (2005) On the principle of maximum overlap in molecular orbital theory. Chem. Phys. Lett., 407, 213–216.
- Magnasco, V. (2007) Elementary Methods of Molecular Quantum Mechanics, Elsevier, Amsterdam.
- Magnasco, V. (2008) Orbital exponent optimization in elementary VB calculations of the chemical bond in the ground state of simple molecular systems. J. Chem. Edu., 85, 1686–1691.
- Magnasco, V., Battezzati, M., Rapallo, A., and Costa, C. (2006) Keesom coefficients in gases. Chem. Phys. Lett., 428, 231–235.
- Magnasco, V. and Costa, C. (2005) On the principle of maximum overlap in valence bond theory. Chem. Phys. Lett., 403, 303–307.
- Magnasco, V., Costa, C., and Figari, G. (1989) Long-range second-order interactions and the shape of the He–HF and Ne–HF complexes. Chem. Phys. Lett., 156, 585–591.
-
Magnasco, V., Costa, C., and Figari, G. (1990a) A model for the elementary prediction of the angular geometries of van der Waals dimers. J. Mol. Struct. Theochem., 204, 229–246.
10.1016/0166-1280(90)85077-Z Google Scholar
-
Magnasco, V., Costa, C., and Figari, G. (1990b) Long-range coefficients for molecular interactions. II. J. Mol. Struct. Theochem., 206, 235–252.
10.1016/0166-1280(90)85139-E Google Scholar
-
Magnasco, V., Figari, G., and Costa, C. (1988) Long-range coefficients for molecular interactions. J. Mol. Struct. Theochem., 164, 49–66.
10.1016/0166-1280(88)80005-8 Google Scholar
- Magnasco, V. and Ottonelli, M. (1996a) Accurate evaluation of C6 dispersion coefficients for (H2)2. Chem. Phys. Lett., 248, 82–88.
- Magnasco, V. and Ottonelli, M. (1996b) Dipole polarizabilities and C6 dispersion coefficients for small atomic and molecular systems. Chem. Phys. Lett., 259, 307–312.
- Magnasco, V. and Ottonelli, M. (1999a) Long-range dispersion coefficients from a generalization of the London formula. Trends in Chem. Phys., 7, 215–232.
- Magnasco, V. and Ottonelli, M. (1999b) Dipole polarizability pseudospectra and C6 dispersion coefficients for H2 + –H2 + . J. Mol. Struct. Theochem, 469, 31–40.
- Magnasco, V., Ottonelli, M., Figari, G. et al. (1998) Polarizability pseudospectra and dispersion coefficients for H(1s)–H(1s). Mol. Phys., 94, 905–908.
- Margenau, H. (1961) Fundamental principles of quantum mechanics, in Quantum Theory, vol. I (ed. D.R. Bates), Academic Press, New York.
- Margenau, H. and Murphy, G.M. (1956) The Mathematics of Physics and Chemistry, Van Nostrand, Princeton.
- McLean, A.D. and Yoshimine, M. (1967a) Theory of molecular polarizabilities. J. Chem. Phys., 47, 1927–1935.
- McLean, A.D. and Yoshimine, M. (1967b) Computed ground-state properties of FH and CH. J. Chem. Phys., 47, 3256–3262.
- McWeeny, R. (1950) Gaussian approximations to wave functions. Nature, 166, 21–22.
- McWeeny, R. (1960) Some recent advances in density matrix theory. Rev. Mod. Phys., 32, 335–369.
- McWeeny, R. (1979) Coulson's Valence, 3rd edn, Oxford University Press, Oxford.
- McWeeny, R. (1989) Methods of Molecular Quantum Mechanics, 2nd edn, Academic Press, London.
- Meyer, W. (1976) Dynamic multipole polarizabilities of H2 and He and long-range interaction coefficients for H2–H2,H2–He and He–He. Chem. Phys., 17, 27–33.
- Mohr, P.J. and Taylor, B.N. (2003) The fundamental physical constants. Phys. Today, 56, BG6–BG13.
- Møller, C. and Plesset, M.S. (1934) Note on an approximation treatment for many-electron systems. Phys. Rev., 46, 618–622.
- Moore, C.E. (1971) Atomic Energy Levels as Derived From the Analyses of Optical Spectra, vol. I, US National Bureau of Standards Circular 467, Government Printing Office, Washington, DC, pp. 4–5.
- Mulder, J.J.C. (1966) On the number of configurations in an N-electron system. Mol. Phys., 10, 479–488.
- Mulliken, R.S. (1955) Electronic population analysis on LCAO-MO molecular wave functions. I. J. Chem. Phys., 23, 1833–1840.
- Murrell, J.N., Kettle, S.F.A., and Tedder, J.M. (1985) The Chemical Bond, 2nd edn, John Wiley & Sons, Inc., New York.
- Noga, J. and Kutzelnigg, W. (1994) Coupled cluster theory that takes care of the correlation cusp by inclusion of linear terms in the interelectronic coordinates. J. Chem. Phys., 101, 7738–7762.
- Noga, J., Valiron, P., and Klopper, W. (2001) The accuracy of atomization energies from explicitly correlated coupled-cluster calculations. J. Chem. Phys., 115, 2022–2032.
- Pauli, W. Jr (1926) Über das Wasserstoffspektrum vom Standpunkt der neuen Quantenmechanik. Z. Phys., 36, 336–363.
- Pauling, L. (1933) The calculation of matrix elements for Lewis electronic structures of molecules. J. Chem. Phys., 1, 280–283.
- Peek, J.M. (1965) Eigenparameters for the 1ssg and 2psu orbitals of H2 + . J. Chem. Phys., 43, 3004–3006.
- Pekeris, C.L. (1958) Ground state of two-electron atoms. Phys. Rev., 112, 1649–1658.
- Pekeris, C.L. (1959) 1 1S and 2 3S states of helium. Phys. Rev., 115, 1216–1221.
- Ritz, W. (1909) Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. J. Reine Angew. Math., 135, 1–61.
- Roos, B. (1972) A new method for large-scale CI calculations. Chem. Phys. Lett., 15, 153–159.
- Roothaan, C.C.J. (1951a) A study of two-center integrals useful in calculations on molecular structure. I. J. Chem. Phys., 19, 1445–1458.
- Roothaan, C.C.J. (1951b) New developments in molecular orbital theory. Rev. Mod. Phys., 23, 69–89.
- Rosenberg, B.J., Ermler, W.C., and Shavitt, I. (1976) Ab initio SCF and CI studies on the ground state of the water molecule. II. Potential energy and property surfaces. J. Chem. Phys., 65, 4072–4080.
- Rosenberg, B.J. and Shavitt, I. (1975) Ab initio SCF and CI studies on the ground state of the water molecule. I. Comparison of CGTO and STO basis sets near the Hartree–Fock limit. J. Chem. Phys., 63, 2162–2174.
- Ruedenberg, K. (1962) The physical nature of the chemical bond. Rev. Mod. Phys., 34, 326–376.
- Rutherford, D.E. (1962) Vector Methods, 9th edn, Oliver and Boyd, Edinburgh.
-
Schroedinger, E. (1926a) Quantisierung als Eigenwertproblem (Erste Mitteilung). Ann. Phys., 79, 361–376.
10.1002/andp.19263840404 Google Scholar
-
Schroedinger, E. (1926b) Quantisierung als Eigenwertproblem (Zweite Mitteilung). Ann. Phys., 79, 489–527.
10.1002/andp.19263840602 Google Scholar
-
Schroedinger, E. (1926c) Quantisierung als Eigenwertproblem (Dritte Mitteilung). Ann. Phys., 80, 437–490.
10.1002/andp.19263851302 Google Scholar
-
Schroedinger, E. (1926d) Quantisierung als Eigenwertproblem (Vierte Mitteilung). Ann. Phys., 81, 109–139.
10.1002/andp.19263861802 Google Scholar
-
Schroedinger, E. (1926e) Über das Verhältnis der Heisenberg–Born–Jordanschen Quantenmechanik zu der meinen. Ann. Phys., 79, 734–756.
10.1002/andp.19263840804 Google Scholar
- Slater, J.C. (1929) The theory of complex spectra. Phys. Rev., 34, 1293–1322.
- Slater, J.C. (1930) Atomic shielding constants. Phys. Rev., 36, 57–64.
- Slater, J.C. (1931) Molecular energy levels and valence bonds. Phys. Rev., 38, 1109–1144.
- Stevens, R.M. and Lipscomb, W.N. (1964a) Perturbed Hartree–Fock calculations. II. Further results for diatomic lithium hydride. J. Chem. Phys., 40, 2238–2247.
- Stevens, R.M. and Lipscomb, W.N. (1964b) Perturbed Hartree–Fock calculations. III. Polarizability and magnetic properties of the HF molecule. J. Chem. Phys., 41, 184–194.
- Stevens, R.M. and Lipscomb, W.N. (1964c) Perturbed Hartree–Fock calculations. IV. Second-order properties of the fluorine molecule. J. Chem. Phys., 41, 3710–3716.
- Stevens, R.M., Pitzer, R.M., and Lipscomb, W.N. (1963) Perturbed Hartree–Fock calculations. I. Magnetic susceptibility and shielding in the LiH molecule. J. Chem. Phys., 38, 550–560.
- Strand, T.G. and Bonham, R.A. (1964) Analytical expressions for the Hartree–Fock potential of neutral atoms and for the corresponding scattering factors for X-rays and electrons. J. Chem. Phys., 40, 1686–1691.
- Sundholm, D. (1985) Applications of fully numerical two-dimensional self-consistent methods on diatomic molecules. PhD Dissertation, The University, Helsinki, Finland.
- Sundholm, D., Pyykkö, P., and Laaksonen, L. (1985) Two-dimensional, fully numerical molecular calculations. X. Hartree–Fock results for He2,Li2,Be2, HF, OH ,N2, CO, BF, NO + and CN . Mol. Phys., 56, 1411–1418.
- Thakkar, A.J. (1988) Higher dispersion coefficients: accurate values for hydrogen atoms and simple estimates for other systems. J. Chem. Phys., 89, 2092–2098.
- Tillieu, J. (1957a) Contribution a l' etude th eorique des susceptibilit es magn etiques mol eculaires. Ann. Phys. Paris, 2, 471–497 (Parts I–III).
- Tillieu, J. (1957b) Contribution a l' etude th eorique des susceptibilit es magn etiques mol eculaires. Ann. Phys. Paris, 2, 631–675 (Part IV).
- Troup, G. (1968) Understanding Quantum Mechanics, Methuen, London.
- Tunega, D. and Noga, J. (1998) Static electric properties of LiH: explicitly correlated coupled cluster calculations. Theor. Chem. Acc., 100, 78–84.
-
Van Duijneveldt-Van de Rijdt, J.G.C.M. and Van Duijneveldt, F.B. (1982) Gaussian basis sets which yield accurate Hartree–Fock electric moments and polarizabilities. J. Mol. Struct. Theochem, 89, 185–201.
10.1016/0166-1280(82)80164-4 Google Scholar
- Van Vleck, J.H. (1932) The Theory of Electric and Magnetic Susceptibilities, Oxford University Press, Oxford.
-
Wahl, A.C. and Das, G. (1977) The MC-SCF method, in Methods of Electronic Structure Theory (ed. H.F. Schaefer, III), Plenum Press, New York, pp. 51–78.
10.1007/978-1-4757-0887-5_3 Google Scholar
- Wheland, G.W. (1937) The valence-bond treatment of the oxygen molecule. Trans. Faraday Soc., 33, 1499–1502.
- Wigner, E.P. (1959) Group Theory and its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, New York.
- Wolniewicz, L. (1993) Relativistic energies of the ground state of the hydrogen molecule. J. Chem. Phys., 99, 1851–1868.
- Woon, D.E. and Dunning, T.H. Jr (1995) Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon. J. Chem. Phys., 103, 4572–4585.
- Wormer, P.E.S. (1975) Intermolecular forces and the group theory of many-body systems. PhD Dissertation, Katholicke Universiteit, Nijmegen, The Netherlands.
- Yan, Z.C., Babb, J.F., Dalgarno, A., and Drake, G.W.F. (1996) Variational calculations of dispersion coefficients for interactions among H, He, and Li atoms. Phys. Rev. A, 54, 2824–2833.
- Zener, C. (1930) Analytic atomic wave functions. Phys. Rev., 36, 51–56.