Semantic Computing
Phillip C.-y. Sheu
University of California, Irvine, California, USA
Search for more papers by this authorPhillip C.-y. Sheu
University of California, Irvine, California, USA
Search for more papers by this authorPhillip C.-Y. Sheu
University of California, Irvine, California, USA
Search for more papers by this authorHeather Yu
Search for more papers by this authorC. V. Ramamoorthy
Search for more papers by this authorArvind K. Joshi
Search for more papers by this authorLotfi A. Zadeh
Search for more papers by this authorSummary
The chapter defines semantic computing as a field that addresses the derivation and matching of the semantics of computational content and that of naturally expressed user intentions to help retrieve, manage, manipulate, or even create the content, where “ content “ may be anything including video, audio, text, process, service, hardware, network, community, and so on. It brings together those disciplines concerned with connecting the intentions of humans with computational content. This connection can go both ways: retrieving, using, and manipulating existing content according to user ’s goals and creating, rearranging, and managing content that matches the author ’ s intentions. Semantic analysis is the foundation of semantic computing; it provides the information resource for semantic integration and semantic services. A major goal of semantic computing is providing more powerful computing services for all kinds of users.
Controlled Vocabulary Terms
interface phenomena; programming language semantics
REFERENCES
- W. Stallings, Cryptography and Network Security: Principles and Practices, Prentice-Hall, Englewood Cliffs, NJ, 1998.
- S. Castano, M. G. Fugini, G. Martella, and P. Samarati, Database Security, ACM Press/Addison-Wesley, New York, 1995.
- J. D. Meier et al., Improving Web Application Security, Threats and Countermeasures, Microsoft Corporation, Portland, OR, 2003.
- R. Anderson, Security Engineering, Wiley, New York, 2001.
- M. Ni and X. Xiao, Internet QoS: A big picture, IEEE Network, 13 (2): 8–18, 1999.
- C. Aurrecoechea, A. Cambell, and L. Hauw, A survey of QoS architectures, Multimedia Systems, 6 (3): 138–151, Springer Berlin, Heidelberg, 1998.
- A. Ekin, A. M. Tekalp, and R. Mehrotra, Integrated semantic-syntactic video modeling for search and browsing, IEEE Trans. Multimedia, 6 (6): 839–851, 2004.
- S. Bloehdorn, N. Simou, V. Tzouvaras, K. Petridis, S. Handschuh, Y. Avrithis, I. Kompatsiaris, S. Staab, and M. G. Strintzis, Knowledge representation for semantic multimedia content analysis and reasoning, in Proceedings of the Euro pean Workshop on the Integration of Knowledge, Semantics and Digital Media Technology, 25–26, Paola Hobson, Ebroul Izquierdo, Ioannis Kompatsiaris and Noel E. O'Connor (Eds.): Knowledge-Based Media Analysis for Self-Adaptive and Agile Multi-Media, QMUL, London, 2004.
- S. Bloehdorn, K. Petridis, C. Saatho, N. Simou, V. Tzouvaras, Y. Avrithis, S. Handschuh, Y. Kompatsiaris, S. Staab, and M. G. Strintzis, Semantic annotation of images and videos for multimedia analysis, in Proceedings of the Second European Semantic Web Conference, 592–607, Asuncion Gómez-Pérez; Jerome Euzenat (Eds.): The Semantic Web: Research and Applications, Springer Berlin, Heidelberg, Heraklion, Crete, Greece, 2005.
- D. Lin, Automatic retrieval and clustering of similar words, paper presented at 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, COLINGACL '98, Montreal, 1998.
- T. K. Landauer, P. W. Foltz, and D. Laham, Introduction to latent semantic analysis, Discourse Process., 25: 259–284, 1998.
-
S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, Indexing by latent semantic analysis, J. Am. Soc. Inform. Sc., 41 (6): 391–407, 1990.
10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 Google Scholar
- C. Ding, A similarity based probability model for latent semantic indexing, in Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 58–65, Fredric Gey, Marti Hearst, Richard Tong (Eds.), ACM Press, Berkeley, 1999.
- S. Nestrov, S. Abiteboul, and R. Motwani, Extracting schema from semistructured data, in Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, 295–306, Ashutosh Tiwary and Michael Franklin (Eds.), ACM Press, Seattle, 1998.
-
S. Mehmet, S. Akhil, V. Machiraju, and F. Casati, Semantic Analysis of E-Business Operations, Journal of Network and Systems Management, 11 (1), 13–37, Springer, New York, 2003.
10.1023/A:1022413107709 Google Scholar
- S. Soderland, Learning information extraction rules for semi-structured and free text, Machine Learning, 34 (1–3): 233–272, 1999.
- T. K. Landauer and S. T. Dumais, A solution to Plato's problem: The latent semantic analysis theory of the acquisition, induction, and representation of knowledge, Psychol. Rev., 104: 211–140, 1997.
- C. Batini, M. Lenzerini, and X. Navathe, A comparative analysis of methodologies for database schema integration, ACM Comput. Surv., 18 (4): 323–364, 1986.
-
J. Hammer, and D. McLeod, An approach to resolving semantic heterogeneity in a federation of autonomous, heterogeneous database systems, Int. J. Intell. Cooperative Inform. Syst., 2: 51–83, 1993.
10.1142/S0218215793000046 Google Scholar
- R. Fagin, P. G. Kolaitis, R. J. Miller, and R. Popa, Data exchange: Semantics and query answering, in Proceedings of the International Conference on Database Theory (ICDT), 207–224, Diego Calvanese, Maurizio Lenzerini and Rajeev Motwani (Eds.): Database Theory — ICDT 2003, Springer Berlin, Siena, Italy, 2003.
- J. Madhavan and A. Y. Halevy, Composing mappings among data sources, in Proceedings of International Conference on Very Large Data Bases (VLDB), 29: 572–583, Johann Christoph Freytag, Peter C. Lockemann, Serge Abiteboul, Michael J. Carey, Patricia G. Selinger and Andreas Heuer (Eds.), VLDB Endowment, Berlin, Germany, 2003.
- D. Calvanese, G. De Giacomo, and M. Lenzerini, A framework for ontology integration, in Proc. of 2001 Int. Semantic Web Working Symposium (SWWS), 303–316, Isabel F. Cruz, Stefan Decker, Jérôme Euzenat, Deborah L. McGuinness (Eds.): The Emerging Semantic Web, Selected Papers from the First Semantic Web Working Symposium, IOS Press, Stanford University, Palo Alto, CA, 2001.
- A. Doan and A. Halevy, Semantic integration research in the database community: A brief survey, AI Mag., 26 (1): 83–94, 2005.
- N. Noy, Semantic integration: A survey of ontology-based approaches, SIGMOD Record, Volume 33, No. 4, 65–70, 2004.
- Y. Kalfoglou and M. Schorlemmer, Ontology mapping: The state of the art, Knowledge Eng. Rev., 18 (1): 1–31, 2003.
- N. F. Noy and M. A. Musen, Evaluating ontology-mapping tools: Requirements and experience, paper presented at the Workshop on Evaluation of Ontology Tools at EKAW '02 (EON2002), Siguenza, Spain, 2002.
- L. Levine, B. C. Meyers, E. Morris, P. R. H. Place, and D. Plakosh, System of systems interoperability: Final report, SEI TR-004, Carnegie Mellon Software Engineering Institute, Pittsburgh, PA, 2004.
- J. Park and S. Ram, Information systems interoperability: What lies beneath? ACM Trans. Inform. Syst. (TOIS), 22 (4): 595–632, 2004.
-
A. M. Ouksel and A. Sheth, Semantic interoperability in global information systems, ACM SIGMOD Record, 28 (1): 5–12, 1999.
10.1145/309844.309849 Google Scholar
- S. Ram and J. Park, Semantic conflict resolution ontology (SCROL): An ontology for detecting and resolving data and schema-level semantic conflicts, IEEE Trans. Knowledge Data Eng., 16 (2): 189–202, 2004.
- G. Jiang et al., IXO Seedling Project technical report dynamic integration of distributed semantic services, Thayer School of Engineering, Dartmouth College, Hanover, NH, 2002.
- J. Heflin and J. Hendler, Searching the Web with SHOE, in Artificial Intelligence for Web Search. Papers from the AAAI Workshop, WS-00–01, K Bollacker (Ed.), AAAI Press, Menlo Park, CA, 2000, pp 35–40.
- E. Brill, S. Dumais, and M. Banko, An analysis of the AskMSR question-answering system, in Proc. Empirical Methods in Natural Language Processing Conference, 10: 257–264, Jan Hajǐc, Yuji Matsumoto (Eds.), Association for Computational Linguistics, Philadelphia, 2002.
- V. S. Subrahmanian, Principles of Multimedia Database Systems, Morgan Kaufmann, San Francisco, 1998.
- O. Stock, Natural language in multimodal human-computer interface, IEEE Expert, 9 (2): 40–44, 1994.
- S. N. Murphy, V. Gainer, and H. C. Chueh, A visual interface designed for novice users to find research patient cohorts in a large biomedical database, AMIA Annu. Symp. Proc., Volume 2003, 489–493, 2003.
- Jim Jacobs and Alexander Linden, Technical Report, T-17-5338, Gartner, Inc., http://www.gartner.com/DisplayDocument?doc_cd=109295.