Biological Susceptibility of Polystyrene
Dr. Akio Tsuchii
- [email protected]
- +81-298616035
Research Institute of Biological Resources, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, Higashi 1-1-3, Tsukuba, Ibaragi, Japan, 305
Search for more papers by this authorDr. Yoichi Hiraguri
- [email protected]
- +81-298616035
Research Institute of Biological Resources, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, Higashi 1-1-3, Tsukuba, Ibaragi, Japan, 305
Search for more papers by this authorDr. Yutaka Tokiwa
- [email protected]
- +81-298616035
Research Institute of Biological Resources, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, Higashi 1-1-3, Tsukuba, Ibaragi, Japan, 305
Search for more papers by this authorDr. Akio Tsuchii
- [email protected]
- +81-298616035
Research Institute of Biological Resources, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, Higashi 1-1-3, Tsukuba, Ibaragi, Japan, 305
Search for more papers by this authorDr. Yoichi Hiraguri
- [email protected]
- +81-298616035
Research Institute of Biological Resources, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, Higashi 1-1-3, Tsukuba, Ibaragi, Japan, 305
Search for more papers by this authorDr. Yutaka Tokiwa
- [email protected]
- +81-298616035
Research Institute of Biological Resources, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, Higashi 1-1-3, Tsukuba, Ibaragi, Japan, 305
Search for more papers by this authorAbstract
- Introduction
- Historical Outline
- Microbial Degradation of Styrene Oligomers
- Biological Susceptibility of Polystyrene
- Enzymatic Hydrolysis of Styrene Copolymers
- Biological Disintegration of Polystyrene Blends
- Production
- Outlook and Perspectives
References
- Albertsson, A. C., Banhidi, Z. G. (1980) Microbial and oxidative effects in degradation of polyethene, J. Appl. Polym. Sci. 25, 1655–1671.
- Bailey, W. J., Kuruganti, V. K., Angle, J. S. (1990) Biodegradable polymers produced by free-radical ring-opening polymerization, in: Agricultural and synthetic polymers ( J. E. Glass, G. Swift, Ed.), ACS symposium series, Washington, DC: American Chemical Society, vol. 433, 149–160.
- Barnsley, E. A. (1975) The bacterial degradation of fluoranthene and benzo(a)pyrene, Can. J. Microbiol. 21, 1004–1008.
- Blake, J. T., Kitchin, D. W. (1949) Effect of soil microorganisms on rubber insulation, Ind. Eng. Chem. 41, 1633–1641.
- Cain, R. B. (1992) Microbial degradation of synthetic polymers, in: Proceedings of the Society for General Microbiology, ( J. C. Fry, et al., Eds.), Cambridge: Cambridge University Press, 293–338.
- Faber, M. D. (1979) Microbial degradation of recalcitrant compounds and synthetic aromatic polymers, Enzyme Microb. Technol. 1979, 1, 226–232.
- Gibson, D. T., Mahadevan, V., Jerina, D. M., Yagi, H., Yeh, H. J. C. (1975) Oxidation of carcinogens benzo(a)pyrene and benzo(a)anthracene to dihydrodiols by a bacterium, Science 189, 295–297.
- Higashimura, T., Sawamoto, M., Hiza, M., Karaiwa, M., Tsuchii, A., Suzuki, T. (1983) Effect of methyl substitution on microbial degradation of linear styrene dimers by two soil bacteria, Appl. Environ. Microbiol. 46, 386–391.
- Hiraguri, Y., Tokiwa, Y. (1993) Synthesis of copolymers composed of 2-methylene-1,3,6-trioxocane and vinyl monomers and their enzymatic degradation, J. Polym. Sci. part A: Polym. Chem. 31, 3159–3161.
- Iwamoto, A., Tokiwa, Y. (1994a) Enzymatic degradation of plastics containing polycaprolactone, Polym. Degrad. Stabil. 45, 205–213.
- Iwamoto, A., Tokiwa, Y. (1994b) Effect of phase structure on biodegradability of polypropylene/polycaprolactone blends, J. Appl. Polym. Sci. 52, 1357–1360.
- Jasso-Gastinel, C. F., Gonzalez-Ortiz, L. J., Contreras, J. R., Mendizabal, M. E. (1998) The degradation of high impact polystyrene with and without starch in concentrated activated sludge, Polym. Degrad. Stabil. 38, 863–869.
- Jimenez, E. I., Garcia, V. P. (1992) Determination of maturity indexes for city refuse composts, Agric. Ecosystem Environm. 38, 331–343.
- Kaplan, D. L., Hartenstein, R., Sutter, J. (1979) Biodegradation of polystyrene, poly(methyl methacrylate) and phenol formaldehyde, Appl. Environ. Microbiol. 38, 551–553.
- Kiatkamjornwong, S., Sonsuk, M., Wittayapichet, S., Prasassarakich, P., Vejjanukron, P. (1999) Degradation of styrene-g-cassava starch filled polystyrene plastics, Polym. Degrad. Stabil. 66, 323–335.
- Kirk, T. K., Farrell, R. L. (1987) Enzymatic combustion: the microbial degradation of lignin, Annu. Rev. Microbiol. 41, 465–505.
- Leisinger, T., Brunner, W. (1986) Poorly degradable substances, in: Biotechnology, Weinheim, Germany: VCH Publishers, vol. 8, 475–513.
- Mansour, O. I., Abd El-Hady, B., Ibrahim, S. K., Goda, M. (1999) Lignocellulose-polymer composite, Macromolecular Symposia 147, 173–179.
- Milstein, O., Gersonde, R., Huttermann, A., Chen, M., Meister, J. J. (1992) Fungal biodegradation of lignopolystyrene graft copolymers, Appl. Environm. Microbiol. 58, 3225–3232.
- Nakamiya, K., Sakasita, G., Ooi, T., Kinosita, S. (1997) Enzymatic degradation of polystyrene by hydroquinone peroxidase of Azotobacter beijerinckii HM121, J. Ferment. Bioeng. 84, 480–482.
- Pagga, U. (1999) Compostable packaging materials–test methods and limit values for biodegradation, Appl. Microbiol. Biotechnol. 51, 125–133.
-
Potts, J. E.,
Clendinning, R. A.,
Ackart, W. B.,
Neigisch, W. D.
(1973)
The biodegradability of synthetic polymers, in: Polymers and Ecological Problems ( J. Guillet, Ed.), New York: Plenum Press,
61–79.
10.1007/978-1-4684-0871-3_4 Google Scholar
- Rhoden, D. (2001) in: The 2001 world styrene analysis, Houston, USA: Chemical Market Associates, Inc.
- Sakamoto, H., Matsuzaka, A., Itoh, R., Tohyama, Y. (2000) Quantitative analysis of styrene dimer and trimers migrated from disposable lunch boxes, J. Food Hyg. Soc. Jpn. 40, 36–45.
- Sielicki, M., Focht, D. D., Martin, J. P. (1978a) Microbial degradation of [14C] polystyrene and 1,3-diphenylbutane, Can. J. Microbiol. 24, 798–803.
- Sielicki, M., Focht, D. D., Martin, J. P. (1978b) Microbial transformation of styrene and [14C]styrene in soil and enrichment cultures, Appl. Environ. Microbiol. 35, 124–128.
- Tschech, A., Zeyer, J., Kastien, H., Sutter, H. P. (1992) Microbial degradation of synthetic polymers – a literature review, Material und organismen 27, 203–233.
- Tsuchii, A., Tokiwa, Y. (1999) Microbial degradation of natural rubber, in: Biochemical Principles and Mechanisms of Biosynthesis and Biodegradation of Polymers ( A. Steinbüchel, Ed.), Weinheim, Germany: Wiley-VCH, 258–264.
- Tsuchii, A., Suzuki, T., Takahara, Y. (1979) Microbial degradation of synthetic oligomers, Rep. Ferment. Res. Inst. 52, 59.
- Williams, G. R. (1982) The breakdown of rubber polymers by microorganisms, Int. Biodetn. Bull. 18, 31–36.
- Yabannavar, A. V., Bartha, R. (1994) Methods for assessment of biodegradability of plastic films in soil, Appl. Environ. Microbiol. 60, 3608–3614.
- Zhang, X. M., Young, L. Y. (1997) Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia, Appl. Environ. Microbiol. 63, 4759–4764.
Biopolymers Online: Biology • Chemistry • Biotechnology • Applications
Browse other articles of this reference work: