Chiral Separations by High-Performance Liquid Chromatography
Abstract
The word ‘chiral’ is derived from the Greek word ‘cheir’, which means hand. Chiral molecules are molecules that are related to each other in the same way that a left hand is related to a right hand. These molecules are mirror images of each other and are nonsuperimposable. Chiral separations traditionally have been considered among the most difficult of all separations since enantiomers have identical chemical and physical properties in an achiral environment. In this article, we will focus on techniques used in high-performance liquid chromatography (HPLC). Most chiral separations by HPLC are accomplished via direct resolution using a chiral stationary phase (CSP). In this technique, a chiral resolving agent is bound or immobilized to an appropriate support to make a CSP, and the enantiomers are resolved by the formation of temporary diastereomeric complexes between the analyte and the CSP. In the last decade, the focus of research in chiral HPLC has shifted from the search for novel CSPs to the improvement of currently existing CSPs. The most important developments have been the increasingly faster methods and a trend for increased efficiency using smaller support particles and superficially porous particles in CSP columns.
References
- 1A.M. Stalcup, ‘ Chiral Separations’, in Kirk-Othmer Encyclopedia of Chemical Technology, 4th edition, John Wiley & Sons, Inc., New York, 123–154, 1998.
- 2S. Allenmark, Chromatographic Enantioseparations: Methods and Applications, 2nd edition, Ellis Horwood, New York, 1991.
- 3M.G. Loudon, Organic Chemistry, 3rd edition, Benjamin/Cummings Publishing Company, Inc., Livermore CA, 1995.
- 4S. Ahuja, Chiral Separations by Liquid Chromatography, American Chemical Society, Washington, DC, 1991.
10.1021/bk-1991-0471 Google Scholar
- 5A.C. Guyton, J.E. Hall, Textbook of Medical Physiology, W. B. Sanders Company, Philadelphia, 1996.
- 6D.E. Haines, Fundamental Neuroscience, Churchill Livingstone, New York, 1997.
- 7L.S. Goodman, L.E. Limbird, P.B. Milinoff, A.G. Gilman, J.G. Hardman, The Pharmacological Basis of Therapeutics, 9th edition, McGraw Hill Text, New York, 1996.
- 8X. Han, J. Huang, C. Yuan, Y. Liu, Y. Cui, ‘Chiral 3D Covalent Organic Frameworks for High Performance Liquid Chromatographic Enantioseparation’, J. Am. Chem. Soc., 140, 892–895 (2018).
- 9Y. Peng, T. Gong, K. Zhang, X. Lin, Y. Liu, J. Jiang, Y. Cui, ‘Engineering Chiral Porous Metal-Organic Frameworks for Enantioselective Adsorption and Separation’, Nat. Commun., 5, 4406 (2014).
- 10X. Kuang, Y. Ma, H. Su, J. Zhang, Y.-B. Dong, B. Tang, ‘High-Performance Liquid Chromatographic Enantioseparation of Racemic Drugs Based on Homochiral Metal–Organic Framework’, Anal. Chem., 86, 1277–1281 (2014).
- 11D.C. Patel, M.F. Wahab, D.W. Armstrong, Z.S. Breitbach, ‘Advances in High-Throughput and High-Efficiency Chiral Liquid Chromatographic Separations’, J. Chromatogr. A, 1467, 2–18 (2016).
- 12T.J. Bruno, Chromatographic and Electrophoretic Methods, Prentice Hall, Englewood Cliffs, 1991.
- 13T.J. Ward, ‘Chiral Media’, Anal. Chem., 66, 633A–640A (1994).
- 14D.S. Bell, ‘New Chromatography Columns and Accessories for 2018’, LCGC, 36, 234–247 (2018).
- 15A.A. Zeid, A. Al-Warthan, I. Ali, ‘Advances in Enantiomeric Resolution on Monolithic Chiral Stationary Phases in Liquid Chromatography and Electrochromatography’, J. Sep. Sci., 37, 1033–1057 (2014).
- 16V. González-Ruiz, A.I. Olives, M.A. Martín, ‘Core-Shell Particles Lead the Way to Renewing High-Performance Liquid Chromatography’, TrAC Trends Anal. Chem., 64, 17–28 (2015).
- 17M. Catani, O.H. Ismail, F. Gasparrini, M. Antonelli, L. Pasti, N. Marchetti, S. Felletti, A. Cavazzini, ‘Recent Advancements and Future Directions of Superficially Porous Chiral Stationary Phases for Ultrafast High-Performance Enantioseparations’, Analyst, 142, 555–566 (2017).
- 18D.A. Spudeit, M.D. Dolzan, Z.S. Breitbach, W.E. Barber, G.A. Micke, D.W. Armstrong, ‘Superficially Porous Particles vs. Fully Porous Particles for Bonded High Performance Liquid Chromatographic Chiral Stationary Phases: Isopropyl Cyclofructan 6’, J. Chromatogr. A, 1363, 89–95 (2014).
- 19M.D. Dolzan, D.A. Spudeit, Z.S. Breitbach, W.E. Barber, G.A. Micke, D.W. Armstrong, ‘Comparison of Superficially Porous and Fully Porous Silica Supports Used for a Cyclofructan 6 Hydrophilic Interaction Liquid Chromatographic Stationary Phase’, J. Chromatogr. A, 1365, 124–130 (2014).
- 20M.F. Wahab, R.M. Wimalasinghe, Y. Wang, C.L. Barhate, D.C. Patel, D.W. Armstrong, ‘Salient Sub-Second Separations’, Anal. Chem., 88, 8821–8826 (2016).
- 21D. Kotoni, A. Ciogli, C. Molinaro, I. D'Acquarica, J. Kocergin, T. Szczerba, H. Ritchie, C. Villani, F. Gasparrini, ‘Introducing Enantioselective Ultrahigh-Pressure Liquid Chromatography (eUHPLC): Theoretical Inspections and Ultrafast Separations on a New Sub-2-µm Whelk-O1 Stationary Phase’, Anal. Chem., 84, 6805–6813 (2012).
- 22C.L. Barhate, E.L. Regalado, N.D. Contrella, J. Lee, J. Jo, A.A. Makarov, D.W. Armstrong, C.J. Welch, ‘Ultrafast Chiral Chromatography as the Second Dimension in Two-Dimensional Liquid Chromatography Experiments’, Anal. Chem., 89, 3545–3553 (2017).
- 23C.L. Barhate, D.A. Lopez, A.A. Makarov, X. Bu, W.J. Morris, A. Lekhal, R. Hartman, D.W. Armstrong, E.L. Regalado, ‘Macrocyclic Glycopeptide Chiral Selectors Bonded to Core-Shell Particles Enables Enantiopurity Analysis of the Entire Verubecestat Synthetic Route’, J. Chromatogr. A, 1539, 87–92 (2018).
- 24C.J. Welch, ‘Are We Approaching a Speed Limit for the Chromatographic Separation of Enantiomers?’, ACS Cent. Sci., 3, 823–829 (2017).
- 25M.F. Wahab, P.K. Dasgupta, A.F. Kadjo, D.W. Armstrong, ‘Sampling Frequency, Response Times and Embedded Signal Filtration in Fast, High Efficiency Liquid Chromatography: A Tutorial’, Anal. Chim. Acta, 907, 31–44 (2016).
- 26D.W. Armstrong, ‘Optical Isomer Separations by Liquid Chromatography’, Anal. Chem., 59, 84A–91A (1987).
- 27K.L. Williams, A.M. Stalcup, ‘ Chromatography with Cyclodextrin-based Stationary Phases’, in Molecular Interactions in Bioseparations, ed. T.T. Ngo, Plenum Press, New York, 189–202, 1993.
10.1007/978-1-4899-1872-7_13 Google Scholar
- 28K. Hostettmann, A. Marston, M. Hostettmann, Preparative Chromatography Techniques, Springer, Berlin, 1998.
10.1007/978-3-662-03631-0 Google Scholar
- 29D.W. Armstrong, ‘The Evolution of Chiral Stationary Phases for Liquid Chromatography’, LC-GC, S20–S28 (1997).
- 30T.J. Ward, K.D. Ward, ‘Chiral Separation: A Review of Current Topics and Trends’, Anal. Chem., 84, 626–635 (2012).
- 31T.J. Ward, ‘ Biopolymers Analytical Techniques’, in Kirkland Othmer Encyclopedia of Chemical Technology, 4th edition, John Wiley & Sons, Inc., New York, 187–208, 1992.
- 32Y. Okamoto, R. Aburatani, T. Kukumoto, K. Hatada, ‘Chromatographic Resolution. XVII. Useful Chiral Stationary Phases for HPLC. Amylose Tris(3,5-Dimethylphencarbamate) Supported on Silica Gel’, Chem. Lett., 9, 1857–1860 (1987).
- 33Y. Okamoto, M. Kawashima, K. Yamamoto, K. Hatada, ‘Chromatographic Resolution and Useful Chiral Packing Materials for High-Performance Liquid Chromatographic Resolution: Cellulose Triacetate and Tribenzoate Coated on Macroporous Silica Gel’, Chem. Lett., 5, 739–742 (1984).
- 34G. Blaschke, ‘Chromatographic Resolution of Chiral Drugs on Polyamides and Cellulose Triacetate’, J. Liq. Chromatogr., 9, 341–368 (1986).
- 35M. Zief, L.J. Crane, Chromatographic Chiral Separations, Marcel Dekker, New York, 1988.
- 36J. Jin, S. Bae, W. Lee, ‘Comparative Studies Between Covalently Immobilized and Coated Chiral Stationary Phases Based on Polysaccharide Derivatives for Enantiomer Separation of N-Protected alpha-Amino Acids and Their Ester Derivatives’, Chirality, 21, 871–877 (2009).
- 37P. Franco, T. Zhang, ‘Common Approaches for Efficient Method Development with Immobilized Polysaccharide-Derived Chiral Stationary Phases’, J. Chromatogr. B, 875, 48–56 (2008).
- 38T. Zhang, D. Nguyen, P. Franco, ‘Enantiomer Resolution Screening Strategy Using Multiple Immobilized Polysaccharide-Based Chiral Stationary Phases’, J. Chromatogr. A, 1191, 214–222 (2008).
- 39N. Belboukhari, A. Cheriti, C. Roussel, N. Vanthuyne, ‘Chiral Separation of Hespiridin and Naringin and its Analysis in a Butanol Extract of Launeae arborescens’, Nat. Prod. Res., 24, 669–681 (2010).
- 40F.J. Sayago, M.J. Pueyo, M.I. Calaza, A.I. Jimenez, C. Cativiela, ‘Practical Access to the Proline Analogs (S,S,S)- and (R,R,R)-2-Methyloctahydroindole-2-Carboxylic Acids by HPLC Enantioseparation’, Chirality, 23, 507–513 (2011).
- 41W. Weng, H. Guo, F. Zhan, H. Fang, Q. Wang, B. Yao, S. Li, ‘Chromatographic Enantioseparations of Binaphthyl Compounds on an Immobilized Polysaccharide-Based Chiral Stationary Phase’, J. Chromatogr. A, 41, 178–184 (2008).
- 42J.M. Padró, S. Keunchkarian, ‘State-of-the-Art and Recent Developments of Immobilized Polysaccharide-Based Chiral Stationary Phases for Enantioseparations by High-Performance Liquid Chromatography (2013–2017)’, Microchem. J., 140, 142–157 (2018).
- 43Q. Kharaishvili, G. Jibuti, T. Farkas, B. Chankvetadze, ‘Further Proof to the Utility of Polysaccharide-Based Chiral Selectors in Combination with Superficially Porous Silica Particles as Effective Chiral Stationary Phases for Separation of Enantiomers in High-Performance Liquid Chromatography’, J. Chromatogr. A, 1467, 163–168 (2016).
- 44L. Bezhitashvili, A. Bardavelidze, T. Ordjonikidze, L. Chankvetadze, M. Chity, T. Farkas, B. Chankvetadze, ‘Effect of Pore-Size Optimization on the Performance of Polysaccharide-Based Superficially Porous Chiral Stationary Phases for the Separation of Enantiomers in High-Performance Liquid Chromatography’, J. Chromatogr. A, 1482, 32–38 (2017).
- 45G. Hesse, R. Hagel, ‘A Complete Separation of a Racemic Mixture Elution Chromatography on Cellulose Triacetate’, Chromatographia, 6, 277–278 (1973).
- 46E. Francotte, R.M. Wolf, D. Lohmann, R. Mueller, R. Mueller, ‘Chromatographic Resolution of Racemates on Chiral Stationary Phases, I. Influence of Supermolecular Structure of Cellulose Triacetate’, J. Chromatogr., 347, 25–31 (1985).
- 47R. Kasat, N.-H. Wang, E. Franses, ‘Effects of Backbone and Side-Chain on the Molecular Environments of Chiral Cavities in Polysaccharide-Based Biopolymers’, Biomacromolecules, 8, 1676–1685 (2007).
- 48G. Dotsevi, Y. Sogah, D.J. Cram, ‘Chromatographic Optical Resolution through Chiral Complexation of Amino Ester Salts by a Host Covalently Bound to Silica Gel’, J. Am. Chem. Soc., 97, 1259–1261 (1975).
- 49D.W. Armstrong, ‘Pseudophase Liquid Chromatography: Applications to TLC’, J. Chromatogr., 3, 895–900 (1980).
- 50W.L. Hinze, D.W. Armstrong, ‘Thin Layer Chromatographic Separation of Ortho, Meta, and Para Substituted Benzoic Acids and Phenols with Aqueous Solutions of ALPHS-Cyclodextrin’, Anal. Lett., 13, 1093–1104 (1980).
- 51J.L. Hoffman, ‘Chromatography of Nucleic Acid Components on Cyclodextrin Gels’, Anal. Biochem., 33, 209–217 (1970).
- 52A. Harada, M. Furue, S.I. Nozakura, ‘Optical Resolution of Mandelic Acid Derivatives by Column Chromatography on Crosslinked Cyclodextrin Gels’, J. Polym. Sci., 16, 189–196 (1978).
- 53K. Fugimura, T. Ueda, T. Ando, ‘Retention Behavior of Some Aromatic Compounds on Chemically Bonded Cyclodextrin Silica Stationary Phase in Liquid Chromatography’, Anal. Chem., 55, 446–450 (1983).
- 54Y. Kawagucki, M. Tanaka, M. Nakae, K. Funazo, T. Shono, ‘Chemically Bonded Cyclodextrin Stationary Phases for Liquid Chromatographic Separation of Aromatic Compounds’, Anal. Chem., 55, 1852–1857 (1983).
- 55D. W. Armstrong, Bonded Phase Materials for Chromatographic Separations, Patent No. 4539399, 1985.
- 56D.W. Armstrong, W. Demond, ‘Cyclodextrin Bonded Phases for the Liquid Chromatographic Separation of Optical, Geometrical, and Structural Isomers’, J. Chromatogr. Sci., 22, 415–441 (1984).
- 57D.W. Armstrong, W. Demond, A. Alak, ‘Liquid Chromatographic Separation of Diastereomers and Structural Isomers on Cyclodextrin-bonded Phases’, Anal. Chem., 57, 234–237 (1985).
- 58D.W. Armstrong, W. Demond, A. Alak, W.L. Hinze, T.E. Riehl, K.H. Bui, T. Ward, ‘Facile Separation of Enantiomers, Geometrical Isomers, and Routine Compounds on Stable Cyclodextrin LC Bonded Phases’, J. Incl. Phenom., 2, 533–545 (1984).
- 59M.L. Bender, M. Komiyama, Cyclodextrin in Chemistry, Springer-Verlag, Berlin, 1981.
- 60W.L. Hinze, ‘Applications of Cyclodextrins in Chromatographic Separations and Purification Methods’, Sep. Purif. Methods, 10, 159–237 (1981).
- 61T.J. Ward, D.W. Armstrong, ‘Improved Cyclodextrin Chiral Phrases: A Comparison and Review’, J. Liq. Chromatogr., 9, 407–423 (1986).
- 62J. Szejtli, Cyclodextrins and Their Inclusion Complexes, Akademiai Kiado, Budapest, 1982.
- 63D.W. Armstrong, ‘Chiral Stationary Phases for Enantiomers: A Mini-Review’, J. Liq. Chromatogr., 7, 353–376 (1984).
- 64D.W. Armstrong, T.J. Ward, R.D. Armstrong, T.E. Beesley, ‘Separation of Drug Stereoisomers by the Formation of beta-Cyclodextrin Inclusion Complexes’, Science, 232, 1132–1135 (1986).
- 65D.W. Armstrong, W. DeMond, B.P. Czech, ‘Separation of Metallocene Enantiomers by Liquid Chromatography: Chiral Recognition via Cyclodextrin Bonded Phases’, Anal. Chem., 57, 481–484 (1985).
- 66D.W. Armstrong, T.J. Ward, A. Czech, B.P. Czech, R.A. Bartsch, ‘Synthesis, Rapid Resolution, and Determination of Absolute Configuration of Racemic 2,2'-Binaphthyldiyl Crown Ethers and Analogs via beta-Cyclodextrin Complexation’, J. Org. Chem., 50, 5556–5559 (1985).
- 67D.W. Armstrong, S. Chen, C. Chang, S. Chang, ‘A New Approach for the Direct Resolution of Racemic beta Adrenergic Blocking Agents by HPLC’, J. Liq. Chromatogr., 15, 545–556 (1992).
- 68S. Chang, G. Reid III, S. Chen, C. Chang, D.W. Armstrong, ‘Evaluation of a New Polar-Organic High-Performance Liquid Chromatographic Mobile Phase for Cyclodextrin-Bonded Chiral Stationary Phases’, Trends Anal.Chem., 12, 144–153 (1993).
- 69D.W. Armstrong, L. Chang, S. Chang, X. Wang, H. Ibrahim, G. Reid III, T.E. Beesley, ‘Comparison of the Enantioselectivity of beta-Cyclodextrin vs. Heptakis-2,3-O-Dimethyl-beta-Cyclodextrin LC Stationary Phases’, J. Liq. Chromatogr. Relat. Technol., 20, 3279–3295 (1997).
- 70F. Ai, L. Li, S. Ng, T. Tan, Y. Thatt, ‘Sub-1-Micron Mesoporous Silica Particles Functionalized with Cyclodextrin Derivative for Rapid Enantioseparations on Ultra-High Pressure Liquid Chromatography’, J. Chromatogr. A, 1217, 7502–7506 (2010).
- 71D. Guillarme, G. Bonvin, F. Badoud, J. Schappler, S. Rudaz, J. Veuthey, ‘Fast Chiral Separation of Drugs Using Columns Packed with Sub-2 Micron Particles and Ultra-High Pressure’, Chirality, 22, 320–330 (2010).
- 72Z. Bikadi, G. Fodor, I. Hazai, P. Hari, J. Szeman, L. Szente, F. Fueloep, A. Peter, E. Hazai, ‘Molecular Modeling of Enantioseparation of Phenylazetidin Derivatives by Cyclodextrins’, Chromatographia, 71, S21–S28 (2010).
- 73Z. Breitbach, Q. Feng, P. Koswatta, E. Dodbiba, C. Lovely, D.W. Armstrong, ‘The Enantiomeric Separation of 4,5-Disubstituted Imidazoles by HPLC and CE Using Cyclodextrin-Based Chiral Selectors’, Supramol. Chem., 22, 758–767 (2010).
- 74P. Sun, D. Armstrong, ‘Effective Enantiomeric Separations of Racemic Primary Amines by the Isopropyl Carbamate-Cyclofructan6 Chiral Stationary Phase’, J. Chromatogr. A, 1217, 4904–4918 (2010).
- 75M. Kawamura, T. Uchiyama, ‘Formation of a Cycloinulo-Oligosaccharide from Inulin by an Extracellular Enzyme of Bacillus circulans OKUMZ 31B’, Carbohydr. Res., 192, 83–90 (1989).
- 76S. Immel, G.E. Schmitt, F.W. Lichtenthaler, ‘Cyclofructins with Six to Ten beta-(1–2)-Linked Fructofuranose Units: Geometries,Electrostatic Profiles, Lipophilicity Patterns, and Potential for Inclusion Complexation’, Carbohydr. Res., 313, 91–105 (1998).
- 77P. Sun, C. Wang, N. Padivitage, Y. Nanayakkara, S. Perera, H. Qiu, Y. Zhang, D. Armstrong, ‘Evaluation of Aromatic-Derivatized Cyclofructans 6 and 7 as HPLC Chiral Selectors’, Analyst, 136, 787–800 (2011).
- 78N. Padivitage, E. Dodbiba, Z. Breitbach, D.W. Armstrong, ‘Enantiomeric Separations of Illicit Drugs and Controlled Substances using Cyclofructan-Based (LARIHC) and Cyclobond I 2000 RSP HPLC Chiral Stationary Phases’, Drug Test. Anal., 6, 542–551 (2014).
- 79V. Maier, K. Kalíková, A. Přibylka, J. Vozka, J. Smuts, M. Švidrnoch, J. Ševčík, D.W. Armstrong, E. Tesařová, ‘Isopropyl Derivative of Cyclofructan 6 as Chiral Selector in Liquid Chromatography and Capillary Electrophoresis’, J. Chromatogr. A, 1338, 197–200 (2014).
- 80A.S. Breitbach, Y. Lim, Q.-L. Xu, L. Kürti, D.W. Armstrong, Z.S. Breitbach, ‘Enantiomeric Separations of alpha-Aryl Ketones with Cyclofructan Chiral Stationary Phases via High Performance Liquid Chromatography and Supercritical Fluid Chromatography’, J. Chromatogr. A, 1427, 45–54 (2016).
- 81H.M. Higgins, W.H. Harrison, G.M. Wild, H.R. Bungay, M.H. McCormick, ‘ VI. Purification and properties of vancomycin’, in Antibiotics Annual, eds H. Welch, F. Marti-Ibanee, Medical Encyclopaedia Inc., New York, 906–914, 1957–1958.
- 82A.H. Hunt, R.M. Molloy, J.L. Occolowitz, G.G. Marconi, M. Debono, ‘Structure of the Major Glycopeptide of the Teicoplanin Complex’, J. Am. Chem. Soc., 106, 4891–4895 (1984).
- 83M.P. Gasper, A. Berthod, U.B. Nair, D.W. Armstrong, ‘Comparison and Modeling Study of Vancomycin, Ristocetin A, and Teicoplanin for CE Enantioseparations’, Anal. Chem., 68, 2501–2514 (1996).
- 84D.W. Armstrong, Y. Tang, S. Chen, Y. Zhou, C. Bagwill, J.R. Chen, ‘Macrocyclic Antibiotics as a New Class of Chiral Selectors for Liquid Chromatography’, Anal. Chem., 66, 1473–1484 (1994).
- 85D.W. Armstrong, Y. Lie, K.H. Ekorgott, ‘A Covalently Bonded Teicoplanin Chiral Stationary Phase for HPLC Enantioseparations’, Chirality, 7, 474–497 (1995).
- 86T.J. Ward, A. Gilmore, K.D. Ward, C. Vowell, ‘ Vancomycin Molecular Interactions: Antibiotic and Enantioselective Mechanisms’, in Chiral Recognition in Separation Methods: Mechanisms and Applications, ed. A. Berthod, Springer-Verlag, Berlin, 223–240, 2010.
- 87T.E. Beesley, J.T. Lee, ‘Method Development Strategy and Applications Update for CHIROBIOTIC Chiral Stationary Phases’, J. Liq. Chromatogr. Relat. Technol., 32, 1733–1767 (2009).
- 88I. Ilisz, Z. Pataj, A. Aranyi, A. Peter, ‘Macrocyclic Antibiotic Selectors in Direct HPLC Enantioseparations’, Sep. Purif. Rev., 41, 207–249 (2012).
- 89C.L. Barhate, M.F. Wahab, Z.S. Breitbach, D.S. Bell, D.W. Armstrong, ‘High Efficiency, Narrow Particle Size Distribution, Sub-2 µm Based Macrocyclic Glycopeptide Chiral Stationary Phases in HPLC and SFC’, Anal. Chim. Acta, 898, 128–137 (2015).
- 90Z. Deáková, Z. Ďuračková, D.W. Armstrong, J. Lehotay, ‘Two-Dimensional High Performance Liquid Chromatography for Determination of Homocysteine, Methionine and Cysteine Enantiomers in Human Serum’, J. Chromatogr. A, 1408, 118–124 (2015).
- 91Y. Phyo, S. Cravo, A. Palmeira, M. Tiritan, A. Kijjoa, M. Pinto, C. Fernandes, ‘Enantiomeric Resolution and Docking Studies of Chiral Xanthonic Derivatives on Chirobiotic Columns’, Molecules, 23, 142 (2018).
- 92K. Schmid, ‘ Structure and Function of Glycopeptides’, in The Plasma Proteins, ed. F.W. Putman, Academic Press, New York, 163–211, 1975.
- 93G. Schill, I.W. Wainer, S.A. Barkan, ‘Chiral Separation of Cationic Drugs on Alpha-1 Glycoprotein Bonded Stationary Phase’, J. Liq. Chromatogr., 9, 641–646 (1986).
- 94J. Hermansson, ‘Enantiomeric Separation of Drugs and Related Compounds Based on their Interaction with alpha-1-Acid Glycoprotein’, Trends Anal.Chem., 8, 251–259 (1989).
- 95J. Hermansson, ‘Liquid Chromatographic Resolution of Racemic Drugs Using a Chiral alpha-1-Acid Glycoprotein Column’, J. Chromatogr., 298, 67–78 (1984).
- 96J. Hermansson, G. Schill, ‘ Resolution of Enantiomeric Compounds by Silica-bonded Alpha1-acid Glycoprotein’, in Chromatographic Chiral Separations, eds M. Zief, L.J. Crane, Marcel Dekker, New York, 245–281, Vol. 40, 1988.
- 97K. Kawabata, N. Samata, Y. Urasaki, I. Fukazawa, N. Uchida, E. Uchida, H. Yasuhara, ‘Enantioselective Determination of Azelnidipine in Human Plasma Using Liquid Chromatography-Tandem Mass Spectrometry’, J. Chromatogr. B, 852, 389–397 (2007).
- 98E. Arvidsson, S.O. Jansson, G. Schill, ‘Chiral Separations of Atropine and Homotropine on an alpha-1-Acid Glycoprotein-bonded Stationary Phase’, J. Chromatogr., 506, 579–591 (1990).
- 99J. Hermansson, M. Eriksson, ‘Direct Liquid Chromatographic Resolution of Acidic Drugs Using a Chiral alpha-1-Acid Glycoprotein Column (Enantiopac)’, J. Liq. Chromatogr., 9, 621–639 (1986).
- 100 ChromTech, ‘ Chiral-AGP, Application Note no. 1’, ChromTech AB, Norsburg, Sweden (1988).
- 101J. Hermansson, ‘Direct Liquid Chromatographic Resolution of Racemic Drugs by Means of alpha-1-Acid Glycoprotein as the Chiral Complexing Agent in the Mobile Phase’, J. Chromatogr., 316, 537–546 (1984).
- 102B.A. Persson, K. Balmer, P.O. Lagerstrom, G. Schill, ‘Enantioselective Determination of Metoprolol in Plasma by Liquid Chromatography on a Silica-Bonded alpha-1-Acid Glycoprotein Column’, J. Chromatogr., 506, 629–636 (1990).
- 103T. Michishita, P. Franco, T. Zhang, ‘New Approaches of LC-MS Compatible Method Development on Alpha-1-Acid Glycoprotein-Based Stationary Phase for Resolution of Enantiomeric by HPLC’, J. Sep. Sci., 33, 3627–3637 (2010).
- 104T. Peters Jr, ‘ The Plasma Proteins’, ed. F.W. Putman, Academic Press, New York, 133–172, 1975.
10.1016/B978-0-12-568401-9.50010-4 Google Scholar
- 105M.C. Meyer, D.E. Guttman, ‘The Binding of Drugs by Plasma Proteins’, J. Pharm. Sci., 57, 895–901 (1968).
- 106R.H. McMenamy, J.L. Oncley, ‘The Specific Binding of L-Tryptophan to Serum Albumin’, J. Biol. Chem., 233, 1436 (1958).
- 107K.K. Stewart, R.F. Doherty, ‘Resolution of DL-Tryptophan by Affinity Chromatography on Bovine-Serum Albumin-Agarose Columns’, Proc. Natl. Acad. Sci., 70, 2850–2852 (1973).
- 108S. Allenmark, B. Bomgren, H. Boren, ‘Direct Resolution of Enantiomers by Liquid Affinity Chromatography on Albumin-Agarose Under Isocratic Conditions’, J. Chromatogr., 237, 473–477 (1982).
- 109F.W. Putnam, The Plasma Proteins, 2nd edition, Academic Press, New York, 1975.
- 110E. Domenici, C. Bertucci, P. Salvadori, G. Felix, I. Cahagne, S. Montellier, I.W. Wainer, ‘Synthesis and Chromatographic Properties of an HPLC Chiral Stationary Phase Based upon Human Serum Albumin’, Chromatographia, 29, 170–174 (1990).
- 111J. Haginaka, ‘Protein-Based Chiral Stationary Phases for High-Performance Liquid Chromatography Enantioseparations’, J. Chromatogr. A, 906, 253–273 (2001).
- 112S. Allenmark, ‘Optical Resolution by Liquid Chromatography on Immobilized Bovine Serum Albumin’, J. Chromatogr., 9, 425–442 (1986).
- 113B. Szymon, S. Magdalena, B. Bogusław, ‘Amino Acids, Peptides, and Proteins as Chemically Bonded Stationary Phases – A Review’, J. Sep. Sci., 39, 83–92 (2016).
- 114R. Gotti, J. Fiori, E. Calleri, C. Temporini, D. Lubda, G. Massolini, ‘Chiral Capillary Liquid Chromatography Based on Penicillin G Acylase Immobilized on Monolithic Epoxy Silica Column’, J. Chromatogr. A, 1234, 45–49 (2012).
- 115C. Yao, L. Qi, J. Qiao, H. Zhang, F. Wang, Y. Chen, G. Yang, ‘High-Performance Affinity Monolith Chromatography for Chiral Separation and Determination of Enzyme Kinetic Constants’, Talanta, 82, 1332–1337 (2010).
- 116R. Mallik, D. Hage, ‘Development of an Affinity Silica Monolith Containing Human Serum Albumin for Chiral Separations’, J. Pharm. Biomed. Anal., 46, 820–839 (2008).
- 117W.H. Pirkle, D.W. House, ‘Chiral High-Pressure Liquid Chromatographic Stationary Phases. 1. Separation of Enantiomers of Sulfoxides, Amines, Amino Acids, Alcohols, Hydroxyacids, Lactones, and Mercaptans’, J. Org. Chem., 44, 1957–1960 (1979).
- 118W.H. Pirkle, R. Dappen, ‘Reciprocity in Chiral Recognition: Comparison of Several Chiral Stationary Phases’, J. Chromatogr., 404, 107–115 (1987).
- 119W.H. Pirkle, D.W. House, J.M. Finn, ‘Broad Spectrum Resolution of Optical Isomer Using Chiral HPLC Bonded Phases’, J. Chromatogr., 192, 143–158 (1980).
- 120W.H. Pirkle, J.M. Finn, J.L. Schreiner, B.C. Hamper, ‘A Widely Useful Chiral Stationary Phase for the High-Performance Liquid Chromatography Separations of Enantiomers’, J. Am. Chem. Soc., 103, 3964 (1981).
- 121W.H. Pirkle, C.J. Welch, ‘An Improved Chiral Stationary Phase for the Chromatographic Separation of Underivatized Naproxen Enantiomers’, J. Liq. Chromatogr., 15, 1947 (1992).
- 122C. Fernandes, Y.Z. Phyo, A.S. Silva, M.E. Tiritan, A. Kijjoa, M.M.M. Pinto, ‘Chiral Stationary Phases Based on Small Molecules: An Update of the Last 17 Years’, Sep. Purif. Rev., 47, 89–123 (2018).
- 123L. Carraro Maria, A. Palmeira, E. Tiritan Maria, C. Fernandes, M.M. Pinto Madalena, ‘Resolution, Determination of Enantiomeric Purity and Chiral Recognition Mechanism of New Xanthone Derivatives on (S,S)-Whelk-O1 Stationary Phase’, Chirality, 29, 247–256 (2017).
- 124I. Federica, S. Roccaldo, C. Andrea, N. Benedetto, L. Wolfgang, L. Michael, ‘Quinine-Based Zwitterionic Chiral Stationary Phase as a Complementary Tool for Peptide Analysis: Mobile Phase Effects on Enantio- and Stereoselectivity of Underivatized Oligopeptides’, Chirality, 28, 5–16 (2016).
- 125C.E. Dalgliesh, ‘The Optical Resolution of Aromatic Amino-Acids on Paper Chromatography’, J. Chem. Soc., 137, 3940–3942 (1952).
- 126W.H. Pirkle, T.C. Pochapsky, ‘Considerations of Chiral Recognition Relevant to the Liquid Chromatographic Separation of Enantiomers’, Chem. Rev., 89, 347–362 (1989).
- 127H.J. Choi, M.H. Hyun, ‘Liquid Chromatographic Chiral Separations by Crown Ether-Based Chiral Stationary Phases’, J. Liq. Chromatogr. Relat. Technol., 30, 853–875 (2007).
- 128C. Lerner, K. Biederer, ‘Improved Chiral Separations for. Enantiopure D- and L-Amino Acids’, ChromatagraphyOnline.com, 15 (2016).
- 129M.H. Hyun, ‘Liquid Chromatographic Enantioseparations on Crown Ether-Based Chiral Stationary Phases’, J. Chromatogr. A, 1467, 19–32 (2016).
- 130V.A. Davankov, A.A. Kurganov, A.S. Bocklov, in Advances in Chromatography, eds J.C. Giddings, E. Grushka, J. Cazes, P.R. Brown, Marcel Dekker, New York, 71–116, Vol. 22, 1983.
- 131B.A. Bidlingmeyer, Practical HPLC Methodology and Applications, John Wiley & Sons, Inc., New York, 132, 1470–1475 1992.
- 132M.G. Schmidt, K. Schreiner, D. Reisinger, G. Gubitz, ‘Fast Chiral Separation by Ligand-Exchange HPLC using a Dynamically Coated Monolithic Column’, J. Sep. Sci., 29, (2006).
- 133B. Natalini, R. Sardella, A. MacChiarulo, R. Pellicciari, ‘Dynamic Ligand-Exchange Chiral Stationary Phase from S-Benzyl-(R)-Cysteine’, Chirality, 18, 509–518 (2006).
- 134B. Natalini, R. Sardella, A. MacChiarulo, R. Pellicciari, ‘Cysteine-Based Chiral Selectors for the Ligand-Exchange Separation of Amino Acids’, J. Chromatogr. B, 875, 108–117 (2008).
- 135B. Natalini, R. Sardella, A. MacChiarulo, R. Pellicciari, ‘S-Trityl-(R)-Cysteine, a Powerful Chiral Selector for the Analytical and Preparative Ligand-Exchange Chromatography of Amino Acids’, J. Sep. Sci., 31, 696–704 (2008).
- 136V. Rozenberg, R. Zhuravsky, E. Sergeeva, ‘Design, Classification,and Strategies of Synthesis of Modular Bidentate Ligands Based on Aryl[2.2]paracyclophane Backbone’, Chirality, 18, 95–102 (2006).
- 137J.J. Ha, H.J. Han, H.E. Kim, J.S. Jin, E.D. Jeong, M.H. Hyun, ‘Development of an Improved Ligand Exchange Chiral Stationary Phase Based on Leucinol for the Resolution of Proton Pump Inhibitors’, J. Pharm. Biomed. Anal., 100, 88–93 (2014).
- 138H. Yan, K.H. Row, ‘Direct Determination of Ofloxacin Enantiomers in Human Urine by Ligand Exchange Chromatography’, J. Liq. Chromatogr. Relat. Technol., 30, 1497–1511 (2007).
- 139W. Bi, M. Tian, K. Row, ‘Chiral Separation and Determination of Ofloxacin Enantiomers by Ionic Liquid-Assisted Ligand-Exchange Chromatography’, Analyst, 136, 379–387 (2011).
- 140C. Cheng, S. Wu, ‘Simultaneous Analysis of Aspartame and its Hydrolysis Products of Coca-Cola Zero by On-Line Postcolumn Derivation Fluorescence Detection and Ultraviolet Detection Coupled Two-Dimensional High-Performance Liquid Chromatography’, J. Chromatogr. A, 1218, 2976–2983 (2011).
Citing Literature
Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation
Browse other articles of this reference work: