Synaptic Transmission: Intercellular Signaling
J. David Jentsch
Yale University School of Medicine, New Haven, Connecticut
Search for more papers by this authorRobert H. Roth
University of California, Brain Research Institute, Los Angeles, California
Search for more papers by this authorJ. David Jentsch
Yale University School of Medicine, New Haven, Connecticut
Search for more papers by this authorRobert H. Roth
University of California, Brain Research Institute, Los Angeles, California
Search for more papers by this authorAbstract
Within the central nervous system, inter-neuronal signaling largely involves the activity-dependent secretion of neural signaling molecules which produce electrophysiological, biochemical or transcriptional changes in target cells. In many, but not all, cases, these chemical messengers are released and have their effects within synapses, which are anatomically specialized appositions between neurons. Synaptic signaling involves the complex biochemical mechanisms involved the synthesis, sequestration, release and inactivation of the chemical signal by the releasing neuron and the response to that signal through its effects on a receptor protein expressed by the target neuron. In this chapter, we identify a set of chemical signaling molecules that have been identified as synaptic messengers, and we describe the mechanisms underlying their genesis, use and disposition. Critical points for modulation of these processes are discussed. In addition, recently discovered molecules that participate in inter-cellular signaling but which defy conventional rules governing synaptic transmission are described.
References
- 1 Shepherd, G. M. (1991). Foundations of the Neuron Doctrine. Oxford University Press, New York.
- 2 Cooper, J. R., Bloom, F. E., and Roth, R. H. (2003). The Biochemical Basis of Neuropharmacology, 8th ed. Oxford University Press, New York.
- 3 Roth, R. H., and Elsworth, J. D. (1995). Biochemical pharmacology of midbrain dopamine neurons. In Psychopharmacology: The Fourth Generation of Progress, F. E. Bloom, and D. J. Kupfer Eds. Raven, New York, pp. 244–277.
- 4 Schulman, H., Hanson, P. I., and Meyer, T. (1992). Decoding calcium signals by multifunctional CaM kinase. Cell Calcium 13(6/7), 401–411.
- 5 Sabban, E. L., and Kvetnansky, R. (2001). Stress-triggered activation of gene expression in catecholaminergic systems: Dynamics of transcriptional events. Trends Neurosci. 24(2), 91–98.
- 6 Nestler, E. J., Hyman, S. E., and Malenka, R. C. (2001). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience. McGraw-Hill, New York.
- 7 Harris, R. B. (1989). Processing of pro-hormone precursor proteins. Arch. Biochem. Biophys. 275(2), 315–333.
- 8 Seidah, N. G., and Chretien, M. (1999). Proprotein and prohormone convertases. Brain Res. 848, 45–62.
- 9 Huang, E. J., and Reichardt, L. F. (2001). Neurotrophins. Annu. Rev. Neurosci. 24, 677–736.
- 10 Piomelli, D. (2003). The molecular logic of endocannabinoid signalling. Nature Rev. Neurosci. 4, 873–884.
- 11 Boehning, D., and Snyder, S. H. (2003). Novel neural modulators. Annu. Rev. Neurosci. 26, 105–131.
- 12 Snyder, S. H., and Ferris, C. D. (2000). Novel neurotransmitters and their neuropsychiatric relevance. Am. J. Psychiatry. 157(11), 1738–1751.
- 13 Erickson, J. D., and Varoqui, H. (2000). Molecular analysis of vesicular amine transporter function and targeting to secretory organelles. FASEB J. 14(15), 2450–2458.
- 14 White, T. D., and MacDonald, W. F. (1990). Neural release of ATP and adenosine. Ann. N. Y. Acad. Sci. 603, 287–298, discussion 298–299.
- 15 Chen, Y. A., and Scheller, R. H. (2001). SNARE-mediated membrane fusion. Nat. Rev. Mol. Cell Biol. 2(2), 98–106.
- 16 Schwarz, T. L. (2003). Release of neurotransmitters. In Fundamental Neuroscience, L. R. Squire et al., Eds. Academic, San Diego, pp. 197–224.
- 17 Sulzer, D., et al. (1995). Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J. Neurosci. 15(5, Pt. 2), 4102–4108.
- 18 Sulzer, D., Maidment, N. T., and Rayport, S. (1993). Amphetamine and other weak bases act to promote reverse transport of dopamine in ventral midbrain neurons. J. Neurochem. 60(2), 527–535.
- 19 Civelli, O. (2005). GPCR deorphanizations: The novel, the known and the unexpected transmitters. Trends. Pharmacol. Sci. 26(1), 15–19.
- 20 Kostenis, E., Waelbroeck, M., and Milligan, G. (2005). Techniques: Promiscuous Galpha proteins in basic research and drug discovery. Trends Pharmacol. Sci. 26(11), 595–602.
- 21 Milligan, G., and Kostenis, E. (2006). Heterotrimeric G-proteins: A short history. Br. J. Pharmacol. 147(Suppl. 1), S46–S55.
- 22 Power, R. F., Conneely, O. M., and O'Malley, B. W. (1992). New insights into activation of the steroid hormone receptor superfamily. Trends Pharmacol. Sci. 13(8), 318–323.
- 23 Huang, E. J., and Reichardt, L. F. (2003). Trk receptors: Roles in neuronal signal transduction. Annu. Rev. Biochem. 72, 609–642.
- 24 Wolf, M. E., Galloway, M. P., and Roth, R. H. (1986). Regulation of dopamine synthesis in the medial prefrontal cortex: Studies in brain slices. J Pharmacol. Exp. Ther. 236(3), 699–707.
- 25 Wolf, M. E., and Roth, R. H. (1990). Autoreceptor regulation of dopamine synthesis. Ann. N. Y. Acad. Sci. 604, 323–343.
- 26 Lambe, E. K., Picciotto, M. R., and Aghajanian, G. K. (2003). Nicotine induces glutamate release from thalamocortical terminals in prefrontal cortex. Neuropsychopharmacology 28(2), 216–225.
- 27 Schilstrom, B., et al. (2000). Putative role of presynaptic alpha7* nicotinic receptors in nicotine stimulated increases of extracellular levels of glutamate and aspartate in the ventral tegmental area. Synapse 38(4), 375–383.
- 28 Blakely, R. D. (1992). Molecular cloning and characterization of neurotransmitter transporters. NIDA Res. Monogr. 126, 66–83.
- 29 Fremeau, R. T., et al. (2004). VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends in Neurosci. 27, 98–103.
- 30 Madden, D. R. (2002). The structure and function of glutamate receptor ion channels. Nat. Rev. Neurosci. 3(2), 91–101.
- 31 Anwyl, R. (1999). Metabotropic glutamate receptors. Brain Res. Rev. 29, 83–120.
- 32 Cartmell, J., and Schoepp, D. D. (2000). Regulation of neurotransmitter release by metabotropic glutamate receptors. J. Neurochem. 75, 889–907.
- 33 Petralia, R. S., et al. (1996). The metabotropic glutamate receptors, mGluR2 and mGluR3, show unique postsynaptic, presynaptic and glial localizations. Neuroscience 71, 949–976.
- 34 Neve, K. A., Seamans, J. K., and Trantham-Davidson, H. (2004). Dopamine receptor signaling. J. Recept. Signal Transduct. Res. 24(3), 165–205.
- 35 Matsumoto, M., et al. (2003). Catechol O-methyltransferase mRNA expression in human and rat brain: Evidence for a role in cortical neuronal function. Neuroscience 116(1), 127–137.
- 36 Sesack, S. R., et al. (1998). Cellular and subcellular localization of the dopamine transporter in rat cortex. Adv. Pharmacol. 42, 171–174.
- 37 Sesack, S. R., et al. (1998). Dopamine axon varicosities in the prelimbic division of the rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter. J. Neurosci. 18(7), 2697–2708.
- 38 Bymaster, F. P., et al. (2002). Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: A potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27(5), 699–711.
- 39 Miner, L. H., et al. (2003). Ultrastructural localization of the norepinephrine transporter in superficial and deep layers of the rat prelimbic prefrontal cortex and its spatial relationship to probable dopamine terminals. J. Comp. Neurol. 466(4), 478–494.
- 40 Miner, L. H., et al. (2006). Chronic stress increases the plasmalemmal distribution of the norepinephrine transporter and the coexpression of tyrosine hydroxylase in norepinephrine axons in the prefrontal cortex. J. Neurosci, 26(5), 1571–1578.