Neuroactive Steroids in Anxiety and Stress
Deborah A. Finn
Oregon Health and Science University and Department of Veterans Affairs, Portland, Oregon
Search for more papers by this authorRobert H. Purdy
The Scripps Research Institute, La Jolla, California
Search for more papers by this authorDeborah A. Finn
Oregon Health and Science University and Department of Veterans Affairs, Portland, Oregon
Search for more papers by this authorRobert H. Purdy
The Scripps Research Institute, La Jolla, California
Search for more papers by this authorAbstract
Neuroactive steroids are endogenous and synthetic steroids which act on membrane receptors in the nervous system to excite or inhibit neuronal activity. Their effect on γ-aminobutyric acid type A (GABAA) receptors and other ligand-gated ion channels has been established, although the nature of the neuroactive steroid binding sites, which allosterically alter receptor function, remains obscure. A subgroup of this class of steroids is termed neurosteroids; these have been demonstrated to be biosynthesized from cholesterol in the nervous system. Neuroactive steroids also are biosynthesized by the adrenals and gonads before being secreted into the circulation. The role of neuroactive steroids in altering the function of the hypothalamic–pituitary–adrenal (HPA) axis is only now emerging. Ten animal models of anxiety and stress are described that are significantly altered by one or more groups of neuroactive steroids. Finally, neuroactive steroid interactions with stress-induced behaviors in experimental animals and humans are reviewed.
References
- 1 Selye, H. (1942). Correlations between the chemical structure and the pharmacological actions of the steroids. Endocrinology 30, 437–453.
- 2 Laubach, G. D., Pan, S. Y., and Rudel, H. W. (1955). Steroid anesthetic agent. Science 122, 78.
- 3 Holzbauer, M. (1976). Physiological aspects of steroids with anaesthetic properties. Med. Biol. 54, 227–242.
- 4 Holzbauer, M., Birmingham, M. K., De Nicola, A. F., et al. (1985). In vivo secretion of 3α-hydroxy-5α-pregnan-20-one, a potent anaesthetic steroid, by the adrenal gland of the rat. J. Steroid Biochem. 22, 97–102.
- 5 Harrison, N. L., and Simmonds, M. A. (1984). Modulation of the GABA receptor complex by a steroid anaesthetic. Brain Res. 323, 287–292.
- 6 Merke, D. P., Bornstein, S. R., Avila, N. A., et al. (2002). Future directions in the study and management of congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Ann. Intern. Med. 136, 320–334.
- 7 McEwen, B. S. (1991). Non-genomic and genomic effects of steroids on neural activity. Trends Pharmacol. Sci. 12, 141–147.
- 8 Paul, S. M., and Purdy, R. H. (1992). Neuroactive steroids. FASEB J. 6, 2311–2322.
- 9 Brann, D. W., Hendry, L. B., and Mahesh, V. B. (1995). Emerging diversities in the mechanism of action of steroid hormones. J. Steroid Biochem. Mol. Biol. 52, 113–133.
- 10 Lambert, J. J., Belelli, D., Hill-Venning, C., et al. (1995). Neurosteroids and GABAA receptor function. Trends Pharmacol. Sci. 16, 295–303.
- 11 Rupprecht, R., and Holsboer, F. (1999). Neuroactive steroids: Mechanisms of action and neuropsychopharmacological perspectives. Trends Neurosci. 22, 410–416.
- 12 Baulieu, E. E., Robel, P., and Schumacher, M. (2001). Neurosteroids: Beginning of the story. Int. Rev. Neurobiol. 46, 1–32.
- 13 Gasior, M., Carter, R. B., and Witkin, J. M. (1999). Neuroactive steroids: Potential therapeutic use in neurological and psychiatric disorders. Trends Pharmacol. Sci. 20, 107–112.
- 14 Barbaccia, M. L., Serra, M., Purdy, R. H., et al. (2001). Stress and neuroactive steroids. Int. Rev. Neurobiol. 46, 243–272.
- 15 Purdy, R. H., Morrow, A. L., Moore, P. H. Jr., et al. (1991). Stress-induced elevations of γ-aminobutyric acid type A receptor-active steroids in the rat brain. Proc. Natl. Acad. Sci. USA 88, 4553–4557.
- 16 Concas, A., Mostallino, M. C., Porcu, P., et al. (1998). Role of brain allopregnanolone in the plasticity of gamma-aminobutyric acid type A receptor in rat brain during pregnancy and after delivery. Proc. Natl. Acad. Sci. USA 95, 13284–13289.
- 17 Finn, D. A., and Gee, K. W. (1994). The estrus cycle, sensitivity to convulsants and the anticonvulsant effect of a neuroactive steroid. J. Pharmacol. Exp. Ther. 271, 164–170.
- 18 Belelli, D., and Lambert, J. J. (2005). Neurosteroids: Endogenous regulators of the GABAA receptor. Nat. Rev. Neurosci. 6, 565–575.
- 19 Baulieu, E. E. (1981). Steroid hormones in the brain: Several mechanisms? In: Steroid Hormone Regulation of the Brain. Series title: Wenner-Gren Center International Symposium, Vol. 34, K. Fuxe, J. A. Gustafsson, and L. Wetterberg, Eds., Pergamon, Oxford, pp. 3–14.
- 20 Ichikawa, S., Sawada, T., Nakamura, Y., et al. (1974). Ovarian secretion of pregnane compounds during the estrous cycle and pregnancy in rats. Endocrinology 94, 1615–1620.
- 21 Purdy, R. H., Moore, P. H. Jr., Rao, P. N., et al. (1990). Radioimmunoassay of 3α-hydroxy-5α-pregnan-20-one in rat and human plasma. Steroids 55, 290–296.
- 22 Corpechot, C., Young, J., Calvel, M., et al. (1993). Neurosteroids: 3α-Hydroxy-5α-pregnan-20-one and its precursors in the brain, plasma and steroidogenic glands of male and female rats. Endocrinology 133, 1003–1009.
- 23 Cheney, D. L., Uzunov, D., Costa, E., et al. (1995). Gas chromatographic-mass fragmentographic quantitation of 3α-hydroxy-5α-pregnan-20-one (allopregnanolone) and its precursors in blood and brain of adrenalectomized and castrated rats. J. Neurosci. 15, 4641–4650.
- 24 Karavolas, H. J., Bertics, P. J., Hidges, D., et al. (1984). Progesterone processing by neuroendocrine structures. In Metabolism of Hormonal Steroids in the Neuroendocrine Structures, F. Celotti, F. Naftolin, and L. Martini Eds. Raven, New York pp. 149–170.
- 25 Korneyev, A., Guidotti, A., and Costa, E. (1993). Regional and interspecies differences in brain progesterone metabolism. J. Neurochem. 61, 2041–2047.
- 26 Mathur, C., Prasad, V. V., Raji, V. S., et al. (1993). Steroids and their conjugates in the mammalian brain. Proc. Natl. Acad. Sci. USA 90, 85–88.
- 27 Mellon, S. (1994). Neurosteroids: Biochemistry, modes of action, and clinical relevance. J. Clin. Endo. Metab. 78, 1003–1008.
- 28 Bixo, M., Andersson, A., Winblad, B., et al. (1997). Progesterone, 5α-pregnane-3,20-dione and 3α-hydroxy-5α-pregnane-20-one in specific regions of the human female brain in different endocrine states. Brain Res. 764, 173–178.
- 29 Mellon, S. H., and Vaudry, H. (2001). Biosynthesis of neurosteroids and regulation of their synthesis. Int. Rev. Neurobiol. 46, 33–78.
- 30 Matsunaga, M., Ukena, K., Baulieu, E. -E., and Tsutsui, K. (2004). 7α-Hydroxypregnenolone acts as a neuronal activator to stimulate locomotor activity of breeding newts by means of the dopamine system. Proc. Natl. Acad. Sci. USA 101, 17282–17287.
- 31 Corpechot, C., Robel, P., Axelson, M., et al. (1991). Characterization and measurement of dehydroepiandrosterone sulfate in rat brain. Proc. Natl. Acad. Sci. USA 78, 4704–4707.
- 32 Corpechot, C., Synguelakis, M., Talha, S., et al. (1983). Pregnenolone and its sulfate ester in the rat brain. Brain Res. 270, 119–125.
- 33 Vallee, M., Mayo, W., Koob, G. F., et al. (2003). Neuroactive steroids: New biomarkers of cognitive aging. J. Steroid Biochem. Mol. Biol. 85, 329–335.
- 34 Prasad, V. V. K., Vegesna, S. R., Welch, M., et al. (1994). Precursors of the neurosteroids. Proc. Natl. Acad. Sci. USA 91, 3220–3223.
- 35 Liu, S., Sjovall, J., and Griffiths, W. J. (2003). Neurosteroids in rat brain: Extraction, isolation, and analysis by nanoscale liquid chromatography-electrospray mass spectrometry. Anal. Chem. 75, 5835–5846.
- 36 Shimada, K., Higashi, T., and Mitamura, K. (2002). Development of analyses of biological steroids using chromatography: Special reference to Vitamin D compounds and neurosteroids. Chromatography 24, 1–6.
- 37 Kishimoto, W., Hiroi, T., Shiraishi, M., et al. (2004). Cytochrome P450 2D catalyze steroid 21-hydroxylation in the brain. Endocrinology 145, 699–705.
- 38 Morrow, A. L., Suzdak, P. D., and Paul, S. M. (1987). Steroid hormone metabolites potentiate GABA receptor-mediated chloride ion flux with nanomolar potency. Eur. J. Pharmacol. 142, 483–485.
- 39 Gee, K. W., Bolger, M. B., Brinton, R. E., et al. (1988). Steroid modulation of the chloride ionophore in rat brain: Structure-activity requirements, regional dependence and mechanism of action. J. Pharmacol. Exp. Ther. 246, 803–812.
- 40 Belelli, D., Lan, N. C., and Gee, K. W. (1990). Anticonvulsant steroids and the GABA/benzodiazepine receptor-chloride ionophore complex. Neurosci. Biobehav. Rev. 14, 315–322.
- 41 Xue, B. G., Whittemore, E. R., Park, C. H., et al. (1997). Partial agonism by 3α, 21-dihydroxy-5β-pregnan-20-one at the γ-aminobutyricA receptor neurosteroid site. J. Pharmacol. Exp. Ther. 281, 1095–1101.
- 42 Belelli, D., and Gee, K. W. (1989). 5α-Pregnan-3α, 20α-diol behaves like a partial agonist in the modulation of GABA-stimulated chloride ion uptake by synaptoneurosomes. Eur. J. Pharmacol. 167, 173–176.
- 43 Lambert, J. J., Belelli, D., Peden, D. R., et al. (2003). Neurosteroid modulation of GABAA receptors. Prog. Neurobiol. 71, 67–80.
- 44 Twyman, R. E., and MacDonald, R. L. (1992). Neurosteroid regulation of GABAA receptor single-channel kinetic properties of mouse spinal cord neurons in culture. J. Physiol. 456, 215–245.
- 45 Zhu, W. J., and Vicini, S. (1997). Neurosteroid prolongs GABAA channel deactivation by altering kinetics of desensitized states. J. Neurosci. 17, 4022–4031.
- 46 Lambert, J. J., Belelli, D., Harney, S. C., et al. (2001). Modulation of native and recombinant GABAA receptors by endogenous and synthetic neuroactive steroids. Brain Res. Rev 37, 68–80.
- 47 Covey, D. F., Evers, A. S., Mennerick, S., et al. (2001). Recent developments in structure-activity relationships for steroid modulators of GABAA receptors. Brain Res. Rev. 37, 91–97.
- 48 Hamilton, N. M. (2002). Interaction of steroids with the GABAA receptor. Curr. Top Med. Chem. 2, 887–902.
- 49 Akk, G., Bracamontes, J. R., Covey, D. F., et al. (2004). Neuroactive steroids have multiple actions to potentiate GABAA receptors. J. Physiol. 558, 59–74.
- 50 Majewska, M. D., and Schwartz, R. D. (1987). Pregnenolone-sulfate: An endogenous antagonist of the γ-aminobutyric acid receptor complex in brain? Brain Res. 404, 355–360.
- 51 Majewska, M. D., Demirgoren, S., Spivak, C. E., et al. (1990). The neurosteroid dehydroepiandrosterone sulfate is an allosteric antagonist of the GABAA receptor. Brain Res. 526, 143–146.
- 52 Wu, F. S., Gibbs, T. T., and Farb, D. H. (1990). Inverse modulation of γ-aminobutyric acid- and glycine-induced currents by progesterone. Mol. Pharmacol. 37, 597–602.
- 53 Wu, F. S., Gibbs, T. T., and Farb, D. H. (1991). Pregnenolone sulfate: A positive allosteric modulator at the N-methyl-d-aspartate receptor. Mol. Pharmacol. 40, 333–336.
- 54 Irwin, R. P., Maragakis, N. J., Rogawski, M. A., et al. (1992). Pregnenolone sulfate augments NMDA receptor mediated increases in intracellular Ca2+ in cultured rat hippocampal neurons. Neurosci. Lett. 141, 30–34.
- 55 Penland, S. N., and Morrow, A. L. (2004). 3α, 5β-Reduced cortisol exhibits antagonist properties on cerebral cortical GABAA receptors. Eur. J. Pharmacol. 506, 129–132.
- 56 Park-Chung, M., Wu, F. S., and Farb, D. H. (1994). 3α-Hydroxy-5β-pregnan-20-one sulfate: A negative modulator of the NMDA-induced current in cultured neurons. Mol. Pharmacol. 46, 146–150.
- 57 Irwin, R. P., Lin, S. Z., Rogawski, M. A., et al. (1994). Steroid potentiation and inhibition of N-methyl-d-aspartate receptor-mediated intracellular Ca++ responses: Structure-activity studies. J. Pharmacol. Exp. Ther. 271, 677–682.
- 58 Park-Chung, M., Wu, F. S., Purdy, R. H., et al. (1997). Distinct sites for inverse modulation of N-methyl-d-aspartate receptors by sulfated steroids. Mol. Pharmacol. 52, 1113–1123.
- 59 Yaghoubi, N., Malayev, A., Russek, S. J., et al. (1998). Neurosteroid modulation of recombinant ionotropic glutamate receptors. Brain Res. 803, 153–160.
- 60 Weaver, C. E., Land, M. B., Purdy, R. H., et al. (2000). Geometry and charge determine pharmacological effects of steroids on N-methyl-d-aspartate receptor-induced Ca2+ accumulation and cell death. J. Pharmacol. Exp. Ther. 293, 747–754.
- 61 Park-Chung, M., Malayev, A., Purdy, R. H., et al. (1999). Sulfated and unsulfated steroids modulate γ-aminobutyric acidA receptor function through distinct sites. Brain Res. 83, 72–87.
- 62 Gibbs, T. T., and Farb, D. H. (2000). Dueling enigmas: Neurosteroids and sigma receptors in the limelight. Science STKE [Electronic Resource]: Signal Transduction Knowledge Environment 60 (Nov. 28), 1–4.
- 63 Bullock, A. E., Clark, A. L., Grady, S. R., et al. (1997). Neurosteroids modulate nicotinic receptor function in mouse striatal and thalamic synaptosomes. J. Neurochem. 68, 2412–2423.
- 64 Pereira, E. F., Hilmas, C., Santos, M. D., et al. (2002). Unconventional ligands and modulators of nicotinic receptors. J. Neurobiol. 53, 479–500.
- 65 Bertrand, D., Valera, S., Bertrand, S., et al. (1991). Steroids inhibit nicotinic acetylcholine receptors. Neuroreport 2, 277–280.
- 66 Ke, L., and Lukas, R. J. (1996). Effects of steroid exposure on ligand binding and functional activities of diverse nicotinic acetylcholine receptor subtypes. J. Neurochem. 67, 1100–1112.
- 67 Valera, S., Ballivet, M., and Bertrand, D. (1992). Progesterone modulates a neuronal nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 89, 9949–9953.
- 68 Paradiso, K., Sabey, K., Evers, A. S., et al. (2000). Steroid inhibition of rat neuronal nicotinic α4β2 receptors expressed in HEK 293 cells. Mol. Pharmacol. 58, 341–351.
- 69 Wu, F. S., Lai, C. P., and Liu, B. C. (2000). Non-competitive inhibition of 5-HT3 receptor-mediated currents by progesterone in rat nodose ganglion neurons. Neurosci. Lett. 278, 37–40.
- 70 Wetzel, C. H., Hermann, B., Behl, C., et al. (1998). Functional antagonism of gonadal steroids at the 5-hydroxytryptamine type 3 receptor. Mol. Endocrinol. 12, 1441–1451.
- 71 Barann, M., Gothert, M., Bruss, M., et al. (1999). Inhibition by steroids of [14C]-guanidinium flux through the voltage-gated sodium channel and the cation channel of the 5-HT3 receptor of N1E-115 neuroblastoma cells. Naunyn-Schmiedeberg's Arch. Pharmacol. 360, 234–241.
- 72 Carbone, E., and Lux, H. D. (1984). A low-voltage activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature 310, 501–502.
- 73 Huguenard, J. R. (1996). Low-threshold calcium currents in central nervous system neurons. Annu. Rev. Physiol. 58, 329–348.
- 74 Ertel, S. I., Ertel, E. A., and Clozel, J. P. (1997). T-type Ca2+ channels and pharmacological blockade: Potential pathophysiological relevance. Cardiovasc. Drugs Ther. 11, 723–739.
- 75 Perez-Reyes, E. (2003). Molecular physiology of low-voltage-activated T-type calcium channels. Physiol. Rev. 83, 117–161.
- 76 Pathirathna, S., Brimelow, B. C., Jagodic, M. M., et al. (2005). New evidence that both T-type calcium channels and GABAA channels are responsible for the potent peripheral analgesic effects of 5α-reduced neuroactive steroids. Pain 114, 429–443.
- 77 Nadeson, R., and Goodchild, C. S. (2000). Antinociceptive properties of neurosteroids. II. Experiments with Saffan and its components alphaxalone and alphadolone to reveal separation of anaesthetic and antinociceptive effects and the involvement of spinal cord GABAA receptors. Pain 88, 31–39.
- 78 Maurice, T., Urani, A., Phan, V. L., et al. (2001). The interaction between neuroactive steroids and the σ1 receptor function: Behavioral consequences and therapeutic opportunities. Brain Res. Rev. 37, 116–132.
- 79 Su, T. P., London, E. D., and Jaffe, J. H. (1988). Steroid binding at sigma receptors suggests a link between endocrine, nervous, and immune systems. Science 240, 219–221.
- 80 Maurice, T., Phan, V. L., Urani, A., et al. (1999). Neuroactive neurosteroids as endogenous effectors for the sigma1 (σ1) receptor: Pharmacological evidence and therapeutic opportunities. Jpn. J. Pharmacol. 81, 125–155.
- 81 Gee, K. W., McCauley, L. D., and Lan, N. C. (1995). A putative receptor for neurosteroids on the GABAA receptor complex: The pharmacological properties and therapeutic potential of epalons. Crit. Rev. Neurobiol. 9, 207–227.
- 82 Olsen, R. W., and Sapp, D. W. (1995). Neuroactive steroid modulation of GABAA receptors. Adv. Biochem. Psychopharmacol. 48, 57–74.
- 83 Hawkinson, J. E., Kimbrough, C. L., Belelli, D., et al. (1994). Correlation of neuroactive steroid modulation of [35S]t-butylbicyclophosphorothionate and [3H]flunitrazepam binding and γ-aminobutyric acidA receptor function. Mol. Pharmacol. 46, 977–985.
- 84 Mennerick, S., He, Y., Jiang, X., et al. (2004). Selective antagonism of 5alpha-reduced neurosteroid effects at GABA(A) receptors. Mol. Pharmacol. 65, 1191–1197.
- 85 Mok, W. M., Herschkowitz, S., and Krieger, N. R. (1991). In vivo studies identify 5α-pregnan-3α-ol-20-one as an active anesthetic agent. J. Neurochem. 57, 1296–1301.
- 86 Mendelson, W. B., Martin, J. V., Perlis, M., et al. (1987). Sleep induction by an adrenal steroid in the rat. Psychopharmacology 93, 226–229.
- 87 Belelli, D., Bolger, M. B., and Gee, K. W. (1989). Anticonvulsant profile of the progesterone metabolite 5α-pregnan-3α-ol-20-one. Eur. J. Pharmacol. 166, 325–329.
- 88 Kokate, T. G., Svensson, B. E., and Rogawski, M. A. (1994). Anticonvulsant activity of neurosteroids: Correlation with γ-aminobutyric acid-evoked chloride current potentiation. J. Pharmacol. Exp. Ther. 270, 1223–1229.
- 89 Kokate, T. G., Cohen, A. L., Karp, E., et al. (1996). Neuroactive steroids protect against pilocarpine- and kainic acid-induced limbic seizures and status epilepticus in mice. Neuropharmacology 35, 1049–1056.
- 90 Devaud, L. L., Purdy, R. H., and Morrow, A. L. (1995). The neurosteroid, 3α-hydroxy-5α-pregnan-20-one, protects against bicuculline-induced seizures during ethanol withdrawal in rats. Alcohol. Clin. Exp. Res. 19, 350–355.
- 91 Devaud, L. L., Purdy, R. H., Finn, D. A., et al. (1996). Sensitization of γ-aminobutyric acidA receptors to neuroactive steroids in rats during ethanol withdrawal. J. Pharmacol. Exp. Ther. 278, 510–517.
- 92 Finn, D. A., Roberts, A. J., and Crabbe, J. C. (1995). Neuroactive steroid sensitivity in Withdrawal Seizure Prone and -Resistant mice. Alcohol Clin. Exp. Res. 19, 410–415.
- 93 Finn, D. A., Roberts, A. J., Lotrich, F., et al. (1997). Genetic differences in behavioral sensitivity to a neuroactive steroid. J. Pharmacol. Exp. Ther. 280, 820–828.
- 94 Crawley, J. N., Glowa, J. R., Majewska, M. D., et al. (1986). Anxiolytic activity of an endogenous adrenal steroid. Brain Res. 398, 382–385.
- 95 Bitran, D., Hilvers, R. J., and Kellogg, C. K. (1991). Anxiolytic effects of 3α-hydroxy-5α[β]-pregnan-20-one: Endogenous metabolites that are active at the GABAA receptor. Brain Res. 561, 157–161.
- 96 Britton, K. T., Page, M., Baldwin, H., et al. (1991). Anxiolytic activity of steroid anesthetic alphaxalone. J. Pharmacol. Exp. Ther. 258, 124–129.
- 97 Wieland, S., Lan, N. C., Mirasedeghi, S., et al. (1991). Anxiolytic activity of the progesterone metabolite 5α-pregnan-3α-ol-20-one. Brain Res. 565, 263–268.
- 98 Wieland, S., Belluzzi, J. D., Stein, L., et al. (1995). Comparative behavioral characterization of the neuroactive steroids 3α-OH,5α-pregnan-20-one and 3α-OH,5β-pregnan-20-one in rodents. Psychopharmacology 118, 65–71.
- 99 Brot, M. D., Akwa, Y., Purdy, R. H., et al. (1997). The anxiolytic-like effects of the neurosteroid allopregnanolone: Interactions with GABAA receptors. Eur. J. Pharmacol. 325, 1–7.
- 100 Rodgers, R. J., and Johnson, N. J. T. (1998). Behaviorally selective effects of neuroactive steroids on plus-maze anxiety in mice. Pharmacol. Biochem. Behav. 59, 221–232.
- 101 Melchior, C. L., and Allen, P. M. (1992). Interaction of pregnenolone and pregnenolone sulfate with ethanol and pentobarbital. Pharmacol. Biochem. Behav. 42, 605–611.
- 102 Vallee, M., Mayo, W., Koob, G. F., et al. (2001). Neurosteroids in learning and memory processes. Int. Rev. Neurobiol. 46, 273–320.
- 103 Melchior, C. L., and Ritzmann, R. F. (1996). Neurosteroids block the memory-impairing effects of ethanol in mice. Pharmacol. Biochem. Behav. 53, 51–56.
- 104 Ladurelle, N., Eychenne, B., Denton, D., et al. (2000). Prolonged intracerebroventricular infusion of neurosteroids affects cognitive performances in the mouse. Brain Res. 858, 371–379.
- 105 Matthews, D. B., Morrow, A. L., Tokunaga, S., et al. (2002). Acute ethanol administration and acute allopregnanolone administration impair spatial memory in the Morris water task. Alcohol Clin. Exp. Res. 26, 1747–1751.
- 106 File, S. E., Lippa, A. S., Beer, B., et al. (1997). Animal tests of anxiety. In J. N. Crawley, C. R. Gerfen, R. McKay, M. A. Rogawski, D. R. Sibley, and P. Skolnick Eds. Current Protocols in Neuroscience. Wiley, New York, pp. 8.3.1–8.3.22.
- 107 Rodgers, R. J., Cao, B. J., Dalvi, A., et al. (1997). Animal models of anxiety: An ethological perspective. Braz. J. Med. Biol. Res. 30, 289–304.
- 108 Martin, P. (1998). Animal models sensitive to anti-anxiety agents. Acta. Psychiatr. Scand. Suppl. 393, 74–80.
- 109 Koob, G. F., Henrichs, S. C., and Britton, K. (1998). Animal models of anxiety disorders In: A. F. Schatzberg and C. B. Nemeroff Eds., Textbook of Pharmacology, 2nd ed., American Psychiatric Press, Washington DC, pp. 133–144.
- 110
Crawley, J. N.
(1999).
Evaluating anxiety in rodents. In:
Handbook of Molecular-Genetic Techniques for Brain and Behavior Research,
Series title: Techniques in the Behavioral and Neural Sciences, Vol. 13,
W.E. Crusio,
R.T. Gerlai, Eds.,
Elsevier Science BV, Amsterdam,
pp. 667–673.
10.1016/S0921-0709(99)80052-2 Google Scholar
- 111 Finn, D. A., Rutledge-Gorman, M. T., and Crabbe, J. C. (2003). Genetic animal models of anxiety. Neurogenetics 4, 109–135.
- 112 Pellow, S., Chopin, P., File, S. E., et al. (1985). Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J. Neurosci. Methods 14, 149–167.
- 113 Lister, R. G. (1987). The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology 92, 180–185.
- 114 Trullas, R., and Skolnick, P. (1993). Differences in fear motivated behaviors among inbred mouse strains. Psychopharmacology 111, 323–331.
- 115 Cole, J. C., and Rodgers, R. J. (1994). Ethological evaluation of the effects of acute and chronic buspirone treatment in the murine elevated plus-maze test: Comparison with haloperidol. Psychopharmacology 114, 288–296.
- 116 Montgomery, K. C. (1955). The relation between fear induced by novel stimulation and exploratory behavior. J. Comp. Physiol. Psychol. 48, 254–260.
- 117 Lamberty, Y., and Gower, A. J. (1996). Arm width and brightness modulation of spontaneous behaviour of two strains of mice tested in the elevated plus-maze. Physiol. Behav. 59, 439–444.
- 118 Rodgers, R. J., Cole, J. C., Cobain, M. R., et al. (1992). Anxiogenic-like effects of fluprazine and eltoprazine in the mouse elevated plus maze: Profile comparisons with 8-OH-DPAT, CGS 12066B, TFMPP and mCPP. Behav. Pharmacol. 3, 621–634.
- 119 Handley, S. L., and Mithani, S. (1984). Effects of alpha-adrenoceptor agonists and antagonists in a maze exploration model of “fear”-motivated behaviour. Naunyn Schemiedeberg's Arch. Pharmacol. 327, 1–5.
- 120 Handley, S. L., and McBlane, J. W. (1993). An assessment of the elevated X-maze for studying anxiety and anxiety-modulating drugs. J. Pharmacol. Toxicol. Methods 29, 129–138.
- 121 Treit, D. (1985). The inhibitory effect of diazepam on defensive burying: Anxiolytic vs. analgesic effects. Pharmacol. Biochem. Behav. 22, 47–52.
- 122 Dawson, G. R., and Tricklebank, M. D. (1995). Use of the elevated plus maze in the search for novel anxiolytic agents. Trends Pharmacol. Sci. 16, 33–36.
- 123 Treit, D., Menard, J., and Royan, C. (1993). Anxiogenic stimuli in the elevated plus-maze. Pharmacol. Biochem. Behav. 44, 463–469.
- 124 Fernandes, C., and File, S. E. (1996). The influence of open arm ledges and maze experience in the elevated plus-maze. Pharmacol. Biochem. Behav. 54, 31–40.
- 125 Gomez, C., Saldivar-Gonzalez, A., Delgado, G., et al. (2002). Rapid anxiolytic activity of progesterone and pregnanolone in male rats. Pharmacol. Biochem. Behav. 72, 543–550.
- 126 Carboni, E., Wieland, S., Lan, N. C., et al. (1996). Anxiolytic properties of endogenously occurring pregnanediols in two rodent models of anxiety. Psychopharmacology 126, 173–178.
- 127 Reddy, D. S., O'Malley, B. W., and Rogawski, M. A. (2005). Anxiolytic activity of progesterone in progesterone receptor knockout mice. Neuropharmacology 48, 14–24.
- 128 Melchior, C. L., and Ritzmann, R. F. (1994a). Dehydroepiandrosterone is an anxiolytic in mice on the plus maze. Pharmacol. Biochem. Behav. 47, 437–441.
- 129 Melchior, C. L., and Ritzmann, R. F. (1994b). Pregnenolone and pregnenolone sulfate, alone and with ethanol, in mice on the plus-maze. Pharmacol. Biochem. Behav. 48, 893–897.
- 130 Bitran, D., Dugan, M., Renda, P., et al. (1999). Anxiolytic effects of the neuroactive steroid pregnanolone (3α-OH-5β-pregnan-20-one) after microinjection in the dorsal hippocampus and lateral septum. Brain Res. 850, 217–224.
- 131 Bitran, D., Foley, M., Audette, D., et al. (2000). Activation of peripheral mitochondrial benzodiazepine receptors in the hippocampus stimulates allopregnanolone synthesis and produces anxiolytic-like effects in the rat. Psychopharmacology 151, 64–71.
- 132 Gray, J. A. (1982). Precis of the neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system. Behav. Brain Sci. 5, 469–534.
- 133
Gabriel, M.
(1993).
Discriminative avoidance learning: A model system
In: Neurobiology of Cingulate Cortex and Limbic Thalamus: A Comprehensive Handbook.
B. A. Vogt and
M. Gabriel, Eds.,
Birkhauser, Boston,
pp. 478–523.
10.1007/978-1-4899-6704-6_18 Google Scholar
- 134 Geller, I., and Seifter, J. (1960). The effects of meprobamate, barbiturates, d-amphetamine and promazine on experimentally induced conflict in the rat. Psychopharmacologia 1, 482–491.
- 135 Vogel, J. R., Beer, B., and Clody, D. E. (1971). A simple and reliable conflict procedure for testing anti-anxiety agents. Psychopharmacologia 21, 1–7.
- 136 Davis, M. (1992). The role of the amygdala in fear-potentiated startle: Implications for animal models of anxiety. Trends Pharmacol. Sci. 13, 35–41.
- 137 Akwa, Y., Purdy, R. H., Koob, G. F., et al. (1999). The amygdala mediates the anxiolytic-like effect of the neurosteroid allopregnanolone in rat. Behav. Brain Res. 106, 119–125.
- 138 Crawley, J., and Goodwin, F. K. (1980). Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol. Biochem. Behav. 13, 167–170.
- 139 Crawley, J. N. (1981). Neuropharmacologic specificity of a simple animal model for the behavioral actions of benzodiazepines. Pharmacol. Biochem. Behav. 15, 695–699.
- 140 Crawley, J. N., Skolnick, P., and Paul, S. M. (1984). Absence of intrinsic actions of benzodiazepine antagonists on an exploratory model of anxiety in the mouse. Neuropharmacology 23, 531–537.
- 141 Brown, J. S., Kalish, H. I., and Farber, I. E. (1951). Conditioned fear as revealed by magnitude of startle response to an auditory stimulus. J. Exp. Psychol. 41, 317–328.
- 142 Lang, P. J., Davis, M., and Ohman, A. (2000). Fear and anxiety: Animal models and human cognitive psychophysiology. J. Affect. Disord. 61, 137–159.
- 143 Davis, M., and Astrachan, D. I. (1978). Conditioned fear and startle magnitude: Effects of different footshock or backshock intensities used in training. J. Exp. Psychol.: Anim. Behav. Process 4, 95–103.
- 144 Falls, W. A., Miserendino, M. J. D., and Davis, M. (1992). Extinction of fear-potentiated startle: Blockade by infusion of an NMDA antagonist into the amygdala. J. Neurosci. 12, 854–863.
- 145 Swerdlow, N. R., Geyer, M. A., Vale, W. W., et al. (1986). Corticotropin-releasing factor potentiates acoustic startle in rats: Blockade by chlordiazepoxide. Psychopharmacology 88, 147–152.
- 146 Liang, K. C., Melia, K. R., Miserendino, M. J., et al. (1992). Corticotropin-releasing factor: Long-lasting facilitation of the acoustic startle reflex. J. Neurosci. 12, 2303–2312.
- 147 Koob, G. F., and Heinrichs, S. C. (1999). A role for corticotropin releasing factor and urocortin in behavioral responses to stressors. Brain Res. 848, 141–152.
- 148 Steckler, T., and Holsboer, F. (1999). Corticotropin-releasing hormone receptor subtypes and emotion. Biol. Psychiatry 46, 1480–1508.
- 149 Toufexis, D. J., Davis, C., Hammond, A., et al. (2004). Progesterone attenuates corticotropin-releasing factor-enhanced but not fear-potentiated startle via the activity of its neuroactive metabolite, allopregnanolone. J. Neurosci. 24, 10280–10287.
- 150 Lee, Y., and Davis, M. Role of the hippocampus, the bed nucleus of the stria terminalis, and the amygdala in the excitatory effect of corticotropin-releasing hormone on the acoustic startle reflex. J. Neurosci. 17, 6434–6446.
- 151 Toubas, P. L., Abla, K. A., Cao, W., et al. (1990). Latency to enter a mirrored chamber: A novel behavioral assay for anxiolytic agents. Pharmacol. Biochem. Behav. 35, 121–126.
- 152 Gallup, G. G. Jr. (1968). Mirror-image stimulation. Psychol. Bull. 70, 782–793.
- 153 Cao, W., Burkholder, T., Wilkins, L., et al. (1993). A genetic comparison of behavioral actions of ethanol and nicotine in the mirrored chamber. Pharmacol. Biochem. Behav. 45, 803–809.
- 154 Seale, T. W., Niekrasz, I., and Garrett, K. M. (1996). Anxiolysis by ethanol, diazepam and buspirone in a novel murine behavioral assay. Neuroreport 7, 1803–1808.
- 155 Reddy, D. S., and Kulkarni, S. K. (1997). Differential anxiolytic effects of neurosteroids in the mirrored chamber behavior test in mice. Brain Res. 752, 61–71.
- 156 Lamberty, Y. (1998). The mirror chamber test for testing anxiolytics: Is there a mirror-induced stimulation? Physiol. Behav. 64, 703–705.
- 157 Kliethermes, C. L., Finn, D. A., and Crabbe, J. C. (2003). Validation of a modified mirrored chamber sensitive to anxiolytics and anxiogenics in mice. Psychopharmacology 169, 190–197.
- 158 Hall, C. S. (1936). Emotional behavior in the rat: III. The relationship between emotionality and ambulatory activity. J. Comp. Psychol. 22, 345–352.
- 159 Henderson, N. D. (1967). Prior treatment effects on open field behaviour of mice: A genetic analysis. Anim. Behav. 15, 364–376.
- 160 De Boer, S. F., and Koolhaas, J. M. (2003). Defensive burying in rodents: Ethology, neurobiology and psychopharmacology. Eur. J. Pharmacol. 463, 145–161.
- 161 Pinel, J. P., and Treit, D. (1978). Burying as a defensive response in rats. J. Comp. Physiol. Psychol. 92, 708–712.
- 162 Picazo, O., and Fernandez-Guasti, A. (1995). Anti-anxiety effects of progesterone and some of its reduced metabolites: An evaluation using the burying behavior test. Brain Res. 680, 135–141.
- 163 Winslow, J. T., and Insel, T. R. (1991). The infant rat separation paradigm: A novel test for novel anxiolytics. Trends Pharmacol. Sci. 12, 402–404.
- 164 Lehmann, J., and Feldon, J. (2000). Long-term biobehavioral effects of maternal separation in the rat: Consistent or confusing? Rev. Neurosci. 11, 383–408.
- 165 Gardner, C. R. (1985). Distress vocalization in rat pups: A simple screening method for anxiolytic drugs. J. Pharmacol. Methods 14, 181–187.
- 166 Zimmerberg, B., Brunelli, S. A., and Hofer, M. A. (1994). Reduction of rat pup ultrasonic vocalizations by the neuroactive steroid allopregnanolone. Pharmacol. Biochem. Behav. 47, 735–738.
- 167 Zimmerberg, B., Rackow, S. H., and George-Friedman, K. P. (1999). Sex-dependent behavioral effects of the neurosteroid allopregnanolone (3α, 5α-THP) in neonatal and adult rats after postnatal stress. Pharmacol. Biochem. Behav. 64, 717–724.
- 168 Patchev, V. K., Montkowski, A., Rouskova, D., et al. (1997). Neonatal treatment of rats with the neuroactive steroid tetrahydrodeoxycorticosterone (THDOC) abolishes the behavioral and neuroendocrine consequences of adverse early life events. J. Clin. Invest. 99, 962–966.
- 169 Zimmerberg, B., and Kajunski, E. W. (2004). Sexually dimorphic effects of postnatal allopregnanolone on the development of anxiety behavior after early deprivation. Pharmacol. Biochem. Behav. 78, 465–471.
- 170 Nestler, E. J., Barrot, M., DiLeone, R. J., et al. (2002). Neurobiology of depression. Neuron 34, 13–25.
- 171 Porsolt, R. D., LePichon, M., and Jalfre, M. (1977). Depression: A new animal model sensitive to antidepressant treatments. Nature 266, 730–732.
- 172 Porsolt, R. D. (2000). Animal models of depression: Utility for transgenic research. Rev. Neurosci. 11, 53–58.
- 173 Cryan, J. F., Markou, A., and Lucki, I. (2002). Assessing antidepressant activity in rodents: Recent developments and future needs. Trends Pharmacol. Sci. 23, 238–245.
- 174 Khisti, R. T., Chopde, C. T., and Jain, S. P. (2000). Antidepressant-like effect of the neurosteroid 3α-hydroxy-5α-pregnan-20-one in mice forced swim test. Pharmacol. Biochem. Behav. 67, 137–143.
- 175 Hirani, K., Khisti, R. T., and Chopde, C. T. (2002). Behavioral action of ethanol in Porsolt's forced swim test: Modulation by 3α-hydroxy-5α-pregnan-20-one. Neuropharmacology 43, 1339–1350.
- 176 Molina-Hernandez, M., and Tellez-Alcantara, N. P. (2001). Antidepressant-like actions of pregnancy, and progesterone in Wistar rats forced to swim. Psychoneuroendocrinology 26, 479–491.
- 177 Smith, S. S., Gong, Q. H., Li, X., et al. (1998a). Withdrawal from 3alpha-OH-5alpha-pregnan-20-one using a pseudopregnancy model alters the kinetics of hippocampal GABAA-gated current and increases the GABAA receptor alpha4 subunit in association with increased anxiety. J. Neurosci. 18, 5275–5284.
- 178 Smith, S. S., Gong, Q. H., Hsu, F. C., et al. (1998b). GABA(A) receptor alpha4 subunit suppression prevents withdrawal properties of an endogenous steroid. Nature 392, 926–930.
- 179 Higashi, T., Takido, N., and Shimada, K. (2005). Studies on neurosteroids XVII. Analysis of stress-induced changes in neurosteroid levels in rat brains using liquid chromatography-electron capture atmospheric pressure chemical ionization-mass spectrometry. Steroids 70, 1–11.
- 180 Matsumoto, K., Uzunova, V., Pinna, G., et al. (1999). Permissive role of brain allopregnanolone content in the regulation of pentobarbital-induced righting reflex loss. Neuropharmacology 38, 955–963.
- 181 Serra, M., Pisu, M. G., Littera, M., et al. (2000). Social isolation-induced decreases in both the abundance of neuroactive steroids and GABAA receptor function in rat brain. J. Neurochem 75, 732–740.
- 182 Dong, E., Matsumoto, K., Uzunova, V., et al. (2001). Brain 5α-dihydroprogesterone and allopregnanolone synthesis in a mouse model of protracted social isolation. Proc. Natl. Acad. Sci. USA 98, 2849–2854.
- 183 Pinna, G., Uzunova, V., Matsumoto, K., et al. (2000). Brain allopregnanolone regulates the potency of the GABAA receptor agonist muscimol. Neuropharmacology 39, 440–448.
- 184 Bitran, D., Shiekh, M., and McLeod, M. (1995). Anxiolytic effect of progesterone is mediated by the neurosteroid allopregnanolone at brain GABAA receptors. J. Neuroendocrinol 7, 171–177.
- 185 Serra, M., Madau, P., Chessa, M. F., et al. (1999). 2-Phenyl-imidazo[1,2-a]pyridine derivatives as ligands for peripheral benzodiazepine receptors: Stimulation of neurosteroid synthesis and anticonflict action in rats. Br. J. Pharmacol. 127, 177–187.
- 186 Korte, S. M. (2001). Corticosteroids in relation to fear, anxiety and psychopathology. Neurosci. Biobehav. Rev. 25, 117–142.
- 187 Rodgers, R. J., Haller, J., Holmes, A., et al. (1999). Corticosterone response to the plus-maze: High correlation with risk assessment in rats and mice. Physiol. Behav. 68, 47–53.
- 188 De Kloet, E. R. (1991). Brain corticosteroid receptor balance and homeostatic control. Front. Neuroendocrinol. 12, 95–164.
- 189 Sapolsky, R. M. (1996). Stress, glucocorticoids, and damage to the nervous system: The current state of confusion. Stress 1, 1–19.
- 190 Cole, R. L., and Sawchenko, P. E. (2002). Neurotransmitter regulation of cellular activation and neuropeptide gene expression in the paraventricular nucleus of the hypothalamus. J. Neurosci. 22, 959–969.
- 191 Verkuyl, J. M., and Joels, M. (2003). Effect of adrenalectomy on miniature inhibitory postsynaptic currents in the paraventricular nucleus of the hypothalamus. J. Neurophysiol. 89, 237–245.
- 192 Verkuyl, J. M., Karst, H., and Joels, M. (2005). GABAergic transmission in the rat paraventricular nucleus of the hypothalamus is suppressed by corticosterone and stress. Eur. J. Neurosci. 21, 113–121.
- 193 Patchev, V. K., Shoaib, M., Holsboer, F., et al. (1994). The neurosteroid tetrahydroprogesterone counteracts corticotropin-releasing hormone-induced anxiety and alters the release and gene expression of corticotropin-releasing hormone in the rat hypothalamus. Neuroscience 62, 265–271.
- 194 Patchev, V. K., Hassan, A. H., Holsboer, D. F., et al. (1996). The neurosteroid tetrahydroprogesterone attenuates the endocrine response to stress and exerts glucocorticoid-like effects on vasopressin gene transcription in the rat hypothalamus. Neuropsychopharmacology 15, 533–540.
- 195 Yehuda, R., Southwick, S. M., Krystal, J. H., et al. (1993). Enhanced suppression of cortisol following dexamethasone administration in posttraumatic stress disorder. Am. J. Psychiatry 150, 83–86.
- 196 Yehuda, R., Levengood, R. A., Schmeidler, J., et al. (1996). Increased pituitary activation following metyrapone administration in post-traumatic stress disorder. Psychoneuroendocrinology 21, 1–16.
- 197 Smith, M. A., Davidson, J., Ritchie, J. C., et al. (1989). The corticotropin-releasing hormone test in patients with posttraumatic stress disorder. Biol. Psychiatry 26, 349–355.
- 198 Bremner, J. D., Southwick, S. M., Darnell, A., et al. (1996). Chronic PTSD in Vietnam combat veterans: Course of illness and substance abuse. Am. J. Psychiatry 153, 369–375.
- 199 Rasmusson, A. M., Vasek, J., Lipschitz, D. S., et al. (2004). An increased capacity for adrenal DHEA release is associated with decreased avoidance and negative mood symptoms in women with PTSD. Neuropsychopharmacology 29, 1546–1557.
- 200 Baker, D. G., Ekhator, N. N., Kasckow, J. W., et al. (2005). Higher levels of basal serial CSF cortisol in combat veterans with posttraumatic stress disorder. Am. J. Psychiatry 162, 992–994.
- 201 Altemus, M., Swedo, S. E., Leonard, H. L., et al. (1994). Changes in cerebrospinal fluid neurochemistry during treatment of obsessive-compulsive disorder with clomipramine. Arch. Gen. Psychiatry 51, 794–803.
- 202 Jolkkonen, J., Lepola, U., Bissette, G., et al. (1993). CSF corticotropin-releasing factor is not affected in panic disorder. Biol. Psychiatry 33, 136–138.
- 203 Fossey, M. D., Lydiard, R. B., Ballenger, J. C., et al. (1996). Cerebrospinal fluid corticotropin-releasing factor concentrations in patients with anxiety disorders and normal comparison subjects. Biol. Psychiatry 39, 703–707.
- 204 Charney, D. S., and Bremner, J. D. (1999). The neurobiology of anxiety disorders. In: Neurobiology of Mental Illness, D. S. Charney and E. J. Nestler, Eds., Oxford University Press, New York, pp. 494–517.
- 205 Strohle, A., Romeo, E., di Michele, F., et al. (2003). Induced panic attacks shift gamma-aminobutyric acid type A receptor modulatory neuroactive steroid composition in patients with panic disorder: Preliminary results. Arch. Gen. Psychiatry 60, 161–168.
- 206 Strohle, A., Romeo, E., di Michele, F., et al. (2002). GABA(A) receptor-modulating neuroactive steroid composition in patients with panic disorder before and during paroxetine treatment. Am. J. Psychiatry 159, 145–147.
- 207 Brambilla, F., Biggio, G., Pisu, M. G., et al. (2003). Neurosteroid secretion in panic disorder. Psychiatry Res 118, 107–116.
- 208 Karp, L., Weizman, A., Tyano, S., et al. (1989). Examination stress, platelet peripheral benzodiazepine binding sites, and plasma hormone levels. Life Sci. 44, 1077–1082.
- 209 Krueger, K. E., and Papadopoulos, V. (1990). Peripheral-type benzodiazepine receptors mediate translocation of cholesterol from outer to inner mitochondrial membranes in adrenocortical cells. J. Biol. Chem. 265, 15015–15022.
- 210 Krueger, K. E., and Papadopoulos, V. (1992). Mitochondrial benzodiazepine receptors and the regulation of steroid biosynthesis. Annu. Rev. Pharmacol. Toxicol. 32, 211–237.
- 211 Droogleever Fortuyn, H. A., van Broekhoven, F., Span, P. N., et al. (2004). Effects of PhD examination stress on allopregnanolone and cortisol plasma levels and peripheral benzodiazepine receptor density. Psychoneuroendocrinology 29, 1341–1344.
- 212 Sutton, R. E., Koob, G. F., Le Moal, M., et al. (1982). Corticotropin releasing factor produces behavioural activation in rats. Nature 297, 331–333.
- 213 Butler, P. D., Weiss, J. M., Stout, J. C., et al. (1990). Corticotropin-releasing factor produces fear-enhancing and behavioral activating effects following infusion into the locus coeruleus. J. Neurosci. 10, 176–183.
- 214 Dunn, A. J., and Berridge, C. W. (1990). Physiological and behavioral responses to corticotropin-releasing factor administration: Is CRF a mediator of anxiety or stress responses? Brain Res. Rev. 15, 71–100.
- 215 Griebel, G. (1999). Is there a future for neuropeptide receptor ligands in the treatment of anxiety disorders? Pharmacol. Ther. 82, 1–61.
- 216 Heinrichs, S. C., and Koob, G. F. (2004). Corticotropin-releasing factor in brain: A role in activation, arousal, and affect regulation. J. Pharmacol. Exp. Ther. 311, 427–440.
- 217 Britton, K. T., McLeod, S., Koob, G. F., et al. (1992). Pregnane steroid alphaxalone attenuates anxiogenic behavioral effects of corticotropin releasing factor and stress. Pharmacol. Biochem. Behav. 41, 399–403.
- 218 Swerdlow, N. R., and Britton, K. T. (1994). Alphaxalone, a steroid anesthetic, inhibits the startle-enhancing effects of corticotropin releasing factor, but not strychnine. Psychopharmacology 115, 141–146.
- 219 Dubrovsky, B. O. (2005). Steroids, neuroactive steroids and neurosteroids in psychopathology. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 169–192.
- 220 Backstrom, T., Andersson, A., Andree, L., et al. (2003). Pathogenesis in menstrual cycle-linked CNS disorders. In Steroids and the Nervous System, Series title: Annals of the New York Academy of Sciences, Vol. 1007, G. C. Panzica and R. C. Melcangi, Eds. New York Academy of Sciences, New York, pp. 42–53.
- 221 Arborelius, L., Owens, M. J., Plotsky, P. M., et al. (1999). The role of corticotropin-releasing factor in depression and anxiety disorders. J. Endocrinol. 160, 1–12.
- 222 Makino, S., Hashimoto, K., and Gold, P. W. (2002). Multiple feedback mechanisms activating corticotropin-releasing hormone system in the brain during stress. Pharmacol. Biochem. Behav. 73, 147–158.
- 223 Reul, J. M. H. M., and Holsboer, F. (2002). Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr. Opin. Pharmacol. 2, 23–33.
- 224 Tsigos, C., and Chrousos, G. P. (2002). Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res. 53, 865–871.
- 225 Claes, S. J. (2004). Corticotropin-releasing hormone (CRH) in psychiatry: From stress to psychopathology. Ann. Med. 36, 50–61.
- 226 Romeo, E., Strohle, A., Spalletta, G., et al. (1998). Effects of antidepressant treatment on neuroactive steroids in major depression. Am. J. Psychiatry. 155, 910–913.
- 227 Uzunova, V., Sheline, Y., Davis, J. M., et al. (1998). Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine. Proc. Natl. Acad. Sci. USA, 95, 3239–3244.
- 228 Strohle, A., Pasini, A., Romeo, E., et al. (2000). Fluoxetine decreases concentrations of 3α,5α-tetrahydrodeoxycorticosterone (THDOC) in major depression. J. Psychiatr. Res. 34, 183–186.
- 229 Griffin, L. D., and Mellon, S. H. (1999). Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes. Proc. Natl. Acad. Sci. USA, 96, 13512–13517.
- 230 Uzunov, D. P., Cooper, T. B., Costa, E., et al. (1996). Fluoxetine-elicited changes in brain neurosteroid cotent measured by negative ion mass fragmentography. Proc. Natl. Acad. Sci. USA, 93, 12599–12604.
- 231 Pepe, G. J., and Albrecht, E. D. (1995). Actions of placental and fetal adrenal steroid hormones in primate pregnancy. Endocr. Rev. 16, 608–648.
- 232 Dombroski, R. A., Casey, M. L., and MacDonald, P. C. (1997). 5-α-Dihydroprogesterone formation in human placenta from 5α-pregnan-3β/α-ol-20-ones and 5-pregnan-3β-yl-20-one sulfate. J. Steroid Biochem. Mol. Biol. 63, 155–163.
- 233 Epperson, C. N. (1999). Postpartum major depression: Detection and treatment. Am. Fam. Physician 59, 2247–2254, 2259–2260.
- 234 Nappi, R. E., Petraglia, F., Luisi, S., et al. (2001). Serum allopregnanolone in women with postpartum “blues”. Obstet. Gynecol. 97, 77–80.
- 235 Hill, M., Bicikova, M., Parizek, A., et al. (2001). Neuroactive steroids, their precursors and polar conjugates during parturition and postpartum in maternal blood: 2. Time profiles of pregnanolone isomers. J. Steroid Biochem. Mol. Biol. 78, 51–57.
- 236 Gilbert Evans, S. E., Ross, L. E., Sellers, E. M., et al. (2005). 3alpha-reduced neuroactive steroids and their precursors during pregnancy and the postpartum period. Gynecol. Endocrinol. 21, 268–279.
- 237 Rivier, C. (1993). Female rats release more corticosterone than males in response to alcohol: Influence of circulating sex steroids and possible consequences for blood alcohol levels. Alcohol. Clin. Exp. Res. 17, 854–859.
- 238 Ogilvie, K., Lee, S., and Rivier, C. (1997). Effect of three different modes of alcohol administration on the activity of the rat hypothalamic-pituitary-adrenal axis. Alcohol. Clin. Exp. Res. 21, 467–476.
- 239 Ogilvie, K., Lee, S., and Rivier, C. (1998). Divergence in the expression of molecular markers of neuronal activation in the parvocellular paraventricular nucleus of the hypothalamus evoked by alcohol administration via different routes. J. Neurosci. 18, 4344–4352.
- 240 Finn, D. A., Gallaher, E. J., and Crabbe, J. C. (2000). Differential change in neuroactive steroid sensitivity during ethanol withdrawal. J. Pharmacol. Exp. Ther. 292, 394–405.
- 241 Finn, D. A., Sinnott, R. S., Ford, M. M., et al. (2004b). Sex differences in the effect of ethanol injection and consumption on brain allopregnanolone levels in C57BL/6 mice. Neuroscience 123, 813–819.
- 242 Rivier, C. (1996). Alcohol stimulates ACTH secretion in the rat: Mechanisms of action and interactions with other stimuli. Alcohol. Clin. Exp. Res. 20, 240–254.
- 243 Lee, S., Selvage, D., Hansen, K., et al. (2004). Site of action of acute alcohol administration in stimulating the rat hypothalamic-pituitary-adrenal axis: Comparison between the effect of systemic and intracerebroventricular injection of this drug on pituitary and hypothalamic responses. Endocrinology 145, 4470–4479.
- 244 Korneyev, A., Costa, E., and Guidotti, A. (1993a). During anesthetic-induced activation of the hypothalamic pituitary adrenal axis, blood-borne steroids fail to contribute to the anesthetic effect. Neuroendocrinology 57, 559–565.
- 245 Barbaccia, M. L., Affricano, D., Trabucchi, M., et al. (1999). Ethanol markedly increases “GABAergic” neurosteroids in alcohol-preferring rats. Eur. J. Pharmacol. 384, R1–R2.
- 246 VanDoren, M. J., Matthews, D. B., Janis, G. C., et al. (2000). Neuroactive steroid 3α-hydroxy-5α-pregnan-20-one modulates electrophysiological and behavioral actions of ethanol. J. Neurosci. 20, 1982–1989.
- 247 Finn, D. A., Ford, M. M., Wiren, K. W., et al. (2004a). The role of pregnane neurosteroids in ethanol withdrawal: Behavioral genetic approaches. Pharmacol. Ther. 101, 91–112.
- 248 Torres, J. M., and Ortega, E. (2003). Alcohol intoxication increases allopregnanolone levels in female adolescent humans. Neuropsychopharmacology 28, 1207–1209.
- 249 Torres, J. M., and Ortega, E. (2004). Alcohol intoxication increases allopregnanolone levels in male adolescent humans. Psychopharmacology 172, 352–355.
- 250 Grobin, A. C., Matthews, D. B., Devaud, L. L., et al. (1998). The role of GABAA receptors in the acute and chronic effects of ethanol. Psychopharmacology 139, 2–19.
- 251 Morrow, A. L., VanDoren, M. J., Penland, S. N., et al. (2001). The role of GABAergic neuroactive steroids in ethanol action, tolerance and dependence. Brain Res. Rev. 37, 98–109.
- 252 Dazzi, L., Serra, M., Seu, E., et al. (2002). Progesterone enhances ethanol-induced modulation of mesocortical dopamine neurons: Antagonism by finasteride. J. Neurochem. 83, 1103–1109.
- 253 Budec, M., Koko, V., Milovanovic, T., et al. (2002). Acute ethanol treatment increases level of progesterone in ovariectomized rats. Alcohol 26, 173–178.
- 254 Khisti, R. T., VanDoren, M. J., O'Buckley, T., et al. (2003). Neuroactive steroid 3α-hydroxy-5α-pregnan-20-one modulates ethanol-induced loss of righting reflex in rats. Brain Res. 980, 255–265.
- 255 O'Dell, L. E., Alomary, A. A., Vallee, M., et al. (2004). Ethanol-induced increases in neuroactive steroids in the rat brain and plasma are absent in adrenalectomized and gonadectomized rats. Eur. J. Pharmacol. 484, 241–247.
- 256 Sanna, E., Talani, G., Busonero, F., et al. (2004). Brain steroidogenesis mediates ethanol modulation of GABAA receptor activity in rat hippocampus. J. Neurosci. 24, 6521–6530.
- 257 Roberto, M., Madamba, S. G., Moore, S. D., et al. (2003). Ethanol increases GABAergic transmission at both pre- and postsynaptic sites in rat central amygdala neurons. Proc. Natl. Acad. Sci. USA 100, 2053–2058.
- 258 Roberto, M., Schweitzer, P., Madamba, S. G., et al. (2004). Acute and chronic ethanol alter glutamatergic transmission in rat central amygdala: An in vitro and in vivo analysis. J. Neurosci. 24, 1594–1603.
- 259 O'Brien, C. P. (1997). A range of research-based pharmacotherapies for addiction. Science 278, 66–70.
- 260 Stretch, R., Gerber, G. J., and Wood, S. M. (1971). Factors affecting behavior maintained by response-contingent intravenous infusions of amphetamine in squirrel monkeys. Can. J. Physiol. Pharmacol. 49, 581–589.
- 261 Davis, W. M., and Smith, S. G. (1976). Role of conditioned reinforcers in the initiation, maintenance and extinction of drug-seeking behavior. Pavlov. J. Biol. Sci. 11, 222–236.
- 262 de Wit, H., and Stewart, J. (1981). Reinstatement of cocaine-reinforced responding in the rat. Psychopharmacology 75, 134–143.
- 263 de Wit, H., and Stewart, J. (1983). Drug reinstatement of heroin-reinforced responding in the rat. Psychopharmacology 79, 29–31.
- 264 Stewart, J. (2000). Pathways to relapse: The neurobiology of drug- and stress-induced relapse to drug-taking. J. Psychiatry Neurosci. 25, 125–136.
- 265 Sarnyai, Z., Shaham, Y., and Heinrichs, S. C. (2001). The role of corticotropin-releasing factor in drug addiction. Pharmacol. Rev. 53, 209–243.
- 266 Shalev, U., Grimm, J. W., and Shaham, Y. (2002). Neurobiology of relapse to heroin and cocaine seeking: A review. Pharmacol. Rev. 54, 1–42.
- 267 Shaham, Y., Erb, S., and Stewart, J. (2000). Stress-induced relapse to heroin and cocaine seeking in rats: A review. Brain Res. Rev. 33, 13–33.
- 268 Shaham, Y., Shalev, U., Lu, L., et al. (2003). The reinstatement model of drug relapse: History, methodology and major findings. Psychopharmacology 168, 3–20.
- 269 Shaham, Y., and Stewart, J. (1995). Stress reinstates heroin-seeking in drug-free animals: An effect mimicking heroin, not withdrawal. Psychopharmacology 119, 334–341.
- 270 Erb, S., Shaham, Y., and Stewart, J. (1996). Stress reinstates cocaine-seeking behavior after prolonged extinction and a drug-free period. Psychopharmacology 128, 408–412.
- 271 Shaham, Y., Adamson, L. K., Grocki, S., et al. (1997a). Reinstatement and spontaneous recovery of nicotine-seeking in rats. Psychopharmacology 130, 396–403.
- 272 Le, A. D., Quan, B., Juzytch, W., et al. (1998). Reinstatement of alcohol-seeking by priming injections of alcohol and exposure to stress in rats. Psychopharmacology 135, 169–174.
- 273 Buczek, Y., Le, A. D., Wang, A., et al. (1999). Stress reinstates nicotine seeking but not sucrose solution seeking in rats. Psychopharmacology 144, 183–188.
- 274 Shaham, Y., Funk, D., Erb, S., et al. (1997b). Corticotropin-releasing factor, but not corticosterone, is involved in the stress-induced relapse to heroin-seeking in rats. J. Neurosci. 17, 2605–2614.
- 275 Le, A. D., Harding, S., Juzytsch, W., et al. (2000). The role of corticotropin-releasing factor in stress-induced relapse to alcohol-seeking behavior in rats. Psychopharmacology 150, 317–324.
- 276 Shaham, Y., Erb, S., Leung, S., et al. (1998). CP-154,426, a selective, non-peptide antagonist of the corticotropin-releasing factor 1 receptor attenuates stress-induced relapse to drug seeking in cocaine- and heroin-trained rats. Psychopharmacology 137, 184–190.
- 277 Nie, H., and Janak, P. H. (2003). Comparison of reinstatement of ethanol- and sucrose-seeking by conditioned stimuli and priming injections of allopregnanolone after extinction in rats. Psychopharmacology 168, 222–228.
- 278 Janak, P. H., Redfern, J. E., and Samson, H. H. (1998). The reinforcing effects of ethanol are altered by the endogenous neurosteroid, allopregnanolone. Alcohol. Clin. Exp. Res. 22, 1106–1112.
- 279 Janak, P. H., and Gill, M. T. (2003). Comparison of the effects of allopregnanolone with direct GABAergic agonists on ethanol self-administration with and without concurrently available sucrose. Alcohol 30, 1–7.
- 280 Sinnott, R. S., Phillips, T. J., and Finn, D. A. (2002). Alteration of voluntary ethanol and saccharin consumption by the neurosteroid allopregnanolone in mice. Psychopharmacology 162, 438–447.
- 280a Ford, M. M., Nickel, J. D., Phillips, T. J., et al. (2005). Neurosteroid modulators of GABAA receptors differentially modulate ethanol intake patterns in male C57BL/6Jmice. Alcohol. Clin. Exp. Res. 29, 1630–1640.
- 282 O'Dell, L. E., Purdy, R. H., Covey, D. F., et al. (2005). Epipregnanolone and a novel synthetic neuroactive steroid reduce alcohol self-administration in rats. Pharmacol. Biochem. Behav. 81, 543–550.
- 283 Wang, M., He, Y., Eisenman, L. N., et al. (2002). 3β-Hydroxypregnane steroids are pregnenolone sulfate-like GABAA receptor antagonists. J. Neurosci. 22, 3366–3375.
- 284 Mennerick, S., Zeng, C. M., Benz, A., et al. (2001). Effects on gamma-aminobutyric acid (GABA)A receptors of a neuroactive steroid that negatively modulates glutamate neurotransmission and augments GABA neurotransmission. Mol. Pharmacol. 60, 732–741.
- 285 Johnson, E. O., Kamilaris, T. C., Chrousos, G. P., and Gold, P. W. (1992). Mechanisms of stress: A dynamic overview of hormonal and behavioral homeostasis. Neurosci. Biobehav. Rev. 16, 115–130.
- 286 Herman, J. P., and Cullinan, W. E. (1997). Neurocircuitry of stress: Central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci. 20, 78–84.
- 287 Holsboer, F. (1999). The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety. J. Psychiatr. Res. 33, 181–214.
- 288 Schmidt, P. J., Purdy, R. H., Moore, P. H., Jr., et al. (1994). Circulating levels of anxiolytic steroids in the luteal phase in women with premenstrual syndrome and in control subjects. J. Clin. Endocrinol. Metab. 79, 1256–1260.