Investigation of Pollution in Rivers and Groundwater by Fluorescence
Martin S. Andersen
University of New South Wales, Sydney, Australia
Search for more papers by this authorChristopher E. Marjo
University of New South Wales, Sydney, Australia
Search for more papers by this authorNur S. Zainuddin
University of New South Wales, Sydney, Australia
Search for more papers by this authorHelen Rutlidge
University of New South Wales, Sydney, Australia
Search for more papers by this authorPeter W. Graham
University of New South Wales, Sydney, Australia
Search for more papers by this authorRita K. Henderson
University of New South Wales, Sydney, Australia
Search for more papers by this authorMartin S. Andersen
University of New South Wales, Sydney, Australia
Search for more papers by this authorChristopher E. Marjo
University of New South Wales, Sydney, Australia
Search for more papers by this authorNur S. Zainuddin
University of New South Wales, Sydney, Australia
Search for more papers by this authorHelen Rutlidge
University of New South Wales, Sydney, Australia
Search for more papers by this authorPeter W. Graham
University of New South Wales, Sydney, Australia
Search for more papers by this authorRita K. Henderson
University of New South Wales, Sydney, Australia
Search for more papers by this authorAbstract
Organic molecules that contain conjugated aromatic constituents have the potential to fluoresce. Both natural and anthropogenic organic matters may contain fluorescent molecules, and river and groundwater organic matters can be understood as a complex mixture of fluorescent and nonfluorescent organic molecules. The investigation of pollution in rivers and groundwaters, therefore, requires the differentiation of multiple fluorescent molecules from multiple sources. The fluorescence spectra of both natural and pollutant organic matters are increasingly well known. Fluorescent pollutants in rivers and groundwaters are typically identified by high levels of fluorescence in the shortwave ultraviolet spectra associated with high levels of microbiological activity and biochemical oxygen demand (BOD); the presence of polycyclic aromatic hydrocarbons from landfill leachates or petroleum products; or the presence of fluorescent whitening agents (FWAs) from industrial, landfill, or sewerage pollution. These fluorescence signals can be distinguished from natural organic matter fluorescence by analyzing either of the differences in spectral properties, often using multiway analysis such as parallel factor analysis, or the investigation of their sensitivity to microbial or photodegradation. Examples of the investigation of pollution in rivers and groundwaters by fluorescence using both laboratory instrumentation and in situ probes are discussed.
References
- 1P.L. Smart, B.L. Finlayson, W.D. Rylands, C.M. Ball, ‘The Relation of Fluorescence to Dissolved Organic Carbon in Surface Waters’, Water Res., 10, 805–811 (1976).
- 2A. Vodacek, W.D. Philpot, ‘Environmental Effects on Laser-Induced Fluorescence Spectra of Natural Waters’, Remote Sens. Environ., 21, 83–95 (1987).
- 3T.J. Battin, S. Luyssaert, L.A. Kaplan, A.K. Aufdenkampe, A. Richter, L.J. Tranvik, ‘The Boundless Carbon Cycle’, Nat. Geosci., 2, 598–600 (2009).
- 4N.J. Hudson, A. Baker, D. Reynolds, ‘Fluorescence Analysis of Dissolved Organic Matter in Natural, Waste and Polluted Waters – A Review’, River Res. Appl., 23, 631–649 (2007).
- 5J.B. Fellman, E. Hood, R.G.M. Spencer, ‘Fluorescence Spectroscopy Opens New Windows into Dissolved Organic Matter Dynamics in Freshwater Ecosystems: A Review’, Limnol. Oceanogr., 55, 2452–2462 (2010).
- 6E.M. Thurman, Organic Geochemistry of Natural Waters, Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht, The Netherlands, 497, 1985.
10.1007/978-94-009-5095-5 Google Scholar
- 7S.K.L. Ishii, T.H. Boyer, ‘Behaviour of Reoccurring PARAFAC Components in Fluorescent Dissolved Organic Matter in Natural and Engineered Systems: A Critical Review’, Environ. Sci. Technol., 46, 2006–2017 (2012).
- 8P.G. Coble, ‘Characterization of Marine and Terrestrial DOM in Seawater Using Excitation-Emission Matrix Spectroscopy’, Mar. Chem., 51, 325–346 (1996).
- 9P.G. Coble, S. Green, N.V. Blough, R.B. Gagosian, ‘Characterization of Dissolved Organic Matter in the Black Sea by Fluorescence Spectroscopy’, Nature, 348, 432–435 (1990).
- 10S.A. Cumberland, A. Baker, ‘The Freshwater Dissolved Organic Matter Fluorescence – Total Organic Carbon Relationship’, Hydrol. Process., 21, 2093–2099 (2007).
- 11J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edition, Springer, 2006. ISBN: 978-0-387-31278-1
- 12J.J. Mobed, S.L. Hemmingsen, J.L. Autry, L.B. McGown, ‘Fluorescence Characterisation of IHSS Humic Substances: Total Luminescence Spectra with Absorbence Correction’, Environ. Sci. Technol., 30, 3061–3066 (1996).
- 13T. Ohno, ‘Fluorescence Inner-Filtering Correction for Determining Humification Index of Dissolved Organic Matter’, Environ. Sci. Technol., 36, 742–746 (2002).
- 14T. Ohno, ‘Response to Comment on “Fluorescence Inner-Filtering Correction for Determining Humification Index of Dissolved Organic Matter”’, Environ. Sci. Technol., 36, 4196 (2002).
- 15A. Baker, ‘Fluorescence Tracing of Diffuse Landfill Leachate Contamination in Rivers’, Water Air Soil Pollut., 163, 229–244 (2005).
- 16B. Seredyńska-Sobecka, A. Baker, J.R. Lead, ‘Characterisation of Colloidal and Particulate Organic Carbon in Freshwaters by Thermal Fluorescence Quenching’, Water Res., 41, 3069–3076 (2007).
- 17N. Patel-Sorrentino, S. Mounier, J.Y. Benaim, ‘Excitation–Emission Fluorescence Matrix to Study pH Influence on Organic Matter Fluorescence in the Amazon Basin Rivers’, Water Res., 36, 2571–2581 (2002).
- 18R.G.M. Spencer, L. Bolton, A. Baker, ‘Freeze/Thaw and pH Effects on Freshwater Dissolved Organic Matter Fluorescence and Absorbance Properties’, Water Res., 41, 2941–2950 (2007).
- 19N. Hudson, A. Baker, D.M. Reynolds, C. Carliell-Marquet, D. Ward, ‘Changes in Freshwater Organic Matter Fluorescence Intensity with Freezing/Thawing and Dehydration/Rehydration’, J. Geophys. Res., 114, G00F08 (2009).
- 20A. Baker, S. Elliott, J.R. Lead, ‘Effects of Filtration and pH Perturbation on Organic Matter Fluorescence’, Chemosphere, 67, 2035–2043 (2007).
- 21C.A. Stedmon, R. Bro, ‘Characterizing Dissolved Organic Matter Fluorescence with Parallel Factor Analysis: A Tutorial’, Limnol. Oceanogr. Methods, 6, 572–579 (2008).
- 22K.R. Murphy, C.A. Stedmon, D. Graeber, R. Bro, ‘Fluorescence Spectroscopy and Multi-Way Techniques. PARAFAC’, Anal. Methods, (2013). DOI: 10.1039/C3AY41160E
- 23R.H. Peiris, C. Halle, H. Budman, C. Moresoli, S. Peldszuz, P.M. Huck, R.L. Legge, ‘Identifying Fouling Events in a Membrane-Based Drinking Water Treatment Process Using Principal Component Analysis of Fluorescence Excitation-Emission Matrices’, Water Res., 44, 185–194 (2003).
- 24W. Chen, P. Westerhoff, J.A. Leenheer, K. Booksh, ‘Fluorescence Excitation-Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter’, Environ. Sci. Technol., 37, 5701–5710 (2003).
- 25D.M. McKnight, E.W. Boyer, P.K. Westerhoff, P.T. Doran, T. Kulbe, D.T. Andersen, ‘Spectrofluorometric Characterization of Dissolved Organic Matter for Indication of Precursor Organic Material and Aromaticity’, Limnol. Oceanogr., 46, 38–48 (2001).
- 26J.P.R. Sorensen, A. Vivanco, M.J. Ascott, D.C. Gooddy, D.J. Lapworth, D.S. Read, C.M. Rushworth, J. Bucknall, K. Herbert, I. Karapanos, L.P. Gumm, R.G. Taylor, ‘Online Fluorescence Spectroscopy for the Real-Time Evaluation of the Microbial Quality of Drinking Water’, Water Res., 137, 301–309 (2018).
- 27J.R. Sorensen, A. Baker, S.A. Cumberland, D.J. Lapworth, A.M. MacDonald, S. Pedley, R.G. Taylor, J.S.T. Ward, ‘Real-Time Detection of Faecally Contaminated Drinking Water with Tryptophan-Like Fluorescence: Defining Threshold Values’, Sci. Total Environ., 622–623, 1250–1257 (2018).
- 28K. Khamis, J.P.R. Sorensen, C. Bradley, D.M. Hannah, D.J. Lapworth, R. Stevens, ‘In Situ Tryptophan-Like Fluorometers: Assessing Turbidity and Temperature Effects for Freshwater Applications’, Environ. Sci. Process. Impacts, 17, 740–752 (2015).
- 29P.W. Graham, A. Baker, M.S. Andersen, I. Acworth, ‘Field Measurements of Fluorescent Dissolved Organic Material as a Mean of Early Detection of Leachate Plumes’, Water Air Soil Pollut., 226, 1–18 (2015).
- 30B.D. Downing, B.A. Pellerin, B.A. Bergamaschi, J.F. Saraceno, T.E. Kraus, ‘Seeing the Light: The Effects of Particles, Dissolved Materials, and Temperature on In Situ Measurements of DOM Fluorescence in Rivers and Streams’, Limnol. Oceanogr. Methods, 10, 767–775 (2012).
- 31R.G.M. Spencer, B.A. Pellerin, B.A. Bergamaschi, B.D. Downing, T.E.C. Kraus, D.R. Smart, R.A. Dahlgren, P.J. Hernes, ‘Diurnal Variability in Riverine Dissolved Organic Matter Composition Determined by In Situ Optical Measurement in the San Joaquin River (California, USA)’, Hydrol. Process., 21, 3181–3189 (2007).
- 32S.R. Ahmad, D.M. Reynolds, ‘Synchronous Fluorescence Spectroscopy of Wastewater and Some Potential Constituents’, Water Res., 29, 1599–1602 (1995).
- 33D.M. Reynolds, S.R. Ahmad, ‘Rapid and Direct Determination of Wastewater BOD Values Using a Fluorescence Technique’, Water Res., 31, 2012–2018 (1997).
- 34A. Baker, R. Inverarity, ‘Protein-Like Fluorescence Intensity as a Possible Tool for Determining River Water Quality’, Hydrol. Process., 18, 2927–2945 (2004).
- 35N.J. Hudson, A. Baker, D. Ward, C. Brunsdon, D. Reynolds, C. Carliell-Marquet, S. Browning, ‘Fluorescence Spectrometry as a Surrogate for the BOD5 Test in Water Quality Assessment: An Example from South West England’, Sci. Total Environ., 391, 149–158 (2008).
- 36J. Hur, S.-J. Hwang, J.-K. Shin, ‘Using Synchronous Fluorescence Technique as a Water Quality Monitoring Tool for an Urban River’, Water Air Soil Pollut., 191, 231–243 (2008).
- 37B. Hua, F. Dolan, C. McGhee, T.E. Clevenger, B. Deng, ‘Water-Source Characterisation and Classification with Fluorescence EEM Spectroscopy: PARAFAC Analysis’, Int. J. Environ. Anal. Chem., 87, 135–147 (2007).
- 38P.S. Naden, G.H. Old, C. Eliot-Laize, S.J. Granger, J.M.B. Hawkins, R. Bol, P. Haygarth, ‘Assessment of Natural Fluorescence as a Tracer of Diffuse Agricultural Pollution from Slurry Spreading on Intensely-Farmed Grasslands’, Water Res., 44, 1701–1712 (2010).
- 39R.A. Dalterio, W.H. Nelson, D. Britt, J.F. Sperry, D. Psaras, J.F. Tanguay, S.L. Suib, ‘Steady-State and Decay Characteristics of Protein Tryptophan Fluorescence from Bacteria’, Appl. Spectrosc., 40, 86–90 (1986).
- 40R.A. Dalterio, W.H. Nelson, D. Britt, J.F. Sperry, J.F. Tanguay, S.L. Suib, ‘The Steady-State and Decay Characteristics of Primary Fluorescence from Live Bacteria’, Appl. Spectrosc., 41, 234–241 (1987).
- 41C.B. Smith, J.E. Anderson, S.R. Webb, ‘Detection of Bacillus endospores Using Total Luminescence Spectroscopy’, Spectrochim. Acta A, 60, 2517–2521 (2004).
- 42S. Cumberland, J. Bridgeman, A. Baker, M. Sterling, D. Ward, ‘Fluorescence Spectroscopy as a Tool for Determining Microbial Quality in Potable Water Applications’, Environ. Technol., 33, 687–693 (2012).
- 43J.P.R. Sorensen, A. Sadhu, G. Sampath, S. Sugden, S. Dutta Gupta, D.J. Lapworth, B.P. Marchant, S. Pedley, ‘Are Sanitation Interventions a Threat to Drinking Water Supplies in Rural India? An Application of Tryptophan-Like Fluorescence’, Water Res., 88, 923–932 (2016).
- 44A. Baker, S.A. Cumberland, C. Bradley, C. Buckley, J. Bridgeman, ‘To What Extent Can Portable Fluorescence Spectroscopy be Used in the Real-Time Assessment of Microbial Water Quality?’, Sci. Total Environ., 532, 14–19 (2015).
- 45L.R. Dartnell, T.A. Roberts, G. Moore, J.M. Ward, J.-P. Muller, ‘Fluorescence Characterization of Clinically-Important Bacteria’, PLoS One, 8, e75270 (2013). DOI: 10.1371/journal.pone.0075270
- 46A. Baker, ‘Fluorescence Properties of Some Farm Wastes: Implications for Water Quality Monitoring’, Water Res., 36, 189–194 (2002).
- 47T. Ohno, R. Bro, ‘Dissolved Organic Matter Characterisation Using Multiway Spectral Decomposition of Fluorescence Landscapes’, Soil Sci. Soc. Am. J., 70, 2028–2037 (2007).
- 48G.H. Old, P.S. Naden, S.J. Granger, G.S. Bilotta, R.E. Brazier, C.J.A. Macleod, T. Krueger, R. Bol, J.M.B. Hawkins, P. Haygarth, J. Freer, ‘A Novel Application of Natural Fluorescence to Understand the Sources and Transport Pathways of Pollutants from Livestock Farming in Small Headwater Catchments’, Sci. Total Environ., 417, 169–182 (2012).
- 49J. Bridgeman, A. Baker, C. Carliell-Marquet, E. Carstea, ‘Determination of Changes in Wastewater Quality Through a Treatment Works Using Fluorescence Spectroscopy’, Environ. Technol., (2013). DOI: 10.1080/09593330.2013.803131
- 50J.H. Goldman, S.A. Rounds, J.A. Needoba, ‘Applications of Fluorescence Spectroscopy for Predicting Wastewater in an Urban Stream’, Environ. Sci. Technol., 46, 4374–4381 (2012).
- 51A. Baker, D. Ward, S.H. Lieten, R. Periera, E.C. Simpson, M. Slater, ‘Measurement of Protein-Like Fluorescence in River and Waste Water Using a Handheld Spectrophotometer’, Water Res., 38, 2934–2938 (2004).
- 52A. Baker, ‘Fluorescence Excitation-Emission Matrix Characterisation of River Waters Impacted by a Tissue Mill Effluent’, Environ. Sci. Technol., 36, 1377–1382 (2002).
- 53J.B. Kramer, S. Canonica, J. Hiogne, ‘Degradation of Fluorescent Whitening Agents in Sunlit Natural Waters’, Environ. Sci. Technol., 30, 2227–2234 (1996).
- 54Y. Cao, J.F. Griffith, S.B. Weisberg, ‘Evaluation of Optical Brightener Photodecay Characteristics for the Detection of Human Fecal Contamination’, Water Res., 43, 2273–2279 (2009).
- 55M. Takahashi, K. Kawamura, ‘Simple Measurement of 4,4-bis(2-sulfostyryl)-biphenyl in River Water by Fluorescence Analysis and its Application as an Indicator of Domestic Wastewater Contamination’, Water Air Soil Pollut., 180, 39–49 (2007).
- 56P.G. Hartel, J.L. McDonald, L.C. Gentit, S.N.J. Hemmings, K. Rodgers, K.A. Smith, C.N. Belcher, R.L. Kuntz, Y. Rivera-Torres, E. Otero, E.C. Schroder, ‘Improving Fluorimetry as a Source Tracking Method to Detect Human Fecal Contamination’, Estuar. Coast. Shelf Sci., 30, 551–561 (2007).
- 57P.G. Hartel, K. Rodgers, G.L. Moody, S.N.J. Hemmings, J.A. Fisher, J.L. McDonald, ‘Combining Targeted Sampling and Fluorimetry to Identify Human Fecal Contamination in a Freshwater Creek’, J. Water Health, 6, 105–116 (2008).
- 58P.G. Hartel, C. Hagedorn, J.L. McDonald, J.A. Fisher, M.A. Saluta, J.W. Jr Dickerson, L.C. Gentit, S.L. Smith, H.S. Mantripragada, K.J. Ritter, C.N. Belcher, ‘Exposing Water Samples to Ultraviolet Light Improves Fluorimetry for Detecting Human Fecal Contamination’, Water Res., 41, 3629–3642 (2007).
- 59F.P. Schwarz, S.P. Wasik, ‘Fluorescence Measurements of Benzene, Naphthalene, Antracene, Pyrene, Fluoranthene, and Benzo[e]pyrene in Water’, Anal. Chem., 48, 524–528 (1976).
- 60M. Alostaz, K. Bigga, R. Donahue, G. Hall, ‘Petroleum Contamination Characterization and Quantification Using Fluorescence Emission-Excitation Matrices (EEMs) and Parallel Factor Analysis (PARAFAC)’, J. Environ. Eng. ASCE, 7, 183–197 (2008).
- 61D.Y. Pharr, J.K. McKenzie, A.B. Hickman, ‘Fingerprinting Petroleum Contamination Using Synchronous Scanning Fluorescence Spectroscopy’, Ground Water, 30, 484–489 (1992).
- 62J.H. Christensen, A.B. Hansen, J. Mortensen, O. Andersen, ‘Characterisation and Matching of Oil Samples Using Fluorescence Spectroscopy and Parallel Factor Analysis’, Anal. Chem., 77, 2210–2217 (2005).
- 63E.M. Carstea, A. Baker, M. Bierozaand, D.M. Reynolds, ‘Continuous Fluorescence Excitation-Emission Monitoring of River Organic Matter’, Water Res., 44, 5356–5366 (2010).
- 64R.J. Kabanagh, B.K. Burnison, R.A. Frank, K.R. Solomon, G. Van der Kraak, ‘Detecting Oils Sands Process-Affected Waters in the Alberta Oil Sands Region Using Synchronous Fluorescence Spectroscopy’, Chemosphere, 76, 120–126 (2009).
- 65A. Baker, M. Curry, ‘Fluorescence of Leachates from Three Contrasting Landfills’, Water Res., 38, 2605–2613 (2004).
- 66M. Tedetti, C. Guigue, M. Goutx, ‘Utilization of a Submersible Fluorometer for Monitoring Anthropogenic Inputs in the Mediterranean Coastal Waters’, Mar. Pollut. Bull., 60, 350–362 (2010).
- 67M. Tedetti, P. Joffre, M. Goutx, ‘Development of a Field-Portable Fluorometer Based on Deep Ultraviolet LEDs for the Detection of Phenanthrene- and Tryptophan-Like Compounds in Natural Waters’, Sens. Actuators B, 182, 416–423 (2013).
- 68K.G. Dahm, C.M. van Straaten, J. Munakata-Marr, J.E. Drews, ‘Identifying Well Contamination Through the Use of 3-D Fluorescence Spectroscopy to Classify Coalbed Methane Produced Water’, Environ. Sci. Technol., 47, 649–656 (2013).
- 69M. Borisover, Y. Laor, I. Saadi, M. Lado, N. Bukhanovsky, ‘Tracing Organic Footprints from Industrial Effluent Discharge in Recalcitrant Riverine Chromophoric Dissolved Organic Matter’, Water Air Soil Pollut., 222, 255–269 (2011).
- 70A. Baker, ‘Fluorescence Excitation-Emission Matrix Characterisation of Some Sewage Impacted Rivers’, Environ. Sci. Technol., 35, 948–953 (2001).
- 71K.M.G. Mostofa, F. Wu, C.-Q. Liu, W.L. Fang, J. Yuan, W.L. Ying, L. Wen, M. Yi, ‘Characterisation of Nanming River (Southwestern China) Sewerage-Impacted Pollution Using an Excitation-Emission Matrix and PARAFAC’, Limnology, 11, 217–231 (2010).
- 72R. JiJi, G. Cooper, K. Bookish, ‘Excitation-Emission Matrix Fluorescence Based Determination of Carbamate Pesticides and Polycyclic Aromatic Hydrocarbons’, Anal. Chim. Acta, 397, 61–72 (1999).
- 73M.J. Rodriguez-Cuesta, R. Boque, F.X. Rius, D.P. Zamora, M.M. Galera, A.G. Frenich, ‘Determination of Carbendazim, Fuberidazole and Thiabendazole by Three-Dimensional Excitation-Emission Matrix Fluorescence and Parallel Factor Analysis’, Anal. Chim. Acta, 491, 47–56 (2003).
- 74S.H. Zhu, H.L. Wu, A.L. Xia, Q.J. Han, Y. Zhang, R.Q. Yu, ‘Quantitative Analysis of Hydrolysis of Carbaryl in Tap Water and River by Excitation-Emission Matrix Fluorescence Coupled with Second-Order Calibration’, Talanta, 74, 1579–1585 (2008).
- 75A. Baker, R. Inverarity, M.E. Charltonand, S. Richmond, ‘Detecting River Pollution Using Fluorescence Spectrophotometry: Case Studies from the Ouseburn, NE England’, Environ. Pollut., 124, 57–70 (2003).
- 76Q. Wei, C. Yan, Z. Luo, X. Zhang, Q. Xu, C.W.K. Chow, ‘Application of a New Combined Fractionation Technique (CFT) to Detect Fluorophores in Size-Fractionated Hydrophobic Acid of DOM as Indicators of Urban Pollution’, Sci. Total Environ., 431, 293–298 (2012).
- 77J. Hur, J.W. Cho, ‘Prediction of BOD, COD, and Total Nitrogen Concentrations in a Typical Urban River Using a Fluorescence Excitation-Emission Matrix with PARAFAC and UV Absorption Indices’, Sensors, 12, 972–986 (2012).
Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation
Browse other articles of this reference work: