Biology and Technology of Silk Production
Part 8. Polyamides and Complex Proteinaceous Materials
Prof. Fritz Vollrath,
Dr. David Knight,
Prof. Fritz Vollrath
- [email protected]
- +44-1865-271234 | Fax: +44-1865-310447
Department of Zoology, South Parks Road, Oxford, England, OX1 3PS
Search for more papers by this authorDr. David Knight
- [email protected]
- +44-1865-271234 | Fax: +44-1865-310447
Department of Zoology, South Parks Road, Oxford, England, OX1 3PS
Search for more papers by this authorProf. Fritz Vollrath,
Dr. David Knight,
Prof. Fritz Vollrath
- [email protected]
- +44-1865-271234 | Fax: +44-1865-310447
Department of Zoology, South Parks Road, Oxford, England, OX1 3PS
Search for more papers by this authorDr. David Knight
- [email protected]
- +44-1865-271234 | Fax: +44-1865-310447
Department of Zoology, South Parks Road, Oxford, England, OX1 3PS
Search for more papers by this authorAbstract
- Introduction
- Historical Outline
- Evolution of Spider Silks
- Design Requirements
- Spinning Micro- and Nanocomposites
- Spinning Conditions That Affect Mechanical Properties
- Fiber Composition
- Extruder and Feedstock Morphology
- Liquid Crystalline Spinning in Nature
- Silkworm Spinning
- Evaluation of Nature's Spinning Technology
- Commerce of Artificial Silks
- Outlook and Perspectives
References
- Akai, H. (1983) The structure and ultrastructure of the silk gland, Experientia 39, 443–449.
- Akai, H. (1988) Silk glands, in: Microscopic Anatomy of Invertebrates ( F. W. Harrison, E. E. Ruppert, Eds.), New York: Wiley-Liss, 219–253.
- Asakura, T., Kaplan, D. L. (1994) Silk production and processing, Encyclopedia of Agricultural Science 4, 1–11.
- Askeland, D. R. (1994) The Science and Engineering of Materials, Boston: PWS Publishing Co.
- Brinkenstein, C. (1955) Über den Netzbau der Larve von Neureclipsis bimaculata L., Abh. Bay. Akad. Wiss. 69, 5–44.
- Chen, X., Knight, D. P., Vollrath, F. (2001) . Rheological characterization of Nephila spidroin solution, Polymers 42, 9969–9974.
- Chen, X., Knight, D. P., Shao, Z., Vollrath, F (2002) . Comparison of Bombyx mori silk fiber's common solvents by rheology and FTIR spectroscopy, Biomacromolecules (in press).
- Craig, C. L. (1997) Evolution of arthropod silks, Annu. Rev. Entomol. 42, 231–267.
- Denny, M. W. (1980) , Silks - their properties and functions, in: The Mechanical Properties of Biological Materials ( J. F. V. Vincent, J. D. Currey, Eds.), Cambridge: Cambridge University Press, 245–271.
- Donald, A. M., Windle, A. H. (1992) Liquid Crystalline Polymers, Cambridge: Cambridge University Press.
- Edmonds, D. T., Vollrath, F. (1992) . The contribution of atmospheric water vapour to the formation and efficiency of a spider's capture web, Proc. R. Soc. Lond. 248, 145–148.
-
Foelix, R.
(1996)
Biology of Spiders, Oxford: Oxford University Press.
10.1890/06-0937.1 Google Scholar
- Fraser, I. B., McEwen, I. J, Viney, C. (2002) Supercontraction stress in wet spider dragline, Nature 416, 37.
- Frische, S., Maunsbach, A. B., Vollrath, F. (1998) Elongate cavities and skin-core structure in Nephila spider silk observed by electron microscopy, J. Microsc. 189, 64–70.
-
Fung, Y. C.
(1981)
Biomechanics, Heidelberg: Springer.
10.1007/978-1-4757-1752-5 Google Scholar
- Gatesy, J., Hayashi, C., Motrluk, D., Woods, J., Lewis, R. (2001) . Extreme diversity, conservation and convergence of spider silk fibroin sequences, Science 291, 2603–2605.
- Gosline, J., Denny, M., DeMont, M. (1984) Spider silk as rubber, Nature (London) 309, 551–552.
- Gosline, J. M., Pollack, C. C., Guerette, P. A., Cheng, A., DeMont, M. E., Denny, M. W. (1994) Elastomeric network models for the frame and viscid silks from the orb web of the spider Araneus diadematus, in: Silk Polymers. Materials Science and Biotechnology ( D. Kaplan, W. W. Adams, B. Farmer, C. Viney, Eds.), Washington, DC: American Chemical Society, 328–341.
- Gosline, J. M., Guerette, P. A., Ortlepp, C. S., Savage, K. N. (1999) The mechanical design of spider silks: from fibroin sequence to mechanical function, J. Exp. Biol. 202, 3295–3303.
- Gosline, J. M., Lillie, M., Carrington, E., Guerette, P. A., Ortlepp, C., Savage, K. (2002) . Elastic proteins: biological roles and mechanical properties, Phil. Trans. Roy. Soc. 357, 121–132.
- Hayashi, C. Y., Lewis, R. V. (2000) Molecular architecture and evolution of a modular spider silk gene, Science 287, 1477–1479.
- Hayashi, C. Y., Shipley, N. H., Lewis, R. V. (1999) Hypotheses that correlate the sequence, structure and mechanical properties of spider silk proteins, Int. J. Biol. Macromol. 24, 271–275.
- Jelinski, L. W. (1998) . Establishing the relationship between structure and mechanical function in silks, Curr. Opin. Solid State Mater. Sci. 3, 235–237.
- Kaplan, D. L., Lombardi, S. J. (1990) The amino acid composition of major ampullate gland silk (Dragline) of Nephila clavipes (Araneae, Tetragnathidae), J. Arachnol. 18, 297–306.
- Kaplan, D. L., Adams, W. W., Viney, C., Farmer, B. L. (1994) Silk Polymers: Materials Science and Biotechnology, Washington, DC: American Chemical Society.
- Knight, D. P., Vollrath, F. (1998) Structure and function of the silk production pathway in the spider Nephila edulis, Int. J. Bio. Macromol. 24, 243–249.
- Knight, D. P., Vollrath, F. (1999) Liquid crystals and flow elongation in a spider's silk production line, Proc. Roy. Soc. B 266, 519–523.
- Knight, D. P., Vollrath, F. (2001) Changes in element composition in the secretory pathway for dragline silk in the golden orb web spider, Nephila edulis, Naturwissenschaften 88, 179–182.
- Knight, D. P., Vollrath, F. (2002) . Biological liquid crystal elastomers, Phil. Trans. Roy. Soc. 357, 155–163.
- Knight, D. P., Knight, M. M., Vollrath, F. (2000) Beta sheet formation and the toughness of spider silk, Int. J. Biol. Macromol. 27, 205–210.
- Köhler, T., Vollrath, F. (1995) Thread biomechanics in the two orb weaving spiders Araneus diadematus (Araneae, Araneidae) and Uloborus walckenaerius (Araneae, Uloboridae), J. Exp. Zool. 271, 1–17.
- Kovoor, J. (1977) La soie et les glandes sericigenes des arachnids, Anneé. Biol. 4e s. 16, 97–171.
-
Kovoor, J.
(1987)
Comparative structure and histochemistry of silk-producing organs in arachnids, in: Ecophysiology of Spiders ( W. Nentwig, Ed.), Heidelberg: Springer,
160–186.
10.1007/978-3-642-71552-5_12 Google Scholar
- Kovoor, J., Zylberberg, L. (1979) . Ultastructure du canal des glandes agrégées et flagelliformes d'Araneus diadematus Clerck. (Araneae, Araneidae), Zoomorphology 92, 217–239.
- Kümmerlen, J., van Beek, J., Vollrath, F., Meier, B. (1996) Local structure in spider dragline silk investigated by two-dimensional spin-diffusion nuclear magnetic resonance, Macromolecules 29, 2920–2928.
- Lazaris, A., Arcidiacono, S., Huang, Y., Zhou, J., Duguay, F., Chretien, N., Welsh, E. A., Soares, J. W., Karatzas, C. N. (2002) . Spider silk fibers spun from soluble recombinant silk produced in mammalian cells, Science 295, 472–476.
- Lin, L., Edmonds, D., Vollrath, F. (1995) Structural engineering of a spider's web, Nature 373, 146–148.
- Madsen, B., Shao, Z., Vollrath, F. (1999) Variability in the mechanical properties of spider silks on three levels: interspecific, intraspecific and intraindividual, Int. J. Biol. Macromol. 24, 301–306.
- Magoshi, J., Magoshi, Y., Nakamura, S. (1985a) Crystallization, liquid crystal, and fiber formation of silk fibroin, J. Appl. Polymer Sci. 41, 187–204.
- Magoshi, J., Magoshi, Y., Nakamura, S. (1985b) Physical properties and structure of silk: 10. The mechanism of fibre formation from liquid silk of silkworm Bombyx mori, Polymer Comm. 26, 309–311.
- Magoshi, J., Magoshi, Y., Nakamura, S. (1994) . Mechanism of fiber formation of silkworm, in: Silk Polymers. Materials Science and Biotechnology ( D. Kaplan, W. W. Adams, B. Farmer, C. Viney, Eds.), Washington, DC: American Chemical Society, 292–310.
- Northolt, M. G., Sikkema, D. J. (1991) Lyotropic main chain liquid crystal polymers, Adv. Polymer Sci. 98, 115–177.
- Opell, B. D. (1993) What forces are responsible for the stickiness of spider cribellar prey capture threads? J. Exper. Zool. 265, 469–476.
- Palmer, J. (1985) The silk and silk production system of the funnel-web mygalomorph spider Euagrus (Araneae, Dipluidae), J. Morphol. 186, 195–207.
-
Perez-Rigueiro, J.,
Viney, C.,
Llorca, J.,
Elices, E.
(1998)
Silkworm silk as an engineering material,
J. Appl. Polymer Sci. 70,
2439–2447.
10.1002/(SICI)1097-4628(19981219)70:12<2439::AID-APP16>3.0.CO;2-J CAS Web of Science® Google Scholar
- Putthanarat, S., Stribeck, N., Fossey, S. A., Eby, R. K., Adams, W. W. (2000) Investigation of the nanofibrils of silk fibers, Polymer 41, 7735–7747.
- Riekel, C., Vollrath, F. (2001) . Spider silk fibre extrusion: combined wide- and small-angle X-ray microdiffraction experiments, Int. J. Biol. Macromol. 29, 203–210.
- Riekel, C., Madsen, B., Knight, D., Vollrath, F. (1999) In-Situ X-ray diffraction during biopolymer extrusion: forced silking of Nephila edulis spider silk, Biol. Macromol. 24, 179–186.
- Riekel, C., Madsen, B., Knight, D. P., Vollrath, F. (2000) In situ X-ray diffraction during biopolymer extrusion: forced silking of Nephila edulis spider silk, Biol. Macromol. 24, 179–186.
- Scheller, J., Gührs, K. H., Grosse, F., Conrad, U. (2001) . Production of spider silk proteins in tobacco and potato, Nature Biotech. 19, 573–577.
- Schultz, J. W. (1987) The origin of the spinning apparatus in spiders, Biol. Rev. Camb. Philos. Soc. 62, 89–113.
- Selden, P. A. (1989) Orb-web weaving spiders in the early Cretaceous, Nature 340, 711.
- Sehnal, F., Akai, H. (1990) . Insect silk glands: Their types, development and function, and effects of environmental factors and morphogenetic hormones on them, Int. J. Insect Morphol. Embryol. 19, 79–132.
- Shao, Z., Vollrath, F. (2002) Surprising strength of silkworm silk, Nature 418, 741.
- Shao, Z., Wen Hu, X., Frische, S., Vollrath, F. (1999) Heterogeneous morphology in Nephila edulis spider silk and its significance for mechanical properties, Polymers 40, 4709–4711.
- Shear, W. A., Palmer, J. M., Coddington, J. A., Bonamo, P. M. (1989) A Devonian spinneret: early evidence of spiders and silk use, Science 246, 479–481.
- Simmons, A., Michal, C., Jelinski, L. (1996) Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk, Science 271, 84–87.
- Sirichaisit, S., Young, R. J., Vollrath, F. (1999) Molecular deformation in spider dragline silk subjected to stress, Polymers 41, 1223–1227.
-
Sun, Y.,
Shao, Z.,
Hu, P.,
Tu, T.
(1997)
Hydrogen bonds in silk fibroin-poly(acrylonitrile-co-methyl acrylate) blends: FT-IR study,
J. Polymer Sci. B: Polymer Phys. 35,
1405–1414.
10.1002/(SICI)1099-0488(19970715)35:9<1405::AID-POLB10>3.0.CO;2-A CAS Web of Science® Google Scholar
- Termonia, Y. (1994) Molecular modeling of spider silk elasticicty, Macromolecules 27, 7378–7381.
- Thiel, B., Viney, C. (1995) A nonperiodic lattice model for crystals in Nephila clavipes major ampullate silk, MRS Bull. 20, 52–56.
- Tillinghast, E., Chase, S., Townley, M. (1984) Water extraction by the major ampullate duct during silk formation in the spider, Argiope aurantia Lucas, J. Insect Physiol. 30, 591–596.
- van Beek, J. D., Kümmerlen, J., Vollrath, F., Meier, B. H. (1999) Solid state NMR on supercontraced spider dragline silk, Int. J. Biol. Macromol. 24, 173–178.
- Valuzzi, R., Winkler, S., Wilson, D., Kaplan, D. L. (2002) . Silk: molecular organization and control of assembly, Phil. Trans. Roy. Soc. 357, 165–167.
- Vollrath, F. (1992) Spider webs and silk, Sci. Am. 266, 70–76.
- Vollrath, F. (1999) Biology of spider silk, Int. J. Biol. Macromol. 24, 81–88.
- Vollrath, F. (2000a) Co-evolution of behaviour and material in the spider's web, in: Biomechanics in Animal Behaviour ( P. Domenici, R. W. Blake, Eds.) Oxford: Bios, 315–334.
- Vollrath, F. (2000b) Strength and structure of spiders' silks, Rev. Molec. Biotech. 74, 67–83.
- Vollrath, F., Edmonds, D. (1989) Modulation of the mechanical properties of spider silk coating with water, Nature 340, 305–307.
- Knight, D. P., Vollrath, F. (1999) Liquid crystals in a spider's silk production line, Proc. R. Soc. 266, 519–523.
- Vollrath, F., Knight, D. P. (2001) Liquid crystal silk spinning in nature, Nature 410, 541–548.
- Vollrath, F., Knight, D. P. (1999) Structure and function of the silk production pathway in the spider Nephila edulis, Int. J. Biol. Macromol. 24, 243–249.
- Vollrath, F., Tillinghast, E. K. (1991) Glycoprotein glue beneath a spiders web's aqueous coat, Naturwissenschaften 78, 557–559.
- Vollrath, F., Fairbrother, W. J., Williams, R. J. P., Tillinghast, E. K., Bernstein, D. T., Gallagher, K. S., Townley, M. A. (1990) Compounds in the droplets of the orb spider's viscid spiral, Nature (London) 345, 526–528.
-
Vollrath, F.,
Wen Hu, X.,
Knight, D. P.
(1998)
Silk production in a spider involves acid bath treatment,
Proc. Roy. Soc. B. 263,
817–820.
10.1098/rspb.1998.0365 Google Scholar
- Vollrath, F., Madsen, B., Shao, Z. (2001) The effect of spinning conditions on the mechanical properties of a spider's dragline, Proc. Roy. Soc. 268, 2339–2346
- Wilson, R. S. (1962) The structure of the dragline control valves in the garden spider, Quart. J. Micr. Sci. 103, 549–555.
-
Witt, P. N.,
Reed, C. F.,
Peakall, N.
(1968)
. A Spider's Web: Problems in Regulatory Biology, Heidelberg: Springer.
10.1007/978-3-642-85479-8 Google Scholar
- Winkler, S., Kaplan, D. (2000) . Molecular biology of silk, Mol. Biotechnol. 74, 85–95.
-
Wiedbrauck, J.
(1955)
. Vom Spinnen bei Smetterlingsraupen und seiner Abhängigkeit von Metamorphosehormonen,
Z. Tierpsychol. 12,
176–220.
10.1111/j.1439-0310.1955.tb01522.x Google Scholar
- Work, R. W., Young, C. T. (1987) The amino acid compositions of major and minor ampullate silks of certain orb-web-building spiders (Araneae, Araneidae), J. Arachnol. 15, 65–80.
- Yang, Z., Grubb, D. T., Jelinski, L. W. (1997) Small-angle x-ray scattering of spider dragline silk, Maromolecules 30, 8254–8261.
- Yang, Z. T., Liivak, O., Seidel, A., LaVerde, G., Zax, D.B., Jelinski, L. W. (2000) Supercontraction and backbone dynamics in spider silk: C-13 and H-2 NMR, J. Am. Chem. Soc. 122, 9019–9025.
Citing Literature
Biopolymers Online: Biology • Chemistry • Biotechnology • Applications
Browse other articles of this reference work: