Vibrational Spectroscopy for Studying Hydrogen Bonding in Imidazolium Ionic Liquids and their Mixtures with Cosolvents
Johannes Kiefer
Lehrstuhl für Technische Thermodynamik (LTT) and Erlangen Graduate School in Advanced Optical Technologies (SAOT), Universität Erlangen-Nürnberg, Am Weichselgarten 8, 91058, Erlangen, Germany
Search for more papers by this authorJohannes Kiefer
Lehrstuhl für Technische Thermodynamik (LTT) and Erlangen Graduate School in Advanced Optical Technologies (SAOT), Universität Erlangen-Nürnberg, Am Weichselgarten 8, 91058, Erlangen, Germany
Search for more papers by this authorKe-Li Han
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
Search for more papers by this authorGuang-Jiu Zhao
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
Search for more papers by this authorSummary
This chapter contains sections titled:
-
Introduction
-
Experimental Approaches
-
Hydrogen Bonding in Ionic Liquids
-
Potential, Challenges and Future Applications
-
Acknowledgements
-
References
References
-
P. Wasserscheid and W. Keim, Ionic liquids – new ‘solutions’ for transition metal catalysis. Angew. Chem. – Int. Edn, 39, 3773–3789 (2000).
10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5 Google Scholar
-
P. Wasserscheid and T. Welton (eds), Ionic Liquids in Synthesis, 2nd edition. Wiley-VCH, Mannheim, Germany (2007).
10.1002/9783527621194 Google Scholar
- M. Picquet, D. Poinsot, S. Stutzmann et al., Ionic liquids: media for better molecular catalysis. Topics in Catalysis, 29, 139–143 (2004).
- R. A. Sheldon, R. M. Lau and M. J. Sorgedrager, Biocatalysis in ionic liquids. Green Chem., 4, 147–151 (2002).
- M. Seiler, C. Jork, A. Kavarnou et al., Separation of azeotropic mixtures using hyperbranched polymers or ionic liquids. AIChE J., 50, 2439–2454 (2004).
- M. C. Buzzeo, R. G. Evans and R. G. Compton, Non-haloaluminate room-temperature ionic liquids in electrochemistry – a review. ChemPhysChem, 5, 1106–1120 (2004).
- M. L. Pusey, M. S. Paley, M. B. Turner and R. D. Rogers, Protein crystallization using room temperature ionic liquids. Crystal Growth Des., 7, 787–793 (2007).
- P. A. Hunt, B. Kirchner and T. Welton, Characterising the electronic structure of ionic liquids: an examination of the 1-butyl-3-methylimidazolium chloride ion pair. Chem. – Eur. J., 12, 6762–6775 (2006).
- P. A. Hunt, I. R. Gould and B. Kirchner, The structure of imidazolium-based ionic liquids: insights from ion-pair interactions. Aust. J. Chem., 60, 9–14 (2007).
-
B. Schrader (ed.), Infrared and Raman Spectroscopy. VCH Verlagsgesellschaft, Weinheim, Germany (1995).
10.1002/9783527615438 Google Scholar
-
W. Demtröder, Laser Spectroscopy, 2nd edition. Springer-Verlag, Berlin/New York (1996).
10.1007/978-3-662-08260-7 Google Scholar
- J. Kiefer, D. N. Kozlov, T. Seeger and A. Leipertz, Local fuel concentration measurements for mixture formation diagnostics using diffraction by laser-induced gratings in comparison to spontaneous Raman scattering. J. Raman Spectrosc., 39, 711–721 (2008).
- J. Kiefer, T. Seeger, S. Steuer et al., Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant. Measmt Sci. Technol., 19, 085408 (2008).
- J. Kiefer, J. Fries and A. Leipertz, Experimental vibrational study of imidazolium-based ionic liquids: Raman and infrared spectra of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and 1-ethyl-3-methylimidazolium ethylsulfate. Appl. Spectrosc., 61, 1306–1311 (2007).
-
R. Menzel, Photonics: Linear and Nonlinear Interactions of Laser Light and Matter. Springer-Verlag, Berlin, Germany (2001).
10.1007/978-3-662-04521-3 Google Scholar
- A. Lampert, Implementing the Theory of Sum Frequency Generation Vibrational Spectroscopy: a Tutorial Review. Taylor & Francis (2005).
- M. A. Ratner and G. C. Schatz, Introduction to Quantum Mechanics in Chemistry. Prentice-Hall, Upper Saddle River, NJ (2001).
- P. W. Atkins and R. S. Friedman, Molecular Quantum Mechanics, 4th edition, Oxford University Press, Oxford, UK (2004).
- R. W. Berg, Raman spectroscopy and ab-initio model calculations on ionic liquids. Monatshefte für Chemie – Chemical Monthly, 138, 1045–1075 (2007).
- K. Fumino, A. Wulf and R. Ludwig, Strong, localized, and directional hydrogen bonds fluidize ionic liquids. Angew. Chem. – Int. Edn, 47, 8731–8734 (2008).
- K. Fumino, A. Wulf and R. Ludwig, The cation–anion interaction in ionic liquids probed by far-infrared spectroscopy. Angew. Chem. – Int. Edn, 47, 3830–3834 (2008).
- J. F. Huang, P. Y. Chen, I. Sun and S. P. Wang, NMR evidence of hydrogen bonding in 1-ethyl-3-methylimidazoliumtetrafluoroborate room temperature ionic liquid. Inorg. Chim. Acta, 320, 7–11 (2001).
- A. Yokozeki, D. J. Kasprzak and M. B. Shiflett, Thermal effect on C–H stretching vibrations of the imidazolium ring in ionic liquids. Phys. Chem. Chem. Phys., 9, 5018–5026 (2007).
- T. Köddermann, C. Wertz, A. Heintz and R. Ludwig, Ion-pair formation in the ionic liquid 1-ethyl-3-methylimidazolium bis(triflyl)imide as a function of temperature and concentration. ChemPhysChem, 7, 1944–1949 (2006).
- R. Holomb, A. Martinelli, I. Albinsson et al., Ionic liquid structure: the conformational isomerism in 1-butyl-3-methyl-imidazolium tetrafluoroborate ([bmim][BF4]). J. Raman Spectrosc., 39, 793–805 (2008).
- Y. Umebayashi, T. Fujimori, T. Sukizaki et al., Evidence of conformational equilibrium of 1-ethyl-3-methylimidazolium in its ionic liquid salts: Raman spectroscopic study and quantum chemical calculations. J. Phys. Chem. A, 109, 8976–8982 (2005).
- J. C. Lassègues, J. Grondin, R. Holomb and P. Johansson, Raman and ab initio study of the conformational isomerism in the 1-ethyl-3-methyl-imidazolium bis(trifluoromethanesulfonyl)imide ionic liquid. J. Raman Spectrosc., 38, 551–558 (2007).
- S. Hayashi, R. Ozawa and H. Hamaguchi, Raman spectra, crystal polymorphism, and structure of a prototype ionic-liquid [bmim]Cl. Chem. Lett., 32, 498–499 (2003).
- A. P. Fröba, P. Wasserscheid, D. Gerhard et al., Revealing the influence of the strength of Coulomb interactions on the viscosity and interfacial tension of ionic liquid co-solvent mixtures. J. Phys. Chem. B, 111, 12 817–12 822 (2007).
- L. A. S. Ries, F. Amaral, K. Matos et al., Evidence of change in the molecular organization of 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid solutions with the addition of water. Polyhedron, 27, 3287–3293 (2008).
- H. Weingärtner, Understanding Ionic Liquids at the Molecular Level: Facts, Problems, and Controversities. Wiley-VCH, Weinheim, Germany (2008).
- L. Cammarata, S. G. Kazarian, P. A. Salter and T. Welton, Molecular states of water in room temperature ionic liquids. Phys. Chem. Chem. Phys., 3, 5192–5200 (2001).
- T. Köddermann, C. Wertz, A. Heintz and R. Ludwig, The association of water in ionic liquids: a reliable measure of polarity. Angew. Chem. – Int. Edn, 45, 3697–3702 (2006).
- H. Chang, J. Jiang, C. Chang et al., Structural organization in aqueous solutions of 1-butyl-3-methylimidazolium halides: a high-pressure infrared spectroscopic study on ionic liquids. J. Phys. Chem. B, 112, 4351–4356 (2008).
- H. Chang, J. Jiang, Y. Liou et al., Effects of water and methanol on the molecular organization of 1-butyl-3-methylimidazolium tetrafluoroborate as functions of pressure and concentration. J. Chem. Phys., 129, article 04452 (2008).
- Y. Jeon, J. Sung, D. Kim et al., Structural change of 1-butyl-3-methylimidazolium tetrafluoroborate + water mixtures studied by infrared vibrational spectroscopy. J. Phys. Chem. B, 112, 923–928 (2008).
- Y. Jeon, J. Sung, C. Seo et al., Structure of ionic liquids with different anions studied by infrared vibration spectroscopy. J. Phys. Chem. B, 112, 4735–4740 (2008).
- A. Dominguez-Vidal, N. Kaun, M. J. Ayora-Canada and B. Lendl, Probing intermolecular interactions in water/ionic mixtures by far-infrared spectroscopy. J. Phys. Chem. B, 111, 4446–4452 (2007).
- M. B. Turner, S. K. Spear, J. D. Holbrey et al., Ionic liquid-reconstituted cellulose composites as solid support matrices for biocatalyst immobilization. Biomacromolecules, 6, 2497–2502 (2005).
- S. Katsyuba, E. Zvereva, A. Vidis and P. Dyson, Application of density functional theory and vibrational spectroscopy toward the rational design of ionic liquids. J. Phys. Chem. A, 111, 352–370 (2007).
- J. Kiefer, K. Obert, A. Bösmann et al., Quantitative analysis of alpha-D-glucose in an ionic liquid using infrared spectroscopy. ChemPhysChem, 9, 1317–1322 (2008).
- J. Kiefer, K. Obert, S. Himmler et al., Infrared spectroscopy of a Wilkinson catalyst in a room-temperature ionic liquid. ChemPhysChem, 9, 2207–2213 (2008).
- C. B. Minnich, P. Buskens, H. C. Steffens et al., Highly flexible fiber-optic ATR-IR probe for inline reaction monitoring. Org. Process Res. Dev., 11, 94–97 (2007).
- C. B. Minnich, L. Küpper, M. A. Liauw and L. Greiner, Combining reaction calorimetry and ATR-IR spectroscopy for the operando monitoring of ionic liquids synthesis. Catalysis Today, 126, 191–195 (2007).
- J. Kiefer, J. Lehmann, A. Leipertz and A.P. Fröba, Intermolecular interactions between acetone and the room-temperature ionic liquid [EMIM][EtSO4]. Proceedings of the 17th Symposium on Thermophysical Properties, Boulder, CO (2009).
- T. Iimori, T. Iwahashi, K. Kanai et al., Local structure at the air/liquid interface of room-temperature ionic liquids probed by infrared-visible sum frequency generation vibrational spectroscopy: 1-alkyl-3-methylimidazolium tetrafluoroborates. J. Phys. Chem. B, 111, 4860–4866 (2007).
- T. Iimori, T. Iwahashi, H. Ishii et al., Orientational ordering of alkyl chain at the air/liquid interface of ionic liquids studied by sum frequency vibrational spectroscopy. Chem. Phys. Lett., 389, 321–326 (2004).
- S. Rivera-Rubero and S. Baldelli, Influence of water on the surface of the water-miscible ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate: a sum frequency generation analysis. J. Phys. Chem. B, 110, 15 499–15 505 (2006).
- J. B. Rollins, B. D. Fitchett and J. C. Conboy, Structure and orientation of the imidazolium cation at the room-temperature ionic liquid/SiO2 interface measured by sum-frequency vibrational spectroscopy. J. Phys. Chem. B, 111, 4990–4999 (2007).
- C. Romero and S. Baldelli, Sum frequency generation study of the room-temperature ionic liquids/quartz interface. J. Phys. Chem. B, 110, 6213–6223 (2006).