Rapid Pathogen Detection Tools
Kitiya Vongkamjan
Prince of Songkla University, Hat Yai, Thailand
Search for more papers by this authorMingkwan Yingkajorn
Prince of Songkla University, Hat Yai, Thailand
Search for more papers by this authorKitiya Vongkamjan
Prince of Songkla University, Hat Yai, Thailand
Search for more papers by this authorMingkwan Yingkajorn
Prince of Songkla University, Hat Yai, Thailand
Search for more papers by this authorAbstract
Traditional methods for detection of foodborne pathogenic bacteria in food and clinical samples are typically time-consuming and require multiple steps or even skilled persons for identification and confirmation of pathogens. Multiple serious pathogens including Escherichia coli, Salmonella spp., Listeria monocytogenes, Campylobacter jejuni, and Vibrio spp. have been linked to foodborne diseases and outbreaks worldwide. Rapid, reliable, and less labor intensive detection methods can simplify the steps for pathogen detection for routine testing or monitoring of food samples as well as for following-up on foodborne illness cases by testing clinical samples. Monitoring of pathogens can become more common and effortless to perform. Immediate responses to potential pathogen contamination in foods can be one of the most effective ways to control foodborne outbreaks. This section reviews the principles and characteristics of some recent rapid detection methods, including (i) immunoassays and nucleic acid-based detection platforms and (ii) tools based on metabolites released or consumed. As these methods have gained interest for use to detect pathogens in both food and clinical samples, a perspective on the future directions is also described.
References
- 1 World Health Organization, WHO Estimates of the Global burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015, https://apps.who.int/iris/bitstream/handle/10665/199350/9789241565165_eng.pdf;jsessionid=D2E41FF595C48EAE4BD7BB07B38BE4C1?sequence=1 (accessed 31 January 2019).
- 2E.F.S. Authority, ‘The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-Borne Outbreaks in 2013’, EFSA J., 13, 3991 (2015).
- 3O.L. Henao, T.F. Jones, D.J. Vugia, P.M. Griffin, ‘Foodborne Diseases Active Surveillance Network—2 Decades of Achievements, 1996–2015’, Emerg. Infect. Dis., 21, 1529–1536 (2015).
- 4S.P. Oliver, B.M. Jayarao, R.A. Almeida, ‘Foodborne Pathogens in Milk and the Dairy Farm Environment: Food Safety and Public Health Implications’, Foodborne Pathog. Dis., 2, 115–137 (2005).
- 5E. Scallan, R.M. Hoekstra, F.J. Angulo, R.V. Tauxe, M.A. Widdowson, S.L. Roy, ‘Foodborne Illness Acquired in the United States—Major Pathogens’, Emerg. Infect. Dis., 17, 7–15 (2011).
- 6X. Zhao, C.W. Lin, J. Wang, D.H. Oh, ‘Advances in Rapid Detection Methods for Foodborne Pathogens’, J. Microbiol. Biotechnol., 24, 297–312 (2014).
- 7N. Lee, K.Y. Kwon, S.K. Oh, H.J. Chang, H.S. Chun, S.W. Choi, ‘A Multiplex PCR Assay for Simultaneous Detection of Escherichia coli O157: H7, Bacillus cereus, Vibrio parahaemolyticus, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in Korean Ready-to-Eat Food’, Foodborne Pathog. Dis., 11, 574–580 (2014).
- 8M.S. Chung, C.M. Kim, S.D. Ha, ‘Detection and Enumeration of Microorganisms in Ready-to-Eat Foods, Ready-to-Cook Foods and Fresh-Cut Produce in Korea’, J. Food Saf., 30, 480–489 (2010).
- 9S.C. Bavisetty, H.T. Vu, S. Benjakul, K. Vongkamjan, ‘Rapid Pathogen Detection Tools in Seafood Safety’, Curr. Opin. Food Sci., 20, 92–99 (2018).
- 10K.C. Chapin, T.L. Lauderdale, ‘ Reagents, Stains, and Media: Bacteriology’, in Manual of Clinical Microbiology, 9th edition, eds P.R. Murray, E.J. Baron, J.H. Jorgensen, M.L. Landry, M.A. Pfaller, ASM Press, Washington, DC, 334–364, 2007.
- 11K. Vongkamjan, S. Wang, A.I. Moreno Switt, in Rapid Detection of Foodborne Bacterial Pathogens in Seafood, Handbook of Seafood: Quality and Safety Maintenance and Applications, eds I.Y. Genç, E. Esteves, Diler, Nova Science Pub Inc, UK, 2016.
- 12A. Aschfalk, W. Müller, ‘Clostridium perfringens Toxin Types from Wild-Caught Atlantic Cod (Gadus morhua L.), Determined by PCR and ELISA’, Can. J. Microbiol., 48, 365–368 (2002).
- 13A.G. Gehring, P.M. Fratamico, J. Lee, L.E. Ruth, X. He, Y. He, ‘Evaluation of ELISA Tests Specific for ShigaToxin 1 and 2 in Food and Water Samples’, Food Control, 77, 145–149 (2017).
- 14E. Yamasaki, M. Watahiki, J. Isobe, T. Sata, G.B. Nair, H. Kurazono, ‘Quantitative Detection of Shiga Toxins Directly from Stool Specimens of Patients Associated with an Outbreak of Enterohemorrhagic Escherichia coli in Japan—Quantitative Shiga Toxin Detection from Stool during EHEC Outbreak’, Toxins, 7, 4381–4389 (2015).
- 15B. Pang, C. Zhao, L. Li, X. Song, K. Xu, J. Wang, ‘Development of a Low-Cost Paper-Based ELISA Method for Rapid Escherichia coli O157:H7 Detection’, Anal. Biochem., 542, 58–62 (2018).
- 16P.P. Banada, A.K. Bhunia, ‘ Antibodies and Immunoassays for Detection of Bacterial Pathogens’, in Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems, eds M. Zourob, S. Elwary, A. Turner, Springer, Berlin, 567–602, 2008.
10.1007/978-0-387-75113-9_21 Google Scholar
- 17K. Niu, X. Zheng, C. Huang, K. Xu, Y. Zhi, H. Shen, ‘A Colloidal Gold Nanoparticle-Based Immunochromatographic Test Strip for Rapid and Convenient Detection of Staphylococcus aureus’, J. Nanosci. Nanotechnol., 14, 5151–5162 (2014).
- 18Z. Shen, N. Hou, M. Jin, Z. Qiu, J. Wang, B. Zhang, ‘A Novel Enzyme-Linked Immunosorbent Assay for Detection of Escherichia coli O157:H7 Using Immunomagnetic and Beacon Gold Nanoparticles’, Gut Pathog., 6, 14 (2014).
- 19S. Shukla, H. Leem, J.S. Lee, M. Kim, ‘Immunochromatographic Strip Assay for the Rapid and Sensitive Detection of Salmonella Typhimurium in Artificially Contaminated Tomato Samples’, Can. J. Microbiol., 60, 399–406 (2014).
- 20S.H. Kim, J.Y. Kim, W. Han, B.Y. Jung, P.D. Chuong, H.J. Joo, ‘Development and Evaluation of an Immunochromatographic Assay for Screening Listeria spp. in Pork and Milk’, Food. Sci. Biotechnol., 16, 515–519 (2007).
- 21Y. Zhou, F.G. Pan, Y.S. Li, Y.Y. Zhang, J.H. Zhang, S.Y. Lu, ‘Colloidal Gold Probe-Based Immunochromatographic Assay for the Rapid Detection of Brevetoxins in Fishery Product Samples’, Biosens. Bioelectron., 24, 2744–2747 (2009).
- 22S. Rong-Hwa, T. Shiao-Shek, C. Der-Jiang, H. Yao-Wen, ‘Gold Nanoparticle-Based Lateral Flow Assay for Detection of Staphylococcal Enterotoxin B’, Food Chem., 118, 462–466 (2010).
- 23M.E. Fleece, J. Heptinstall, S.S. Khan, M. Kabir, J. Herbein, R. Haque, ‘Evaluation of a Rapid Lateral Flow Point-of-Care Test for Detection of Cryptosporidium’, Am. J. Trop. Med. Hyg., 95, 840–841 (2016).
- 24L.D. Teel, J.A. Daly, R.C. Jerris, D. Maul, G. Svanas, A.D. O'Brien, C.H. Park, ‘Rapid Detection of Shiga Toxin-Producing Escherichia coli by Optical Immunoassay’, J. Clin. Microbiol., 45, 3377–3380 (2007).
- 25C.R. Hermos, M. Janineh, L.L. Han, A.J. McAdam, ‘Shiga Toxin-Producing Escherichia coli in Children: Diagnosis and Clinical Manifestations of O157:H7 and Non-O157:H7 Infection’, J. Clin. Microbiol., 49, 955–959 (2011).
- 26L. Chui, M.C. Lee, K. Malejczyk, L. Lim, D. Fok, P. Kwong, ‘Prevalence of Shiga Toxin-Producing Escherichia coli (STEC) as Detected by Enzyme-Linked Immunoassays and Real-Time PCR during the Summer Months in Northern Alberta, Canada’, J. Clin. Microbiol., 49, 4307–4310 (2011).
- 27L. Chui, L. Patterson-Fortin, J. Kuo, V. Li, V. Boras, ‘Evaluation of Enzyme Immunoassays and Real-Time PCR for Detecting Shiga toxin-Producing Escherichia coli in Southern Alberta, Canada’, J. Clin. Microbiol., 53, 1019–1023 (2015).
- 28G. Panicker, D.R. Call, M.J. Krug, A.K. Bej, ‘Detection of Pathogenic Vibrio spp. in Shellfish by Using Multiplex PCR and DNA Microarrays’, Appl. Environ. Microbiol., 70, 7436–7444 (2004).
- 29S.B. Neogi, N. Chowdhury, M. Asakura, A. Hinenoya, S. Haldar, S.M. Saidi, ‘A Highly Sensitive and Specific Multiplex PCR Assay for Simultaneous Detection of Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus’, Lett. Appl. Microbiol., 51, 293–300 (2010).
- 30H. Izumiya, K. Matsumoto, S. Yahiro, J. Lee, M. Morita, S. Yamamoto, ‘Multiplex PCR Assay for Identification of Three Major Pathogenic Vibrio spp., Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus’, Mol. Cell. Probes, 25, 174–176 (2011).
- 31J.P. Rosec, V. Causse, B. Cruz, J. Rauzier, L. Carnat, ‘The International Standard ISO/TS 21872-1 to Study the Occurrence of Total and Pathogenic Vibrio parahaemolyticus and Vibrio cholerae in Seafood: its Improvement by Use of a Chromogenic Medium and PCR’, Int. J. Food Microbiol., 157, 189–194 (2012).
- 32P. Varela, G.D. Pollevick, M. Rivas, I. Chinen, N. Binsztein, A.C. Frasch, ‘Direct Detection of Vibrio cholerae in Stool Samples’, J. Clin. Microbiol., 32, 1246–1248 (1994).
- 33A. Bauer, L.M. Rorvik, ‘A Novel Multiplex PCR for the Identification of Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus’, Lett. Appl. Microbiol., 45, 371–375 (2007).
- 34M.T. Hossain, E.Y. Kim, Y.R. Kim, D.G. Kim, I.S. Kong, ‘Development of a groEL Gene-Based Species-Specific Multiplex Polymerase Chain Reaction Assay for Simultaneous Detection of Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus’, J. Appl. Microbiol., 114, 448–456 (2013).
- 35P.H. Nhung, K. Ohkusu, J. Miyasaka, X.S. Sun, T. Ezaki, ‘Rapid and Specific Identification of 5 Human Pathogenic Vibrio species by Multiplex Polymerase Chain Reaction Targeted to dnaJ Gene’, Diagn. Microbiol. Infect. Dis., 59, 271–275 (2007).
- 36M.D. Fakruddin, M. Saltana, M.M. Ahmed, A. Chowdhury, N. Choudhury, ‘Multiplex PCR (Polymerase Chain Reaction) Assay for Detection of E. coli O157:H7, Salmonella sp., Vibrio cholerae and Vibrio parahaemolyticus in Spiked Shrimps (Penaeus monodon)’, Pak. J. Biol. Sci., 16, 267–274 (2013).
- 37A. Vantarakis, G. Komninou, D. Venieri, M. Papapetropoulou, ‘Development of a Multiplex PCR Detection of Salmonella spp. and Shigella spp. in Mussels’, Lett. Appl. Microbiol., 31, 105–109 (2000).
- 38A.K. Bej, M.H. Mahbubani, M.J. Boyce, R.M. Atlas, ‘Detection of Salmonella spp. in Oysters by PCR’, Appl. Environ. Microbiol., 60, 368–373 (1994).
- 39H. Al-Talib, B. Latif, Z. Mohd-Zain, ‘Pentaplex PCR Assay for Detection of Hemorrhagic Bacteria from Stool Samples’, J. Clin. Microbiol., 52, 3244–3249 (2014).
- 40J. Ryu, S.H. Park, Y.S. Yeom, A. Shrivastav, S.H. Lee, Y.R. Kim, ‘Simultaneous Detection of Listeria species Isolated from Meat Processed Foods Using Multiplex PCR’, Food Control, 32, 59–664 (2013).
- 41C.A. Heid, J. Stevens, K.J. Livak, P.M. Williams, ‘Real Time Quantitative PCR’, Genome Res., 6, 986–994 (1996).
- 42H. Takahashi, Y. Iwade, H. Konuma, Y. Hara-Kudo, ‘Development of a Quantitative Real-Time PCR Method for Estimation of the Total Number of Vibrio parahaemolyticus in Contaminated Shellfish and Seawater’, J. Food Prot., 68, 1083–1088 (2005).
- 43J.L. Nordstrom, M.C.L. Vickery, G.M. Blackstone, S.L. Murray, A. DePaola, ‘Development of a Multiplex Real-Time PCR Assay with an Internal Amplification Control for the Detection of Total and Pathogenic Vibrio parahaemolyticus Bacteria in Oysters’, Appl. Environ. Microbiol., 73, 5840–5847 (2007).
- 44A. Robert-Pillot, S. Copin, M. Gay, P. Malle, M.L. Quilici, ‘Total and Pathogenic Vibrio parahaemolyticus in Shrimp: Fast and Reliable Quantification by Real-Time PCR’, Int. J. Food Microbiol., 143, 190–197 (2010).
- 45B. Liu, X. He, W. Chen, S. Yu, C. Shi, X. Zhou, ‘Development of a Real Time PCR Assay for Rapid Detection of Vibrio parahaemolyticus from Seafood’, Protein Cell, 3, 204–212 (2012).
- 46I. Hein, G. Flekna, M. Krassnig, M. Wagner, ‘Real-Time PCR for the Detection of Salmonella spp. in Food: An Alternative Approach to a Conventional PCR System Suggested by the FOOD-PCR Project’, J. Microbiol. Methods, 66, 538–547 (2006).
- 47S.H. Liming, A.A. Bhagwat, ‘Application of a Molecular Beacon-Real-Time PCR Technology to Detect Salmonella species Contaminating Fruits and Vegetables’, Int. J. Food Microbiol., 95, 177–187 (2004).
- 48V. Fusco, G.M. Quero, M. Morea, G. Blaiotta, A. Visconti, ‘Rapid and Reliable Identification of Staphylococcus aureus Harbouring the Enterotoxin Gene Cluster (egc) and Quantitative Detection in Raw Milk by Real Time PCR’, Int. J. Food Microbiol., 144, 528–537 (2011).
- 49J.D. Oliver, C. Pruzzo, L. Vezzulli, J.B. Kaper, ‘ Vibrio Species’, in Food Microbiology: Fundamentals and Frontiers, 4th edition, eds M.P. Doyle, R.L. Buchanan, ASM Press, Washington, DC, 401–439, 2013.
- 50H. Fukushima, Y. Tsunomori, R. Seki, ‘Duplex Real-Time SYBR Green PCR Assays for Detection of 17 Species of Food- or Waterborne Pathogens in Stools’, J. Clin. Microbiol., 41, 5134–5146 (2003).
- 51 U.S. Food and Drug Administration, Luminex xTAG GPP K1403777, https://www.accessdata.fda.gov/cdrh_docs/reviews/k140377.pdf (accessed 31 January 2019).
- 52B.W. Buchan, W.J. Olson, M. Pezewski, M.J. Marcon, T. Novicki, T.S. Uphoff, ‘Clinical Evaluation of a Real-Time PCR Assay for the Identification of Salmonella, Shigella, Campylobacter (C. jejuni and C. coli), and Shiga Toxin Producing E. coli Isolates in Stool Specimens’, J. Clin. Microbiol., 51, 4001–4007 (2013).
- 53 U.S. Food and Drug Administration, Hologic (Gen-Probe) ProGastro SSCS Assay K123274, https://www.accessdata.fda.gov/cdrh_docs/pdf12/K123274.pdf (accessed 31 January 2019).
- 54 U.S. Food and Drug Administration, BD MAXTM Enteric Bacterial Panel K140111, https://www.accessdata.fda.gov/cdrh_docs/pdf14/K140111.pdf (accessed 31 January 2019).
- 55 U.S. Food and Drug Administration, Verigene® Enteric Pathogens Nucleic Acid Test (EP) K140083, http://www.accessdata.fda.gov/cdrh_docs/pdf14/K140083.pdf (accessed 31 January 2019).
- 56 U.S. Food and Drug Administration, BioFire's FilmArray GI panel K140407, http://www.accessdata.fda.gov/cdrh_docs/reviews/k140407.pdf (accessed 31 January 2019).
- 57E. Omiccioli, G. Amagliani, G. Brandi, M. Magnani, ‘A New Platform for Real-Time PCR Detection of Salmonella spp., Listeria monocytogenes and Escherichia coli O157 in Milk’, Food Microbiol., 26, 615–622 (2009).
- 58J.R. Patel, A.A. Bhagwat, G.C. Sanglay, M.B. Solomon, ‘Rapid Detection of Salmonella from Hydrodynamic Pressure-Treated Poultry Using Molecular Beacon Real-Time PCR’, Food Microbiol., 23, 39–46 (2006).
- 59B. Zhou, J. Xiao, S. Liu, J. Yang, Y. Wang, F. Nie, ‘Simultaneous Detection of Six Food-Borne Pathogens by Multiplex PCR with a GeXP Analyzer’, Food Control, 32, 198–204 (2013).
- 60M. Fricker, U. Messelhäußer, U. Busch, S. Scherer, M. Ehling-Schulz, ‘Diagnostic Real-Time PCR Assays for the Detection of Emetic Bacillus cereus Strains in Foods and Recent Food-Borne Outbreaks’, Appl. Environ. Microbiol., 73, 1892–1898 (2007).
- 61T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, ‘Loop-Mediated Isothermal Amplification’, Nucleic Acids Res., 28, e63 (2000).
- 62F. Han, F. Wang, B. Ge, ‘Detecting Potentially Virulent Vibrio vulnificus Strains in Raw Oysters by Quantitative Loop-Mediated Isothermal Amplification’, Appl. Environ. Microbiol., 77, 2589–2595 (2011).
- 63M. Yingkajorn, N. Sermwittayawong, N. Khamhaeng, M. Nishibuchi, V. Vuddhakul, ‘Quantitative Analysis of Pathogenic and Nonpathogenic Vibrio parahaemolyticus in Shrimp Derived from Industrial Processing’, J. Food Saf., 36, 254–259 (2016).
- 64L. Wang, L. Shi, M.J. Alam, Y. Geng, L. Li, ‘Specific and Rapid Detection of Foodborne Salmonella by Loop-Mediated Isothermal Amplification Method’, Food Res. Int., 41, 69–74 (2008).
- 65L. Zhang, Z. Pan, S. Geng, X. Chen, Z. Liu, F. Zhao, ‘A Loop-Mediated Isothermal Amplification Method Targets the HisJ Gene for the Detection of Foodborne Salmonella’, Eur. Food Res. Technol., 234, 1055–1062 (2012).
- 66K. Vongkamjan, J. Fuangpaiboon, S. Jirachotrapee, M.P. Turner, ‘Occurrence and Diversity of Listeria spp. in Seafood Processing Plant Environments’, Food Control, 50, 265–272 (2015).
- 67K. Vongkamjan, J. Fuangpaiboon, M.P. Turner, V. Vuddhakul, ‘Various Ready-to-Eat Products from Retail Stores Linked to Occurrence of Diverse Listeria monocytogenes and Listeria spp. Isolate’, J. Food Prot., 79, 239–245 (2016).
- 68Y. Mori, T. Notomi, ‘Loop-Mediated Isothermal Amplification (LAMP): A Rapid, Accurate, and Cost-Effective Diagnostic Method for Infectious Diseases’, J. Infect. Chemother., 15, 62–69 (2009).
- 69F. Wang, L. Jiang, B. Ge, ‘Loop-Mediated Isothermal Amplification Assays for Detecting Shiga Toxin-Producing Escherichia coli in Ground Beef and Human Stools’, J. Clin. Microbiol., 50, 91–97 (2012).
- 70C.S.J. Teh, K.H. Chua, Y.A.L. Lim, S.C. Lee, K.L. Thong, ‘Loop-Mediated Isothermal Amplification Assay for Detection of Generic and Verocytotoxin-Producing Escherichia coli Among Indigenous Individuals in Malaysia’, Sci. World J., 2014, (2014). DOI: 10.1155/2014/457839
- 71B.D. Parsons, N. Zelyas, B.M. Berenger, L. Chui, ‘Detection, Characterization, and Typing of Shiga Toxin-Producing Escherichia coli’, Front. Microbiol., 7, 478 (2016).
- 72D.S.P. Silva, T. Canato, M. Magnani, J. Alves, E.Y. Hirooka, T.C.R.M. de Oliveira, ‘Multiplex PCR for the Simultaneous Detection of Salmonella spp. and Salmonella Enteritidis in Food’, Int. J. Food Sci. Technol., 46, 1502–1507 (2011).
- 73K. Verstraete, J. Robyn, J. Del–Favero, P. De Rijk, M.A. Joris, L. Herman, ‘Evaluation of a Multiplex-PCR Detection in Combination with an Isolation Method for STEC O26, O103, O111, O145 and Sorbitol Fermenting O157 in Food’, Food Microbiol., 29, 49–55 (2012).
- 74Z.P. Guan, Y. Jiang, F. Gao, L. Zhang, G.H. Zhou, Z.J. Guan, ‘Rapid and Simultaneous Analysis of Five Foodborne Pathogenic Bacteria Using Multiplex PCR’, Eur. Food Res. Technol., 237, 627–637 (2013).
- 75J. Chen, L. Zhang, G.C. Paoli, C. Shi, S.I. Tu, X. Shi, ‘A Real-Time PCR Method for the Detection of Salmonella enterica from Food Using a Target Sequence Identified by Comparative Genomic Analysis’, Int. J. Food Microbiol., 137, 168–174 (2010).
- 76S. Kawasaki, P.M. Fratamico, N. Horikoshi, Y. Okada, K. Takeshita, T. Sameshima, ‘Multiplex Real-Time Polymerase Chain Reaction Assay for Simultaneous Detection and Quantification of Salmonella Species, Listeria monocytogenes, and Escherichia coli O157:H7 in Ground Pork Samples’, Foodborne Pathog. Dis., 7, 549–554 (2010).
- 77O. Ruiz-Rueda, M. Soler, L. Calvó, J.L. García-Gil, ‘Multiplex Real-Time PCR for the Simultaneous Detection of Salmonella spp. and Listeria monocytogenes in Food Samples’, Food Anal. Methods, 4, 131–138 (2011).
- 78K. Ma, Y. Deng, Y. Bai, D. Xu, E. Chen, H. Wu, ‘Rapid and Simultaneous Detection of Salmonella, Shigella, and Staphylococcus aureus in Fresh Pork Using a Multiplex Real-Time PCR Assay Based on Immunomagnetic Separation’, Food Control., 42, 87–93 (2014).
- 79L. Wang, L. Shi, J. Su, Y. Ye, Q. Zhong, ‘Detection of Vibrio parahaemolyticus in Food Samples Using In Situ Loop-Mediated Isothermal Amplification Method’, Gene, 515, 421–425 (2013).
- 80Y. Shao, S. Zhu, C. Jin, F. Chen, ‘Development of Multiplex Loop-Mediated Isothermal Amplification-RFLP (mLAMP-RFLP) to Detect Salmonella spp. and Shigella spp. in Milk’, Int. J. Food Microbiol., 148, 75–79 (2011).
- 81V. Velusamy, K. Arshak, O. Korostynska, K. Oliwa, C. Adley, ‘An Overview of Foodborne Pathogen Detection: In the Perspective of Biosensors’, Biotechnol. Adv., 28, 232–254 (2010).
- 82A. Singh, S. Poshtiban, S. Evoy, ‘Recent Advances in Bacteriophage Based Biosensors for Food-Borne Pathogen Detection’, Sensors, 13, 1763–1786 (2013).
- 83G. Zhang, ‘Foodborne Pathogenic Bacteria Detection: An Evaluation of Current and Developing Methods’, Meducator, 1, 15 (2013).
- 84M. Rubab, H.M. Shahbaz, A.N. Olaimat, D.H. Oh, ‘Biosensors for Rapid and Sensitive Detection of Staphylococcus aureus in Food’, Biosens. Bioelectron., 105, 49–57 (2018).
- 85Q. Chen, F. Huang, G. Cai, M. Wang, J. Lin, ‘An Optical Biosensor Using Immunomagnetic Separation, Urease Catalysis and pH Indication for Rapid and Sensitive Detection of Listeria monocytogenes’, Sens. Actuators B. Chem., 258, 447–453 (2018).
- 86D. Wei, O.A. Oyarzabal, T.S. Huang, S. Balasubramanian, S. Sista, A.L. Simonian, ‘Development of a Surface Plasmon Resonance Biosensor for the Identification of Campylobacter jejuni’, J. Microbiol. Methods, 69(1), 78–85 (2007).
- 87Y. Wang, Z. Ye, C. Si, Y. Ying, ‘Monitoring of Escherichia coli O157:H7 in Food Samples Using Lectin Based Surface Plasmon Resonance Biosensor’, Food Chem., 136, 1303–1308 (2013).
- 88D.A. Kanayeva, R. Wang, D. Rhoads, G.F. Erf, M.F. Slavik, S. Tung, ‘Efficient Separation and Sensitive Detection of Listeria monocytogenes Using an Impedance Immunosensor based on Magnetic Nanoparticles, a Microfluidic Chip, and an Interdigitated Microelectrode’, J. Food Prot., 75, 1951–1959 (2012).
- 89M. Xu, R. Wang, Y. Li, ‘Rapid Detection of Escherichia coli O157:H7 and Salmonella Typhimurium in Foods Using an Electrochemical Immunosensor Based on Screen-Printed Interdigitated Microelectrode and Immunomagnetic Separation’, Talanta, 148, 200–208 (2016).
- 90Z.Q. Shen, J.F. Wang, Z.G. Qiu, M. Jin, X.W. Wang, Z.L. Chen, ‘QCM Immunosensor Detection of Escherichia coli O157:H7 Based on Beacon Immunomagnetic Nanoparticles and Catalytic Growth of Colloidal Gold’, Biosens. Bioelectron., 26, 3376–3381 (2011).
- 91X.L. Su, Y. Li, ‘A QCM Immunosensor for Salmonella Detection with Simultaneous Measurements of Resonant Frequency and Motional Resistance’, Biosens. Bioelectron., 21, 840–848 (2005).
- 92S. Pal, W. Ying, E.C. Alocilja, F.P. Downes, ‘Sensitivity and Specificity Performance of a Direct-Charge Transfer Biosensor for Detecting Bacillus cereus in Selected Food Matrices’, Biosyst. Eng., 99, 461–468 (2008).
- 93B.E. de Ávila, M. Pedrero, S. Campuzano, V. Escamilla-Gómez, J.M. Pingarrón, ‘Sensitive and Rapid Amperometric Magnetoimmunosensor for the Determination of Staphylococcus aureus’, Anal. Bioanal. Chem., 403, 917–925 (2012).
- 94X. Muñoz-Berbel, N. Vigués, A.T.A. Jenkins, J. Mas, F.J. Muñoz, ‘Impedimetric Approach for Quantifying Low Bacteria Concentrations Based on the Changes Produced in the Electrode-Solution Interface During the Pre-Attachment Stage’, Biosens. Bioelectron., 23, 1540–1546 (2008).
- 95C. Ercole, M. Del Gallo, L. Mosiello, S. Baccella, A. Lepidi, ‘Escherichia coli Detection in Vegetable Food by a Potentiometric Biosensor’, Sens. Actuators B Chem., 91, 163–168 (2003).
- 96S. Neethirajan, V. Ragavan, X. Weng, R. Chand, ‘Biosensors for Sustainable Food Engineering: Challenges and Perspectives’, Biosensors, 8, 23 (2018).
10.3390/bios8010023 Google Scholar
- 97S.H. Si, X. Li, Y.S. Fung, D.R. Zhu, ‘Rapid Detection of Salmonella enteritidis by Piezoelectric Immunosensor’, Microchem. J., 68, 21–27 (2001).
- 98M. Pohanka, P. Skládal, O. Pavliš, ‘Label-Free Piezoelectric Immunosensor for Rapid Assay of Escherichia coli’, J. Immunoassay Immunochem., 29(1), 70–79 (2007).
10.1080/15321810701735120 Google Scholar
- 99E. Berkenpas, P. Millard, M. Pereira da Cunha, ‘Detection of Escherichia coli O157:H7 with Langasite Pure Shear Horizontal Surface Acoustic Wave Sensors’, Biosens. Bioelectron., 21, 2255–2262 (2006).
- 100R.D. Vaughan, C.K. O'sullivan, G.G. Guilbault, ‘Development of a Quartz Crystal Microbalance (QCM) Immunosensor for the Detection of Listeria monocytogenes’, Enzyme Microb. Technol., 29, 635–638 (2001).
- 101F. Liu, Y. Li, X.L. Su, M.F. Slavik, Y. Ying, J. Wang, ‘QCM Immunosensor with Nanoparticle Amplification for Detection of Escherichia coli O157:H7’, Sens. Instrum. Food Qual. Saf., 1, 161–168 (2007).
10.1007/s11694-007-9021-1 Google Scholar
- 102J.A. Jordan, M.B. Durso, ‘Comparison of 16S rRNA Gene PCR and BACTEC 9240 for Detection of Neonatal Bacteremia’, J. Clin. Microbiol., 38, 2574–2578 (2000).
- 103M. Cruciani, C. Scarparo, M. Malena, O. Bosco, G. Serpelloni, C. Mengoli, ‘Meta-Analysis of BACTEC MGIT 960 and BACTEC 460 TB, with or without Solid Media, for Detection of Mycobacteria’, J. Clin. Microbiol., 42, 2321–2325 (2004).
- 104G. Salamina, E. Dalle Donne, A. Niccolini, G. Poda, D. Cesaroni, M. Bucci, R. Fini, M. Maldini, A. Schuchat, B. Swaminathan, W. Bibb, ‘A Foodborne Outbreak of Gastroenteritis Involving Listeria monocytogenes’, Epidemiol. Infect., 117, 429–436 (1996).
- 105A. Kilic, O. Bedir, N. Kocak, B. Levent, C.P. Eyigun, O.F. Tekbas, L. Gorenek, O. Baylan, A.C. Basustaoglu, ‘Analysis of an Outbreak of Salmonella enteritidis by Repetitive-Sequence-Based PCR and Pulsed-Field Gel Electrophoresis’, Intern. Med., 49, 31–36 (2010).
- 106Y. Shimizu, A. Ishii, A. Takahata, T. Kajiyama, A. Yamahatsu, H. Io, A. Kurusu, C. Hamada, S. Horikoshi, Y. Tomino, ‘Campylobacter Bacteremia in Hemodialysis Patients by Eating Raw Meat—The Importance of Sanitary Education’, Case Rep. Nephrol. Urol., 2, 145–151 (2012).
- 107J.A. Morello, C. Leitch, S. Nitz, J.W. Dyke, M. Andruszewski, G. Maier, W. Landau, M.A. Beard, ‘Detection of Bacteremia by Difco ESP Blood Culture System’, J. Clin. Microbiol., 32, 811–818 (1994).
- 108H. Nielsen, K.K. Hansen, K.O. Gradel, B. Kristensen, T. Ejlertsen, C. Østergaard, H.C. Schønheyder, ‘Bacteraemia as a Result of Campylobacter Species: A Population-Based Study of Epidemiology and Clinical Risk Factors’, Clin. Microbiol. Infect., 16, 57–61 (2010).
- 109K. Koch, B. Kristensen, H.M. Holt, S. Ethelberg, K. Mølbak, H.C. Schønheyder, ‘International Travel and the Risk of Hospitalization with Non-Typhoidal Salmonella Bacteremia. A Danish Population-Based Cohort Study, 1999–2008’, BMC Infect. Dis., 11, 277 (2011).
- 110R. Priego, L.M. Medina, R. Jordano, ‘Bactometer System Versus Traditional Methods for Monitoring Bacteria Populations in Salchichon during its Ripening Process’, J. Food Prot., 74, 145–148 (2011).
- 111D.M. Wolk, E.J. Kaleta, V.H. Wysocki, ‘PCR-Electrospray Ionization Mass Spectrometry: The Potential to Change Infectious Disease Diagnostics in Clinical and Public Health Laboratories’, J. Mol. Diagn., 14, 295–304 (2012).
- 112A. Makristathis, N. Harrison, F. Ratzinger, M. Kussmann, B. Selitsch, C. Forstner, A.M. Hirschl, H. Burgmann, ‘Substantial Diagnostic Impact of Blood Culture Independent Molecular Methods in Bloodstream Infections: Superior Performance of PCR/ESI-MS’, Sci. Rep., 8, 16024 (2018).
- 113N. Singhal, M. Kumar, P.K. Kanaujia, J.S. Virdi, ‘MALDI-TOF Mass Spectrometry: An Emerging Technology for Microbial Identification and Diagnosis’, Front. Microbiol., 6, 791 (2015).
- 114E. Bessède, O. Solecki, E. Sifre, L. Labadi, F. Mégraud, ‘Identification of Campylobacter Species and Related Organisms by Matrix Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) Mass Spectrometry’, Clin. Microbiol. Infect., 17, 1735–1739 (2011).
- 115R. Dieckmann, B. Malorny, ‘Rapid Screening of Epidemiologically Important Salmonella enterica Subsp. enterica Serovars Using Whole-Cell MALDI-TOF Mass Spectrometry’, Appl. Environ. Microbiol., 77, 4136–4146 (2011).
- 116R. Dieckmann, E. Strauch, T. Alter, ‘Rapid Identification and Characterization of Vibrio Species Using Whole-Cell MALDI-TOF Mass Spectrometry’, J. Appl. Microbiol., 109, 199–211 (2010).
- 117K. Sparbier, U. Weller, C. Boogen, M. Kostrzewa, ‘Rapid Detection of Salmonella sp. by Means of a Combination of Selective Enrichment Broth and MALDI-TOF MS’, Eur. J. Clin. Microbiol. Infect. Dis., 31, 767–773 (2012).
- 118K. Böhme, I.C. Fernández-No, J. Barros-Velázquez, J.M. Gallardo, B. Cañas, P. Calo-Mata, ‘Rapid Species Identification of Seafood Spoilage and Pathogenic Gram-Positive Bacteria by MALDI-TOF Mass Fingerprinting’, Electrophoresis, 32, 2951–2965 (2011).
- 119W.F. Haddon, G. Full, R.E. Mandrell, L.A. Harden, Bacterial Protein Profiling for Campylobacter Using MALDI-TOF Mass Spectrometry with HMCA Matrix, Proceeding of the ASMS Conference on Mass Spectrometry and Allied Topic, 177, 1998.
- 120S. Jadhav, D. Sevior, M. Bhave, E.A. Palombo, ‘Detection of Listeria monocytogenes from Selective Enrichment Broth Using MALDI-TOF Mass Spectrometry’, J. Proteomics, 97, 100–106 (2014).
- 121A. Elbehiry, E. Marzouk, M. Hamada, M. Al-Dubaib, E. Alyamani, I.M. Moussa, A. Al-Rowaidhan, H.A. Hemeg, ‘Application of MALDI-TOF MS Fingerprinting as a Quick Tool for Identification and Clustering of Foodborne Pathogens Isolated from Food Products’, New Microbiol., 40, 269–278 (2017).
- 122I.C. Fernández-No, K. Böhme, J.M. Gallardo, J. Barros-Velázquez, B. Cañas, P. Calo-Mata, ‘Differential Characterization of Biogenic Amine-Producing Bacteria Involved in Food Poisoning Using MALDI-TOF Mass Fingerprinting’, Electrophoresis, 31, 1116–1127 (2010).
- 123K. Cheng, H. Chui, L. Domish, D. Hernandez, G. Wang, ‘Recent Development of Mass Spectrometry and Proteomics Applications in Identification and Typing of Bacteria’, Proteomics Clin. Appl., 10, 346–357 (2016).
- 124W. Moussaoui, B. Jaulhac, A.M. Hoffmann, B. Ludes, M. Kostrzewa, P. Riegel, G. Prévost, ‘Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry Identifies 90% of Bacteria Directly From Blood Culture Vials’, Clin. Microbiol. Infect., 16, 1631–1638 (2010).
- 125G. Prod'hom, A. Bizzini, C. Durussel, J. Bille, G. Greub, ‘Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Direct Bacterial Identification from Positive Blood Culture Pellets’, J. Clin. Microbiol., 48, 1481–1483 (2010).
- 126Y. He, H. Li, X. Lu, C.W. Stratton, Y.-W. Tang, ‘Mass Spectrometry Biotyper System Identifies Enteric Bacterial Pathogens Directly from Colonies Grown on Selective Stool Culture Media’, J. Clin. Microbiol., 48, 3888–3892 (2010).
Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation
Browse other articles of this reference work: