X-Ray Fluorescence Elemental Imaging
Abstract
X-ray fluorescence (XRF) imaging is a valuable analytical technique that provides elemental distribution maps. XRF imaging can be categorized as scanning-type and non-scanning-type, that is full-filed XRF imaging using a two-dimensional X-ray detector. Advanced X-ray focusing optics produce a micro X-ray beam in the laboratory, leading to scanning micro-XRF analysis and XRF imaging. A confocal micro-XRF technique has been applied to visualize the elemental distributions in the samples. The fundamentals and applications of the scanning-type XRF imaging techniques are also introduced. Thereafter, two full-field XRF imaging techniques are explained, that is, wavelength-dispersive XRF (WDXRF) imaging and energy-dispersive XRF (EDXRF) imaging. In addition, the characteristics of these XRF imaging techniques are compared.
References
- 1 R.E. Grieken, A.A. Markowicz (eds.), Handbook of X-ray Spectrometry – 2nd edition and Expanded, Marcel Dekker, Inc., New York, 2002.
- 2B. Beckhoff, B. Kanngießer, N. Langhoff, R. Wedell, H. Wolff, Handbook of Practical X-ray Fluorescence Analysis, Springer, Berlin, 2006.
10.1007/978-3-540-36722-2 Google Scholar
- 3K. Tsuji, T. Matsuno, Y. Takimoto, M. Yamanashi, N. Kometani, Y.C. Sasaki, T. Hasegawa, S. Kato, T. Yamada, T. Shoji, N. Kawahara, ‘New Developments of X-ray Fluorescence Imaging Techniques in Laboratory’, Spectrochim. Acta Part B, 113, 43–53 (2015).
- 4 K.H.A. Janssens, F.C.V. Adams, A. Rindby (eds.), Microscopic X-ray Fluorescence Analysis, Wiley, New York, 2000.
- 5N. Gao, K. Janssens, ‘ Polycapillary X-ray Optics’, in X-ray Spectrometry: Recent Technological Advances, eds. K. Tsuji, J. Injuk, R. Grieken, John Wiley & Sons, Ltd, Chichester, 293–305, 2004.
- 6K. Tsuji, ‘ Micro-X-Ray Fluorescence’, in Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation 2010. DOI: 10.1002/9780470027318.a9067
10.1002/9780470027318.a9067 Google Scholar
- 7M. Hascheke, Laboratory Micro-X-ray Fluorescence Spectroscopy, Springer, Berlin, 2014.
10.1007/978-3-319-04864-2 Google Scholar
- 8A. Matsuda, K. Nakano, S. Komatani, S. Ohzawa, H. Uchihara, K. Tsuji, ‘Fundamental Characteristics of Polycapillary X-ray Optics Combined with Glass Conical Pinhole for Micro X-ray Fluorescence Spectrometry’, X-ray Spectrom., 38, 258–262 (2009).
- 9T. Nakazawa, K. Tsuji, ‘Depth-Selective Elemental Imaging of MicroSD Card by Confocal Micro-XRF Analysis’, X-ray Spectrom., 42, 123–127 (2013).
- 10W.M. Gibson, M.A. Kumakhov, ‘Application of X-ray and Neutron Capillary Optics’, Proc. SPIE, 1736, 172–189 (1993).
- 11X. Ding, N. Gao, G. Havrilla, ‘Monolithic Polycapillary X-ray Optics Engineered to Meet a Wide Range of Applications’, Proc. SPIE, 4144, 174–182 (2000).
- 12B. Kanngießer, W. Malzer, I. Reiche, ‘A New 3D Micro X-ray Fluorescence Analysis Set-Up – First Archaeometric Applications’, Nucl. Inst. Methods Phys. Res. A, B211, 259–264 (2003).
- 13L. Vincze, B. Vekemans, F.E. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, F. Adams, ‘Three-Dimensional Trace Element Analysis by Confocal X-ray Microfluorescence Imaging’, Anal. Chem., 76, 6786–6791 (2004).
- 14G.J. Havrilla, T. Miller, ‘Micro X-ray Fluorescence in Materials Characterization’, Powder Diffract., 19, 119–126 (2004).
- 15T.C. Miller, H.L. DeWitt, G.J. Havrilla, ‘Characterization of Small Particles by Micro X-ray Fluorescence’, Spectrochim. Acta Part B, 60, 1458–1467 (2005).
- 16G.J. Havrilla, B.M. Patterson, ‘Three-Dimensional Elemental Imaging Using a Confocal X-ray Fluorescence Microscope’, Am. Lab., 38, 15–22 (2006).
- 17K. Tsuji, K. Nakano, ‘Development of a New Confocal 3D-XRF Instrument with an X-ray Tube’, J. Anal. At. Spectrom., 26, 305–309 (2011).
- 18N. Kawahara, S. Sonoda, S. Mita, T. Matsuyama, K. Tsuji, ‘Monochromatic Confocal Micro X-ray Fluorescence Spectrometry’, Adv. X-ray Anal., 63, 125–131 (2020).
- 19D. Ingerle, J. Swies, M. Iro, P. Wobrauschek, C. Streli, K. Hradil, ‘A Monochromatic Confocal Micro-X-ray Fluorescence (μXRF) Spectrometer for the Lab’, Rev. Sci. Instrum., 91, 123107 (2020).
- 20K. Tsuji, K. Nakano, X. Ding, ‘Development of Confocal Micro-XRF Instrument Using Two X-ray Beams’, Spectrochim. Acta Part B, 62, 549–553 (2007).
- 21Z. Smit, K. Janssens, K. Proost, I. Langus, ‘Confocal μ-XRF Depth Analysis of Paint Layers’, Nucl. Inst. Methods Phys. Res. A, B219–220, 35–40 (2004).
- 22K. Janssens, K. Proost, G. Falkenberg, ‘Confocal Microscopic X-ray Fluorescence at the HASYLAB Microfocus Beamline: Characteristics and Possibilities’, Spectrochim. Acta Part B, 59, 1637–1645 (2004).
- 23T. Nakazawa, K. Tsuji, ‘Development of a High Resolution Confocal Micro-XRF Instrument Equipped with a Vacuum Chamber’, X-ray Spectrom., 42, 374–379 (2013).
- 24S. Smolek, B. Pemmer, M. Fölser, C. Streli, P. Wobrauschek, ‘Confocal Micro-X-ray Fluorescence Spectrometer for Light Element Analysis’, Rev. Sci. Instrum., 83, 083703 (2012).
- 25S. Smolek, T. Nakazawa, A. Tabe, K. Nakano, K. Tsuji, C. Streli, P. Wobrauschek, ‘Comparison of Two Confocal Micro-XRF Spectrometers with Different Design Aspects’, X-ray Spectrom., 43, 93–101 (2014).
- 26A.R. Woll, J. Mass, C. Bisulca, R. Huang, D.H. Bilderback, S. Gruner, N. Gao, ‘Development of Confocal X-ray Fluorescence (XRF) Microscopy at the Cornell High Energy Synchrotron Source’, Appl. Phys. A Mater. Sci. Process., 83, 235–238 (2006).
- 27B. Kanngießer, I. Mantouvalou, W. Malzer, T. Wolff, O. Hahn, ‘Non-Destructive, Depth Resolved Investigation of Corrosion Layers of Historical Glass Objects by 3D Micro X-ray Fluorescence Analysis’, J. Anal. At. Spectrom., 23, 814–819 (2008).
- 28B.D. Samber, G. Silversmit, K.D. Schamphelaere, R. Evens, T. Schoonjans, B. Vekemans, C. Janssen, B. Masschaele, L.V. Hoorebeke, I. Szalóki, F. Vanhaecke, K. Rickers, G. Falkenberg, L. Vincze, ‘Element-to-Tissue Correlation in Biological Samples Determined by Three-Dimensional X-ray’, J. Anal. At. Spectrom., 25, 544–553 (2010).
- 29B. Kanngießer, W. Malzer, A.F. Rodriguez, I. Reiche, ‘Three-Dimensional Micro-XRF Investigations of Paint Layers with a Tabletop Setup’, Spectrochim. Acta Part B, 60, 41–47 (2005).
- 30K. Nakano, K. Tsuji, ‘Nondestructive Elemental Depth Profiling of Japanese Lacquer-ware Tamamushi-nuri by Confocal 3D-XRF Analysis in Comparison with Micro GE-XRF’, X-ray Spectrom., 38, 446–450 (2009).
- 31K. Nakano, C. Nishi, K. Otsuki, Y. Nishiwaki, K. Tsuji, ‘Depth Elemental Imaging of Forensic Samples by Confocal Micro-XRF Method’, Anal. Chem., 83, 3477–3483 (2011).
- 32K. Tsuji, T. Yonehara, K. Nakano, ‘Application of Confocal 3D Micro XRF for Solid/Liquid Interface Analysis’, Anal. Sci., 24, 99–103 (2008).
- 33S. Hirano, K. Akioka, T. Doi, M. Arai, K. Tsuji, ‘Elemental Depth Imaging of Solutions for Monitoring Corrosion Process of Steel Sheet by Confocal Micro-XRF’, X-ray Spectrom., 43, 216–220 (2014).
- 34Y. Kitado, S. Hirano, N. Kometani, K. Tsuji, ‘Confocal Micro XRF Monitoring of Displacement Plating Process’, Adv. X-ray Chem. Anal., Japan, 46, 269–276 (2015).
- 35K. Akioka, T. Nakazawa, T. Doi, M. Arai, K. Tsuji, ‘Underfilm Corrosion of Steel Sheets Observed by Confocal 3D-XRF Technique’, Powder Diffract., 29, 151–154 (2014).
- 36R. Yagi, K. Tsuji, ‘Confocal Micro-XRF Analysis of Light Elements with Rh X-ray Tube and Its Application for Painted Steel Sheet’, X-ray Spectrom., 44, 186–189 (2015).
- 37R. Hosomi, J. Chin, T. Doi, K. Akioka, K. Tsuji, ‘In-situ Observation of the Corrosion Process of Steel Sheets in a Solution by a Confocal Micro XRF Technique’, Bunseki Kagaku, 66, 713–718 (2017).
- 38L. Strüder, S. Epp, D. Rolles, R. Hartmann, P. Holl, G. Lutz, H. Soltau, R. Eckart, C. Reich, K. Heinzinger, C. Thamm, A. Rudenko, F. Krasniqi, K.-U. Kühnel, C. Bauer, C.-D. Schröter, R. Moshammer, S. Techert, D. Miessner, M. Porro, O. Hälker, N. Meidinger, N. Kimmel, R. Andritschke, F. Schopper, G. Weidenspointner, A. Ziegler, D. Pietschner, S. Herrmann, U. Pietsch, A. Walenta, W. Leitenberger, C. Bostedt, T. Möller, D. Rupp, M. Adolph, H. Graafsma, H. Hirsemann, K. Gärtner, R. Richter, L. Foucar, R.L. Shoeman, I. Schlichting, J. Ullrich, ‘Large-Format, High-Speed, X-ray pnCCDs Combined with Electron and Ion Imaging Spectrometers in a Multipurpose Chamber for Experiments at 4th Generation Light Sources’, Nucl. Inst. Methods Phys. Res. A, A614, 483–496 (2010).
- 39O. Scharf, S. Ihle, I. Ordavo, V. Arkadiev, A. Bjeoumikhov, S. Bjeoumikhova, G. Buzanich, R. Gubzhokov, A. Günther, R. Hartmann, M. Kühbacher, M. Lang, N. Langhoff, A. Liebel, M. Radtke, U. Reinholz, H. Riesemeier, H. Soltau, L. Strüder, A.F. Thünemann, R. Wedell, ‘Compact pnCCD-Based X-Ray Camera with High Spatial and Energy Resolution: A Color X-Ray Camera’, Anal. Chem., 83, 2532–2538 (2011).
- 40J. Garrevoet, B. Vekemans, P. Tack, B.D. Samber, S. Schmitz, F.E. Brenker, G. Falkenberg, L. Vincze, ‘Methodology Toward 3D Micro X-Ray Fluorescence Imaging Using an Energy Dispersive Charge-Coupled Device Detector’, Anal. Chem., 86, 11826–11832 (2014).
- 41F.P. Romano, C. Altana, L. Cosentino, L. Celona, S. Gammino, D. Mascali, L. Pappalardo, F. Rizzo, ‘A New X-Ray Pinhole Camera for Energy Dispersive X-Ray Fluorescence Imaging with High-Energy and High-Spatial Resolution’, Spectrochim. Acta Part B, 77, 60–65 (2013).
- 42F.P. Romano, C. Caliri, L. Cosentino, S. Gammino, L. Giuntini, D. Mascali, L. Neri, L. Pappalardo, F. Rizzo, F. Taccetti, ‘Macro and Micro Full Field X-Ray Fluorescence with an X-Ray Pinhole Camera Presenting High Energy and High Spatial Resolution’, Anal. Chem., 86, 10892–10899 (2014).
- 43A. Yamauchi, M. Iwasaki, K. Hayashi, K. Tsuji, ‘Evaluation of Full-Field Energy Dispersive X-Ray Fluorescence Imaging Apparatus and Super Resolution Analysis with Compressed Sensing Technique’, X-ray Spectrom., 48, 644–650 (2019).
- 44K. Tsuji, T. Ohmori, M. Yamaguchi, ‘Wavelength Dispersive X-Ray Fluorescence Imaging’, Anal. Chem., 83, 6389–6394 (2011).
- 45T. Ohmori, S. Kato, M. Doi, T. Shoji, K. Tsuji, ‘Wavelength Dispersive X-Ray Fluorescence Imaging Using a High-Sensitivity Imaging Sensor’, Spectrochim. Acta Part B, 83–84, 56–60 (2013).
- 46S. Emoto, K. Tsuji, S. Kato, T. Yamada, T. Shoji, ‘Analytical Characteristics of Wavelength Dispersive XRF Imaging with Straight Polycapillary and 2D Detector’, Adv. X-Ray Chem. Anal., Japan, 45, 129–138 (2014).
Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation
Browse other articles of this reference work: