Bacterial Protein Secretion and Targeting
Prof. Dr. Arnold J.M. Driessen
- [email protected]
- +31-50-3632164 | Fax: +31-50-3632154
University of Groningen, Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Kerklaan 30, HAREN, The Netherlands, 9751 NN
Search for more papers by this authorDr. Chris van der Does
- [email protected]
- +31-50-3632309 | Fax: +31-50-3632154
University of Groningen, Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Kerklaan 30, HAREN, The Netherlands, 9751 NN
Search for more papers by this authorDr. Nico Nouwen
- [email protected]
- +31-50-3632403 | Fax: +31-50-3632154
University of Groningen, Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Kerklaan 30, HAREN, The Netherlands, 9751 NN
Search for more papers by this authorProf. Dr. Arnold J.M. Driessen
- [email protected]
- +31-50-3632164 | Fax: +31-50-3632154
University of Groningen, Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Kerklaan 30, HAREN, The Netherlands, 9751 NN
Search for more papers by this authorDr. Chris van der Does
- [email protected]
- +31-50-3632309 | Fax: +31-50-3632154
University of Groningen, Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Kerklaan 30, HAREN, The Netherlands, 9751 NN
Search for more papers by this authorDr. Nico Nouwen
- [email protected]
- +31-50-3632403 | Fax: +31-50-3632154
University of Groningen, Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Kerklaan 30, HAREN, The Netherlands, 9751 NN
Search for more papers by this authorAbstract
- Introduction
- Historical Outline
- Protein Targeting to the Translocase
- Signal Peptides
- Co-translational Protein Targeting
- Post-translational Protein Targeting
- Converging Targeting Pathways
- Translocase: A Multisubunit Integral Membrane Protein Complex
- SecA
- SecY
- SecE
- SecG
- SecD, SecF, and YajC
- Conserved Protein Translocases in Bacteria, Eukaryotes, and Archaea
- Role of Lipids in Protein Translocation
- Mechanism of Protein Translocation
- ATP-driven Translocation
- Proton Motive Force-driven Translocation
- Dynamics of the Protein-conducting Channel
- Regulation of Protein Translocation
- Outlook and Perspectives
- Acknowledgments
References
- Akimaru, J., Matsuyama, S., Tokuda, H., Mizushima, S. (1991) Reconstitution of a protein translocation system containing purified SecY, SecE, and SecA from Escherichia coli, Proc. Natl. Acad. Sci. USA 88, 6545–6549.
- Akita, M., Sasaki, S., Matsuyama, S., Mizushima, S. (1990) SecA interacts with secretory proteins by recognizing the positive charge at the amino terminus of the signal peptide in Escherichia coli, J. Biol. Chem. 265, 8164–8169.
- Akita, M., Shinaki, A., Matsuyama, S., Mizushima, S. (1991) SecA, an essential component of the secretory machinery of Escherichia coli, exists as homodimer, Biochem. Biophys. Res. Commun. 174, 211–216.
- Akiyama, Y., Ito, K. (1987) Topology analysis of the SecY protein, an integral membrane protein involved in protein export in Escherichia coli, EMBO J. 6, 3465–3470.
- Arkowitz, R. A., Wickner, W. (1994) SecD and SecF are required for the proton electrochemical gradient stimulation of preprotein translocation, EMBO J. 13, 954–963.
- Baba, T., Taura, T., Shimoike, T., Akiyama, Y., Yoshihisa, T., Ito, K. (1994) A cytoplasmic domain is important for the formation of a SecY-SecE translocator complex, Proc. Natl. Acad. Sci. USA 91, 4539–4543.
- Bairoch, A., Bucher, P., Hofmann, K. (1997) The PROSITE database, its status in 1997, Nucleic Acids Res. 25, 217–221.
- Bakker, E. P., Randall, L. L. (1984) The requirement for energy during export of beta-lactamase in Escherichia coli is fulfilled by the total protonmotive force, EMBO J. 3, 895–900.
- Batey, R. T., Rambo, R. P., Lucast, L., Rha, B., Doudna, J. A. (2000) . Crystal structure of the ribonucleoprotein core of the signal recognition particle, Science 287, 1232–1239.
- Baud, C., Karamanou, S., Sianidis, G., Vrontou, E., Politou, A. S., Economou, A. (2002) Allosteric communication between signal peptides and the SecA protein DEAD motor ATPase domain, J. Biol. Chem. 277, 13724–13731.
- Bayan, N., Schrempp, S., Joliff, G., Leblon, G., Shechter, E. (1993) . Role of the protonmotive force and of the state of the lipids in the in vivo protein secretion in Corynebacterium glutamicum, a gram-positive bacterium, Biochim. Biophys. Acta 1146, 97–105.
- Beck, K., Wu, L. F., Brunner, J., Muller, M. (2000) Discrimination between SRP- and SecA/SecB-dependent substrates involves selective recognition of nascent chains by SRP and trigger factor, EMBO J. 19, 134–143.
- Berks, B. C., Sargent, F., Palmer, T. (2000) The Tat protein export pathway, Mol. Microbiol. 35, 260–274.
- Bessonneau, P., Besson, V., Collinson, I., Duong, F. (2002) The SecYEG preprotein translocation channel is a conformationally dynamic and dimeric structure, EMBO J. 21, 995–1003.
- Bieker-Brady, K., Silhavy, T. J. (1992) Suppressor analysis suggests a multistep, cyclic mechanism for protein secretion in Escherichia coli, EMBO J. 11, 3165–3174.
- Bolhuis, A., Broekhuizen, C. P., Sorokin, A., van Roosmalen, M. L., Venema, G., Bron, S., Quax, W. J., van Dijl, J. M. (1998) SecDF of Bacillus subtilis, a molecular Siamese twin required for the efficient secretion of proteins, J. Biol. Chem. 273, 21217–21224.
- Bost, S., Belin, D. (1995) A new genetic selection identifies essential residues in SecG, a component of the Escherichia coli protein export machinery, EMBO J. 14, 4412–4421.
- Bost, S., Belin, D. (1997) prl mutations in the Escherichia coli secG gene, J. Biol. Chem. 272, 4087–4093.
- Breukink, E., Demel, R. A., de Korte-Kool, G., de Kruijff, B. (1992) SecA insertion into phospholipids is stimulated by negatively charged lipids and inhibited by ATP: a monolayer study, Biochemistry 31, 1119–1124.
- Breukink, E., Nouwen, N., van Raalte, A., Mizushima, S., Tommassen, J., de Kruijff, B. (1995) The C terminus of SecA is involved in both lipid binding and SecB binding, J. Biol. Chem. 270, 7902–7907.
- Brundage, L., Hendrick, J. P., Schiebel, E., Driessen, A. J. M., Wickner, W. (1990) The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation, Cell 62, 649–657.
- Cao, G., Kuhn, A., Dalbey, R. E. (1995) The translocation of negatively charged residues across the membrane is driven by the electrochemical potential: evidence for an electrophoresis-like membrane transfer mechanism, EMBO J. 14, 866–875.
- Cerretti, D. P., Dean, D., Davis, G. R., Bedwell, D. M., Nomura, M. (1983) The spc ribosomal protein operon of Escherichia coli: sequence and cotranscription of the ribosomal protein genes and a protein export gene, Nucleic Acids Res. 11, 2599–2616.
- Chen, L., Tai, P. C. (1986) Effects of nucleotides on ATP-dependent protein translocation into Escherichia coli membrane vesicles, J. Bacteriol. 168, 828–832.
- Christie, P. J. (2001) Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines, Mol. Microbiol. 40, 294–305.
- Collinson, I., Breyton, C., Duong, F., Tziatzios, C., Schubert, D., Or, E., Rapoport, T., Kuhlbrandt, W. (2001) Projection structure and oligomeric properties of a bacterial core protein translocase, EMBO J. 20, 2462–2471.
- Cunningham, K., Wickner, W. (1989) Specific recognition of the leader region of precursor proteins is required for the activation of translocation ATPase of Escherichia coli, Proc. Natl. Acad. Sci. USA 86, 8630–8634.
- Dalbey, R. E., Lively, M. O., Bron, S., van Dijl, J. M. (1997) The chemistry and enzymology of the type I signal peptidases, Protein Sci. 6, 1129–1138.
- Daniels, C. J., Bole, D. G., Quay, S. C., Oxender, D. L. (1981) Role for membrane potential in the secretion of protein into the periplasm of Escherichia coli, Proc. Natl. Acad. Sci. USA 78, 5396–5400.
- de Keyzer, J., van der Does, C., Swaving, J., Driessen, A. J. M. (2002) The F286Y mutation of PrlA4 tempers the signal sequence suppressor phenotype by reducing the SecA binding affinity, FEBS Lett. 510, 17–21.
- de Leeuw, E., te Kaat, K., Moser, C., Menestrina, G., Demel, R., de Kruijff, B., Oudega, B., Luirink, J., Sinning, I. (2000) Anionic phospholipids are involved in membrane association of FtsY and stimulate its GTPase activity, EMBO J. 19, 531–541
- den Blaauwen, T., Fekkes, P., de Wit, J. G., Kuiper, W., Driessen, A. J. M. (1996) Domain interactions of the peripheral preprotein translocase subunit SecA, Biochemistry 35, 11994–12004.
- den Blaauwen, T., Terpetschnig, E., Lakowicz, J. R., Driessen, A. J. M. (1997) Interaction of SecB with soluble SecA, FEBS Lett. 416, 35–38.
- den Blaauwen, T., van der Wolk, J. P., van der Does, C., van Wely, K. H., Driessen, A. J. M. (1999) Thermodynamics of nucleotide binding to NBS-I of the Bacillus subtilis preprotein translocase subunit SecA, FEBS Lett. 458, 145–150.
- Ding, H., Mukerji, I., Oliver, D. (2001) Lipid and signal peptide-induced conformational changes within the C-domain of Escherichia coli SecA protein, Biochemistry 40, 1835–1843.
- Dolan, K. M., Oliver, D. B. (1991) Characterization of Escherichia coli SecA protein binding to a site on its mRNA involved in autoregulation, J. Biol. Chem. 266, 23329–23333.
- Downing, W. L., Sullivan, S. L., Gottesman, M. E., Dennis, P. P. (1990) Sequence and transcriptional pattern of the essential Escherichia coli secE-nusG operon, J. Bacteriol. 172, 1621–1627.
- Driessen, A. J. M. (1992) Precursor protein translocation by the Escherichia coli translocase is directed by the protonmotive force, EMBO J. 11, 847–853.
- Driessen, A. J. M. (1993) SecA, the peripheral subunit of the Escherichia coli precursor protein translocase, is functional as a dimer, Biochemistry 32, 13190–13197.
- Driessen, A. J. M. (2001) SecB, a molecular chaperone with two faces, Trends Microbiol. 9, 193–196.
- Driessen, A. J. M., Wickner, W. (1990) Solubilization and functional reconstitution of the protein-translocation enzymes of Escherichia coli, Proc. Natl. Acad. Sci. USA 87, 3107–3111.
- Driessen, A. J. M., Wickner, W. (1991) Proton transfer is rate-limiting for translocation of precursor proteins by the Escherichia coli translocase, Proc. Natl. Acad. Sci. USA 88, 2471–2475.
- Driessen, A. J. M., Brundage, L., Hendrick, J. P., Schiebel, E., Wickner, W. (1991) Preprotein translocase of Escherichia coli: solubilization, purification, and reconstitution of the integral membrane subunits SecY/E, Methods Cell Biol. 34, 147–165.
- Driessen, A. J. M., Manting, E. H., van der Does, C. (2001) The structural basis of protein targeting and translocation in bacteria, Nature Struct. Biol. 8, 492–498.
- Duong, F., Wickner, W. (1997a) Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme, EMBO J. 16, 2756–2768.
- Duong, F., Wickner, W. (1997b) The SecDFyajC domain of preprotein translocase controls preprotein movement by regulating SecA membrane cycling, EMBO J. 16, 4871–4879.
- Duong, F., Wickner, W. (1998) Sec-dependent membrane protein biogenesis: SecYEG, preprotein hydrophobicity and translocation kinetics control the stop-transfer function, EMBO J. 17, 696–705.
- Duong, F., Wickner, W. (1999) The PrlA and PrlG phenotypes are caused by a loosened association among the translocase SecYEG subunits, EMBO J. 18, 3263–3270.
- Economou, A., Wickner, W. (1994) SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion, Cell 78, 835–843.
- Economou, A., Pogliano, J. A., Beckwith, J., Oliver, D. B., Wickner, W. (1995) SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF, Cell 83, 1171–1181.
- Eichler, J., Wickner, W. (1997) Both an N-terminal 65-kDa domain and a C-terminal 30-kDa domain of SecA cycle into the membrane at SecYEG during translocation, Proc. Natl. Acad. Sci. USA 94, 5574–5581.
- Eichler, J., Wickner, W. (1998) The SecA subunit of Escherichia coli preprotein translocase is exposed to the periplasm, J. Bacteriol. 180, 5776–5779.
- Eichler, J., Brunner, J., Wickner, W. (1997) The protease-protected 30 kDa domain of SecA is largely inaccessible to the membrane lipid phase, EMBO J. 16, 2188–2196.
- Emr, S. D., Hanley-Way, S., Silhavy, T. J. (1981) Suppressor mutations that restore export of a protein with a defective signal sequence, Cell 23, 79–88.
- Enequist, H. G., Hirst, T. R., Harayama, S., Hardy, S. J., Randall, L. L. (1981) Energy is required for maturation of exported proteins in Escherichia coli, Eur. J. Biochem. 116, 227–233.
- Esnault, Y., Blondel, M. O., Deshaies, R. J., Scheckman, R., Kepes, F. (1993) The yeast SSS1 gene is essential for secretory protein translocation and encodes a conserved protein of the endoplasmic reticulum, EMBO J. 12, 4083–4093.
- Fekkes, P., Driessen, A. J. M. (1999) Protein targeting to the bacterial cytoplasmic membrane, Microbiol. Mol. Biol. Rev. 63, 161–173.
-
Fekkes, P.,
van der Does, C.,
Driessen, A. J. M.
(1997)
The molecular chaperone SecB is released from the carboxy- terminus of SecA during initiation of precursor protein translocation,
EMBO J. 16,
6105–6113.
10.1093/emboj/16.20.6105 Google Scholar
- Fekkes, P., de Wit, J. G., Boorsma, A., Friesen, R. H., Driessen, A. J. M. (1999) Zinc stabilizes the SecB binding site of SecA, Biochemistry 38, 5111–5116.
- Finke, K., Plath, K., Panzner, S., Prehn, S., Rapoport, T. A., Hartmann, E., Sommer, T. (1996) A second trimeric complex containing homologs of the Sec61p complex functions in protein transport across the ER membrane of S. cerevisiae, EMBO J. 15, 1482–1494.
- Flower, A. M. (2001) SecG function and phospholipid metabolism in Escherichia coli, J. Bacteriol. 183, 2006–2012.
- Flower, A. M., Doebele, R. C., Silhavy, T. J. (1994) PrlA and PrlG suppressors reduce the requirement for signal sequence recognition, J. Bacteriol. 176, 5607–5614.
- Flower, A. M., Osborne, R. S., Silhavy, T. J. (1995) The allele-specific synthetic lethality of prlA-prlG double mutants predicts interactive domains of SecY and SecE, EMBO J. 14, 884–893.
- Franklin, A. E., Hoffman, N. E. (1993) Characterization of a chloroplast homologue of the 54-kDa subunit of the signal recognition particle, J. Biol. Chem. 268, 22175–22180.
- Freymann, D. M., Keenan, R. J., Stroud, R. M., Walter, P. (1999) Functional changes in the structure of the SRP GTPase on binding GDP and Mg2+GDP, Nature Struct. Biol. 6, 793–801.
- Gardel, C., Benson, S., Hunt, J., Michaelis, S., Beckwith, J. (1987) secD, a new gene involved in protein export in Escherichia coli, J. Bacteriol. 169, 1286–1290.
- Gardel, C., Johnson, K., Jacq, A., Beckwith, J. (1990) The secD locus of E. coli codes for two membrane proteins required for protein export, EMBO J. 9, 3209–3216.
- Geller, B. L., Green, H. M. (1989) Translocation of pro-OmpA across inner membrane vesicles of Escherichia coli occurs in two consecutive energetically distinct steps, J. Biol. Chem. 264, 16465–16469.
- Geller, B. L., Movva, N. R., Wickner, W. (1986) Both ATP and the electrochemical potential are required for optimal assembly of pro-OmpA into Escherichia coli inner membrane vesicles, Proc. Natl. Acad. Sci. USA 83, 4219–4222.
- Gill, D. R., Salmond, G. P. (1990) The identification of the Escherichia coli ftsY gene product: an unusual protein, Mol. Microbiol. 4, 575–583.
- Hanada, M., Nishiyama, K. I., Mizushima, S., Tokuda, H. (1994) Reconstitution of an efficient protein translocation machinery comprising SecA and the three membrane proteins, SecY, SecE, and SecG (p12), J. Biol. Chem. 269, 23625–23631.
- Hanada, M., Nishiyama, K., Tokuda, H. (1996) SecG plays a critical role in protein translocation in the absence of the proton motive force as well as at low temperature, FEBS Lett. 381, 25–28.
- Harris, C. R., Silhavy, T. J. (1999) Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking, J. Bacteriol. 181, 3438–3444.
- Hartl, F. U., Lecker, S., Schiebel, E., Hendrick, J. P., Wickner, W. (1990) The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane, Cell 63, 269–279.
- Hartmann, E., Sommer, T., Prehn, S., Gorlich, D., Jentsch, S., Rapoport, T. A. (1994) Evolutionary conservation of components of the protein translocation complex, Nature 367, 654–657.
- Hendrick, J. P., Wickner, W. (1991) SecA protein needs both acidic phospholipids and SecY/E protein for functional high-affinity binding to the Escherichia coli plasma membrane, J. Biol. Chem. 266, 24596–24600.
- Herskovits, A. A., Bochkareva, E. S., Bibi, E. (2000) New prospects in studying the bacterial signal recognition particle pathway, Mol. Microbiol. 38, 927–939.
- Hikita, C., Mizushima, S. (1992) The requirement of a positive charge at the amino terminus can be compensated for by a longer central hydrophobic stretch in the functioning of signal peptides, J. Biol. Chem. 267, 12375–12379.
- Homma, T., Yoshihisa, T., Ito, K. (1997) Subunit interactions in the Escherichia coli protein translocase: SecE and SecG associate independently with SecY, FEBS Lett. 408, 11–15.
- Houben, E. N., Scotti, P. A., Valent, Q. A., Brunner, J., de Gier, J. L., Oudega, B., Luirink, J. (2000) Nascent Lep inserts into the Escherichia coli inner membrane in the vicinity of YidC, SecY and SecA, FEBS Lett. 476, 229–233.
- Huie, J. L., Silhavy, T. J. (1995) Suppression of signal sequence defects and azide resistance in Escherichia coli commonly result from the same mutations in SecA, J. Bacteriol. 177, 3518–3526.
- Iino, T., Sako, T. (1988) . Inhibition and resumption of processing of the staphylokinase in some Escherichia coli prlA suppressor mutants, J. Biol. Chem. 263, 19077–19082.
- Johnson, A. E., van Waes, M. A. (1999) The translocon: a dynamic gateway at the ER membrane, Annu. Rev. Cell Dev. Biol. 15, 799–842.
- Joly, J. C., Leonard, M. R., Wickner, W. T. (1994) Subunit dynamics in Escherichia coli preprotein translocase, Proc. Natl. Acad. Sci. USA 91, 4703–4707.
- Jungnickel, B., Rapoport, T. A., Hartmann, E. (1994) Protein translocation: common themes from bacteria to man, FEBS Lett. 346, 73–77.
- Kato, M., Tokuda, H., Mizushima, S. (1992) In vitro translocation of secretory proteins possessing no charges at the mature domain takes place efficiently in a protonmotive force-dependent manner, J. Biol. Chem. 267, 413–418.
- Kaufmann, A., Manting, E. H., Veenendaal, A. K., Driessen, A. J. M., van der Does, C. (1999) Cysteine-directed cross-linking demonstrates that helix 3 of SecE is close to helix 2 of SecY and helix 3 of a neighboring SecE, Biochemistry 38, 9115–9125.
- Keller, R. C., Killian, J. A., de Kruijff, B. (1992) Anionic phospholipids are essential for alpha-helix formation of the signal peptide of prePhoE upon interaction with phospholipid vesicles, Biochemistry 31, 1672–1677.
- Keller, R. C., ten Berge, D., Nouwen, N., Snel, M. M., Tommassen, J., Marsh, D., de Kruijff, B. (1996) Mode of insertion of the signal sequence of a bacterial precursor protein into phospholipid bilayers as revealed by cysteine-based site-directed spectroscopy, Biochemistry 35, 3063–3071.
- Kihara, A., Akiyama, Y., Ito, K. (1995) FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translocase subunit, Proc. Natl. Acad. Sci. USA 92, 4532–4536.
- Kim, Y. J., Rajapandi, T., Oliver, D. (1994) SecA protein is exposed to the periplasmic surface of the E. coli inner membrane in its active state, Cell 78, 845–853.
- Klose, M., Schimz, K. L., van der Wolk, J., Driessen, A. J. M., Freudl, R. (1993) Lysine 106 of the putative catalytic ATP-binding site of the Bacillus subtilis SecA protein is required for functional complementation of Escherichia coli secA mutants in vivo, J. Biol. Chem. 268, 4504–4510.
- Knoblauch, N. T., Rudiger, S., Schonfeld, H. J., Driessen, A. J. M., Schneider-Mergener, J., Bukau, B. (1999) Substrate specificity of the SecB chaperone, J. Biol. Chem. 274, 34219–34225.
- Kogata, N., Nishio, K., Hirohashi, T., Kikuchi, S., Nakai, M. (1999) Involvement of a chloroplast homologue of the signal recognition particle receptor protein, FtsY, in protein targeting to thylakoids, FEBS Lett. 447, 329–333.
- Kontinen, V. P., Tokuda, H. (1995) Overexpression of phosphatidylglycerophosphate synthase restores protein translocation in a secG deletion mutant of Escherichia coli at low temperature, FEBS Lett. 364, 157–160.
- Kontinen, V. P., Helander, I. M., Tokuda, H. (1996a) The secG deletion mutation of Escherichia coli is suppressed by expression of a novel regulatory gene of Bacillus subtilis, FEBS Lett. 389, 281–284.
- Kontinen, V. P., Yamanaka, M., Nishiyama, K., Tokuda, H. (1996b) Roles of the conserved cytoplasmic region and non-conserved carboxy-terminal region of SecE in Escherichia coli protein translocase, J. Biochem. (Tokyo) 119, 1124–1130.
- Koonin, E. V., Gorbalenya, A. E. (1992) Autogenous translation regulation by Escherichia coli ATPase SecA may be mediated by an intrinsic RNA helicase activity of this protein, FEBS Lett. 298, 6–8.
- Koronakis, V., Andersen, C., Hughes, C. (2001) Channel-tunnels, Curr. Opin. Struct. Biol. 11, 403–407.
- Kourtz, L., Oliver, D. (2000) Tyr-326 plays a critical role in controlling SecA-preprotein interaction, Mol. Microbiol. 37, 1342–1356.
- Kumamoto, C. A., Beckwith, J. (1983) . Mutations in a new gene, secB, cause defective protein localization in Escherichia coli, J. Bacteriol. 154, 253–260.
- Kumamoto, C. A., Francetic, O. (1993) Highly selective binding of nascent polypeptides by an Escherichia coli chaperone protein in vivo, J. Bacteriol. 175, 2184–2188.
- Kumamoto, C. A., Chen, L., Fandl, J., Tai, P. C. (1989) Purification of the Escherichia coli secB gene product and demonstration of its activity in an in vitro protein translocation system, J. Biol. Chem. 264, 2242–2249.
- Kusters, R., Dowhan, W., de Kruijff, B. (1991) Negatively charged phospholipids restore prePhoE translocation across phosphatidylglycerol-depleted Escherichia coli inner membranes, J. Biol. Chem. 266, 8659–8662.
- Kusters, R., Huijbregts, R., de Kruijff, B. (1992) Elevated cytosolic concentrations of SecA compensate for a protein translocation defect in Escherichia coli cells with reduced levels of negatively charged phospholipids, FEBS Lett. 308, 97–100.
- Laidler, V., Chaddock, A. M., Knott, T. G., Walker, D., Robinson, C. (1995) A SecY homolog in Arabidopsis thaliana. Sequence of a full-length cDNA clone and import of the precursor protein into chloroplasts, J. Biol. Chem. 270, 17664–17667.
- Lill, R., Cunningham, K., Brundage, L. A., Ito, K., Oliver, D., Wickner, W. (1989) SecA protein hydrolyzes ATP and is an essential component of the protein translocation ATPase of Escherichia coli, EMBO J. 8, 961–966.
- Liu, G., Topping, T. B., Randall, L. L. (1989) Physiological role during export for the retardation of folding by the leader peptide of maltose-binding protein, Proc. Natl. Acad. Sci. USA 86, 9213–9217.
- Luirink, J., High, S., Wood, H., Giner, A., Tollervey, D., Dobberstein, B. (1992) Signal-sequence recognition by an Escherichia coli ribonucleoprotein complex, Nature 359, 741–743.
- Manting, E. H., van der Does, C., Remigy, H., Engel, A., Driessen, A. J. M. (2000) SecYEG assembles into a tetramer to form the active protein translocation channel, EMBO J. 19, 852–861.
- Matsumoto, G., Yoshihisa, T., Ito, K. (1997) SecY and SecA interact to allow SecA insertion and protein translocation across the Escherichia coli plasma membrane, EMBO J. 16, 6384–6393.
- Matsumoto, G., Mori, H., Ito, K. (1998) Roles of SecG in ATP- and SecA-dependent protein translocation, Proc. Natl. Acad. Sci. USA 95, 13567–13572.
- Matsuyama, S., Akimaru, J., Mizushima, S. (1990a) SecE-dependent overproduction of SecY in Escherichia coli. Evidence for interaction between two components of the secretory machinery, FEBS Lett. 269, 96–100.
- Matsuyama, S., Kimura, E., Mizushima, S. (1990b) Complementation of two overlapping fragments of SecA, a protein translocation ATPase of Escherichia coli, allows ATP binding to its amino-terminal region, J. Biol. Chem. 265, 8760–8765.
- Matsuyama, S., Fujita, Y., Sagara, K., Mizushima, S. (1992) Overproduction, purification and characterization of SecD and SecF, integral membrane components of the protein translocation machinery of Escherichia coli, Biochim. Biophys. Acta 1122, 77–84.
- Matsuyama, S., Fujita, Y., Mizushima, S. (1993) SecD is involved in the release of translocated secretory proteins from the cytoplasmic membrane of Escherichia coli, EMBO J. 12, 265–270.
- Meyer, T. H., Ménétret, J. F., Breitling, R., Miller, K. R., Akey, C. W., Rapoport, T. A. (1999) The bacterial SecY/E translocation complex forms channel-like structures similar to those of the eukaryotic Sec61p complex, J. Mol. Biol. 285, 1789–1800.
- Miller, A., Wang, L., Kendall, D. A. (2002) SecB modulates the nucleotide-bound state of SecA and stimulates ATPase activity, Biochemistry 41, 5325–5332.
- Millman, J. S., Qi, H. Y., Vulcu, F., Bernstein, H. D., Andrews, D. W. (2001) FtsY binds to the Escherichia coli inner membrane via interactions with phosphatidylethanolamine and membrane proteins, J. Biol. Chem. 276, 25982–25989.
- Mitchell, C., Oliver, D. (1993) Two distinct ATP-binding domains are needed to promote protein export by Escherichia coli SecA ATPase, Mol. Microbiol. 10, 483–497.
- Mori, H., Ito, K. (2001) An essential amino acid residue in the protein translocation channel revealed by targeted random mutagenesis of SecY, Proc. Natl. Acad. Sci. USA 98, 5128–5133.
- Mori, H., Sugiyama, H., Yamanaka, M., Sato, K., Tagaya, M., Mizushima, S. (1998) Amino-terminal region of SecA is involved in the function of SecG for protein translocation into Escherichia coli membrane vesicles, J. Biochem. (Tokyo) 124, 122–129.
- Muller, M., Blobel, G. (1984) In vitro translocation of bacterial proteins across the plasma membrane of Escherichia coli, Proc. Natl. Acad. Sci. USA 81, 7421–7425.
- Muller, S. B., Rensing, S. A., Martin, W. F., Maier, U. G. (1994) cDNA cloning of a Sec61 homologue from the cryptomonad alga Pyrenomonas salina, Curr. Genet. 26, 410–414.
- Murphy, C. K., Beckwith, J. (1994) Residues essential for the function of SecE, a membrane component of the Escherichia coli secretion apparatus, are located in a conserved cytoplasmic region, Proc. Natl. Acad. Sci. USA 91, 2557–2561.
- Nakai, M., Goto, A., Nohara, T., Sugita, D., Endo, T. (1994) Identification of the SecA protein homolog in pea chloroplasts and its possible involvement in thylakoidal protein transport, J. Biol. Chem. 269, 31338–31341.
- Nakatogawa, H., Ito, K. (2001) Secretion monitor, SecM, undergoes self-translation arrest in the cytosol, Mol. Cell 7, 185–192.
- Nakatogawa, H., Mori, H., Ito, K. (2000a) Two independent mechanisms down-regulate the intrinsic SecA ATPase activity, J. Biol. Chem. 275, 33209–33212.
- Nakatogawa, H., Mori, H., Matsumoto, G., Ito, K. (2000b) Characterization of a mutant form of SecA that alleviates a SecY defect at low temperature and shows a synthetic defect with SecY alteration at high temperature, J. Biochem. 127, 1071–1079.
- Neumann-Haefelin, C., Schafer, U., Muller, M., Koch, H. G. (2000) SRP-dependent co-translational targeting and SecA-dependent translocation analyzed as individual steps in the export of a bacterial protein, EMBO J. 19, 6419–6426.
- Nishiyama, K., Mizushima, S., Tokuda, H. (1992) The carboxyl-terminal region of SecE interacts with SecY and is functional in the reconstitution of protein translocation activity in Escherichia coli, J. Biol. Chem. 267, 7170–7176.
- Nishiyama, K., Mizushima, S., Tokuda, H. (1993) A novel membrane protein involved in protein translocation across the cytoplasmic membrane of Escherichia coli, EMBO J. 12, 3409–3415.
- Nishiyama, K., Hanada, M., Tokuda, H. (1994) Disruption of the gene encoding p12 (SecG) reveals the direct involvement and important function of SecG in the protein translocation of Escherichia coli at low temperature, EMBO J. 13, 3272–3277.
- Nishiyama, K., Mizushima, S., Tokuda, H. (1995) Preferential interaction of SecG with SecE stabilizes an unstable SecE derivative in the Escherichia coli cytoplasmic membrane, Biochem. Biophys. Res. Commun. 217, 217–223.
- Nishiyama, K., Suzuki, T., Tokuda, H. (1996) Inversion of the membrane topology of SecG coupled with SecA-dependent preprotein translocation, Cell 85, 71–81.
- Nishiyama, K. I., Fukuda, A., Morita, K., Tokuda, H. (1999) Membrane deinsertion of SecA underlying proton motive force-dependent stimulation of protein translocation, EMBO J. 18, 1049–1058.
- Nohara, T., Nakai, M., Goto, A., Endo, T. (1995) Isolation and characterization of the cDNA for pea chloroplast SecA. Evolutionary conservation of the bacterial-type SecA-dependent protein transport within chloroplasts, FEBS Lett. 364, 305–308.
- Nouwen, N., Driessen, A. J. M. (2002) SecDFyajC forms a heterotetrameric complex with YidC, Mol. Microbiol. 44, 1397–1405.
- Nouwen, N., de Kruijff, B., Tommassen, J. (1996) prlA suppressors in Escherichia coli relieve the proton electrochemical gradient dependency of translocation of wild-type precursors, Proc. Natl. Acad. Sci. USA 93, 5953–5957.
- Nouwen, N., van der Laan, M., Driessen, A. J. M. (2001) SecDFyajC is not required for the maintenance of the proton motive force, FEBS Lett. 508, 103–106.
- Oliver, D. B., Beckwith, J. (1981) E. coli mutant pleiotropically defective in the export of secreted proteins, Cell 25, 765–772.
- Oliver, D. B., Beckwith, J. (1982) Regulation of a membrane component required for protein secretion in Escherichia coli, Cell 30, 311–319.
- Oliver, D. B., Cabelli, R. J., Dolan, K. M., Jarosik, G. P. (1990) Azide-resistant mutants of Escherichia coli alter the SecA protein, an azide-sensitive component of the protein export machinery, Proc. Natl. Acad. Sci. USA 87, 8227–8231.
- Oliver, D., Norman, J., Sarker, S. (1998) Regulation of Escherichia coli secA by cellular protein secretion proficiency requires an intact gene X signal sequence and an active translocon, J. Bacteriol. 180, 5240–5242.
- Owens, M. U., Swords, W. E., Schmidt, M. G., King, C. H., Quinn, F. D. (2002) Cloning, expression, and functional characterization of the Mycobacterium tuberculosis secA gene, FEMS Microbiol. Lett. 211, 133–141.
- Packer, J. C., Howe, C. J. (1996) The cyanobacterial genome contains a single copy of the ffh gene encoding a homologue of the 54 kDa subunit of signal recognition particle, Plant Mol. Biol. 31, 659–665.
- Park, S. K., Kim, D. W., Choe, J., Kim, H. (1997) RNA helicase activity of Escherichia coli SecA protein, Biochem. Biophys. Res. Commun. 235, 593–597.
- Peluso, P., Herschlag, D., Nock, S., Freymann, D. M., Johnson, A. E., Walter, P. (2000) Role of 4.5S RNA in assembly of the bacterial signal recognition particle with its receptor, Science 288, 1640–1643.
- Phoenix, D. A., Kusters, R., Hikita, C., Mizushima, S., de Kruijff, B. (1993) OmpF-Lpp signal sequence mutants with varying charge hydrophobicity ratios provide evidence for a phosphatidylglycerol-signal sequence interaction during protein translocation across the Escherichia coli inner membrane, J. Biol. Chem. 268, 17069–17073.
- Plano, G. V., Day, J. B., Ferracci, F. (2001) Type III export: new uses for an old pathway, Mol. Microbiol. 40, 284–293.
- Pogliano, K. J., Beckwith, J. (1993) The Cs sec mutants of Escherichia coli reflect the cold sensitivity of protein export itself, Genetics 133, 763–773.
- Pogliano, K. J., Beckwith, J. (1994) Genetic and molecular characterization of the Escherichia coli secD operon and its products, J. Bacteriol. 176, 804–814.
- Pohlschroder, M., Murphy, C., Beckwith, J. (1996) In vivo analyses of interactions between SecE and SecY, core components of the Escherichia coli protein translocation machinery, J. Biol. Chem. 271, 19908–19914.
- Pohlschroder, M., Prinz, W. A., Hartmann, E., Beckwith, J. (1997) Protein translocation in the three domains of life: variations on a theme, Cell 91, 563–566.
- Prinz, A., Behrens, C., Rapoport, T. A., Hartmann, E., Kalies, K. U. (2000) Evolutionarily conserved binding of ribosomes to the translocation channel via the large ribosomal RNA, EMBO J. 19, 1900–1906.
- Rajapandi, T., Dolan, K. M., Oliver, D. B. (1991) The first gene in the Escherichia coli secA operon, gene X, encodes a nonessential secretory protein, J. Bacteriol. 173, 7092–7097.
- Ramamurthy, V., Oliver, D. (1997) Topology of the integral membrane form of Escherichia coli SecA protein reveals multiple periplasmically exposed regions and modulation by ATP binding, J. Biol. Chem. 272, 23239–23246.
- Rand, R. P., Sengupta, S. (1972) Cardiolipin forms hexagonal structures with divalent cations, Biochim. Biophys. Acta 255, 484–492.
- Randall, L. L., Hardy, S. J. (1986) Correlation of competence for export with lack of tertiary structure of the mature species: a study in vivo of maltose-binding protein in E. coli, Cell 46, 921–928.
- Remaut, E., Stanssens, P., Fiers, W. (1981) Plasmid vectors for high-efficiency expression controlled by the PL promoter of coliphage lambda, Gene 15, 81–93.
- Rensing, S. A., Maier, U. G. (1994) The SecY protein family: comparative analysis and phylogenetic relationships, Mol. Phylogenet. Evol. 3, 187–191.
- Rietveld, A. G., Koorengevel, M. C., de Kruijff, B. (1995) Non-bilayer lipids are required for efficient protein transport across the plasma membrane of Escherichia coli, EMBO J. 14, 5506–5513.
- Riggs, P. D., Derman, A. I., Beckwith, J. (1988) A mutation affecting the regulation of a secA-lacZ fusion defines a new sec gene, Genetics 118, 571–579.
- Robinson, C., Bolhuis, A. (2001) Protein targeting by the twin-arginine translocation pathway, Nat. Rev. Mol. Cell Biol. 2, 350–356.
- Rollo, E. E., Oliver, D. B. (1988) Regulation of the Escherichia coli secA gene by protein secretion defects: analysis of secA, secB, secD, and secY mutants, J. Bacteriol. 170, 3281–3282.
- Saaf, A., Wallin, E., von Heijne, G. (1998) Stop-transfer function of pseudo-random amino acid segments during translocation across prokaryotic and eukaryotic membranes, Eur. J. Biochem. 251, 821–829.
- Sagara, K., Matsuyama, S., Mizushima, S. (1994) SecF stabilizes SecD and SecY, components of the protein translocation machinery of the Escherichia coli cytoplasmic membrane, J. Bacteriol. 176, 4111–4116.
- Saier, M. H. J., Paulsen, I. T., Sliwinski, M. K., Pao, S. S., Skurray, R. A., Nikaido, H. (1998) Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria, FASEB J. 12, 265–274.
- Sako, T., Iino, T. (1988) Distinct mutation sites in prlA suppressor mutant strains of Escherichia coli respond either to suppression of signal peptide mutations or to blockage of staphylokinase processing, J. Bacteriol. 170, 5389–5391.
- Salavati, R., Oliver, D. (1995) Competition between ribosome and SecA binding promotes Escherichia coli secA translational regulation, RNA 1, 745–753.
- Salavati, R., Oliver, D. (1997) Identification of elements on geneX-secA RNA of Escherichia coli required for SecA binding and secA auto-regulation, J. Mol. Biol. 265, 142–152.
- Samuelson, J. C., Chen, M., Jiang, F., Moller, I., Wiedmann, M., Kuhn, A., Phillips, G. J., Dalbey, R. E. (2000) YidC mediates membrane protein insertion in bacteria, Nature 406, 637–641.
- Sandkvist, M. (2001) Biology of type II secretion, Mol. Microbiol. 40, 271–283.
- Sarker, S., Oliver, D. (2002) Critical regions of secM that control its translation and secretion and promote secretion-specific secA regulation, J. Bacteriol. 184, 2360–2369.
- Sato, K., Mori, H., Yoshida, M., Mizushima, S. (1996) Characterization of a potential catalytic residue, Asp-133, in the high affinity ATP-binding site of Escherichia coli SecA, translocation ATPase, J. Biol. Chem. 271, 17439–17444.
- Sato, K., Mori, H., Yoshida, M., Tagaya, M., Mizushima, S. (1997a) In vitro analysis of the stop-transfer process during translocation across the cytoplasmic membrane of Escherichia coli, J. Biol. Chem. 272, 20082–20087.
- Sato, K., Mori, H., Yoshida, M., Tagaya, M., Mizushima, S. (1997b) Short hydrophobic segments in the mature domain of ProOmpA determine its stepwise movement during translocation across the cytoplasmic membrane of Escherichia coli, J. Biol. Chem. 272, 5880–5886.
- Scaramuzzi, C. D., Hiller, R. G., Stokes, H. W. (1992a) Identification of a chloroplast-encoded secA gene homologue in a chromophytic alga: possible role in chloroplast protein translocation, Curr. Genet. 22, 421–427.
- Scaramuzzi, C. D., Stokes, H. W., Hiller, R. G. (1992b) Characterisation of a chloroplast-encoded secY homologue and atpH from a chromophytic alga. Evidence for a novel chloroplast genome organisation, FEBS Lett. 304, 119–123.
- Schatz, G., Dobberstein, B. (1996) Common principles of protein translocation across membranes, Science 271, 1519–1526.
- Schatz, P. J., Riggs, P. D., Jacq, A., Fath, M. J., Beckwith, J. (1989) The secE gene encodes an integral membrane protein required for protein export in Escherichia coli, Genes Dev. 3, 1035–1044.
- Schatz, P. J., Bieker, K. L., Ottemann, K. M., Silhavy, T. J., Beckwith, J. (1991) One of three transmembrane stretches is sufficient for the functioning of the SecE protein, a membrane component of the E. coli secretion machinery, EMBO J. 10, 1749–1757.
- Schiebel, E., Driessen, A. J. M., Hartl, F. U., Wickner, W. (1991) ΔH+ and ATP function at different steps of the catalytic cycle of preprotein translocase, Cell 64, 927–939.
- Schmidt, M. G., Oliver, D. B. (1989) SecA protein autogenously represses its own translation during normal protein secretion in Escherichia coli, J. Bacteriol. 171, 643–649.
- Schmidt, M. G., Dolan, K. M., Oliver, D. B. (1991) Regulation of Escherichia coli secA mRNA translation by a secretion-responsive element, J. Bacteriol. 173, 6605–6611.
- Schmidt, M., Ding, H., Ramamurthy, V., Mukerji, I., Oliver, D. (2000) Nucleotide binding activity of SecA homodimer is conformationally regulated by temperature and altered by prlD and azi mutations, J. Biol. Chem. 275, 15440–15448.
- Scotti, P. A., Urbanus, M. L., Brunner, J., de Gier, J. W., von Heijne, G., van der Does, C., Driessen, A. J. M., Oudega, B., Luirink, J. (2000) YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase, EMBO J. 19, 542–549.
- Seoh, H. K., Tai, P. C. (1997) Carbon source-dependent synthesis of SecB, a cytosolic chaperone involved in protein translocation across Escherichia coli membranes, J. Bacteriol. 179, 1077–1081.
- Shilton, B., Svergun, D. I., Volkov, V. V., Koch, M. H., Cusack, S., Economou, A. (1998) Escherichia coli SecA shape and dimensions, FEBS Lett. 436, 277–282.
- Shimizu, H., Nishiyama, K., Tokuda, H. (1997) Expression of gpsA encoding biosynthetic sn-glycerol 3-phosphate dehydrogenase suppresses both the LB-phenotype of a secB null mutant and the cold-sensitive phenotype of a secG null mutant, Mol. Microbiol. 26, 1013–1021.
- Shimoike, T., Akiyama, Y., Baba, T., Taura, T., Ito, K. (1992) SecY variants that interfere with Escherichia coli protein export in the presence of normal SecY, Mol. Microbiol. 6, 1205–1210.
- Shinkai, A., Mei, L. H., Tokuda, H., Mizushima, S. (1991) The conformation of SecA, as revealed by its protease sensitivity, is altered upon interaction with ATP, presecretory proteins, everted membrane vesicles, and phospholipids, J. Biol. Chem. 266, 5827–5833.
- Shiozuka, K., Tani, K., Mizushima, S., Tokuda, H. (1990) The proton motive force lowers the level of ATP required for the in vitro translocation of a secretory protein in Escherichia coli, J. Biol. Chem. 265, 18843–18847.
- Sianidis, G., Karamanou, S., Vrontou, E., Boulias, K., Repanas, K., Kyrpides, N., Politou, A. S., Economou, A. (2001) Cross-talk between catalytic and regulatory elements in a DEAD motor domain is essential for SecA function, EMBO J. 20, 961–970.
- Stader, J., Gansheroff, L. J., Silhavy, T. J. (1989) New suppressors of signal-sequence mutations, prlG, are linked tightly to the secE gene of Escherichia coli, Genes Dev. 3, 1045–1052.
- Suzuki, H., Nishiyama, K., Tokuda, H. (1999) Increases in acidic phospholipid contents specifically restore protein translocation in a cold-sensitive secA or secG null mutant, J. Biol. Chem. 274, 31020–31024.
- Tani, K., Shiozuka, K., Tokuda, H., Mizushima, S. (1989) In vitro analysis of the process of translocation of OmpA across the Escherichia coli cytoplasmic membrane. A translocation intermediate accumulates transiently in the absence of the proton motive force, J. Biol. Chem. 264, 18582–18588.
- Tani, K., Tokuda, H., Mizushima, S. (1990) Translocation of ProOmpA possessing an intramolecular disulfide bridge into membrane vesicles of Escherichia coli. Effect of membrane energization, J. Biol. Chem. 265, 17341–17347.
- Taura, T., Baba, T., Akiyama, Y., Ito, K. (1993) Determinants of the quantity of the stable SecY complex in the Escherichia coli cell, J. Bacteriol. 175, 7771–7775.
- Tian, H., Beckwith, J. (2002) Genetic screen yields mutations in genes encoding all known components of the Escherichia coli signal recognition particle pathway, J. Bacteriol. 184, 111–118.
- Tokuda, H., Shiozuka, K., Mizushima, S. (1990) Reconstitution of translocation activity for secretory proteins from solubilized components of Escherichia coli, Eur. J. Biochem. 192, 583–589.
- Tokuda, H., Akimaru, J., Matsuyama, S., Nishiyama, K., Mizushima, S. (1991) Purification of SecE and reconstitution of SecE-dependent protein translocation activity, FEBS Lett. 279, 233–236.
- Triplett, T. L., Sgrignoli, A. R., Gao, F. B., Yang, Y. B., Tai, P. C., Gierasch, L. M. (2001) Functional signal peptides bind a soluble N-terminal fragment of SecA and inhibit its ATPase activity, J. Biol. Chem. 276, 19648–19655.
- Tseng, T. T., Gratwick, K. S., Kollman, J., Park, D., Nies, D. H., Goffeau, A., Saier, M. H. J. (1999) The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins, J. Mol. Microbiol. Biotechnol. 1, 107–125.
- Uchida, K., Mori, H., Mizushima, S. (1995) Stepwise movement of preproteins in the process of translocation across the cytoplasmic membrane of Escherichia coli, J. Biol. Chem. 270, 30862–30868.
- Ulbrandt, N. D., London, E., Oliver, D. B. (1992) Deep penetration of a portion of Escherichia coli SecA protein into model membranes is promoted by anionic phospholipids and by partial unfolding, J. Biol. Chem. 267, 15184–15192.
- Valent, Q. A., Scotti, P. A., High, S., de Gier, J. W., von Heijne, G., Lentzen, G., Wintermeyer, W., Oudega, B., Luirink, J. (1998) The Escherichia coli SRP and SecB targeting pathways converge at the translocon, EMBO J. 17, 2504–2512.
- van Dalen, A., Killian, A., de Kruijff, B. (1999) . Δψ stimulates membrane translocation of the C-terminal part of a signal sequence, J. Biol. Chem. 274, 19913–19918.
- van der Does, C., den Blaauwen, T., de Wit, J. G., Manting, E. H., Groot, N. A., Fekkes, P., Driessen, A. J. M. (1996) SecA is an intrinsic subunit of the Escherichia coli preprotein translocase and exposes its carboxyl terminus to the periplasm, Mol. Microbiol. 22, 619–629.
- van der Does, C., Manting, E. H., Kaufmann, A., Lutz, M., Driessen, A. J. M. (1998) Interaction between SecA and SecYEG in micellar solution and formation of the membrane-inserted state, Biochemistry 37, 201–210.
- van der Does, C., Swaving, J., van Klompenburg, W., Driessen, A. J. M. (2000) Non-bilayer lipids stimulate the activity of the reconstituted bacterial protein translocase, J. Biol. Chem. 275, 2472–2478.
- van der Wolk, J. P., Klose, M., Breukink, E., Demel, R. A., de Kruijff, B., Freudl, R., Driessen, A. J. M. (1993) Characterization of a Bacillus subtilis SecA mutant protein deficient in translocation ATPase and release from the membrane, Mol. Microbiol. 8, 31–42.
- van der Wolk, J. P., de Wit, J. G., Driessen, A. J. M. (1997) The catalytic cycle of the Escherichia coli SecA ATPase comprises two distinct preprotein translocation events, EMBO J. 16, 7297–7304.
- van der Wolk, J. P., Fekkes, P., Boorsma, A., Huie, J. L., Silhavy, T. J., Driessen, A. J. M. (1998) PrlA4 prevents the rejection of signal sequence defective preproteins by stabilizing the SecA-SecY interaction during the initiation of translocation, EMBO J. 17, 3631–3639.
- van der Laan, M., Houben, E. N., Nouwen, N., Luirink, J., Driessen, A. J. M. (2001) Reconstitution of Sec-dependent membrane protein insertion: nascent FtsQ interacts with YidC in a SecYEG-dependent manner, EMBO Rep. 2, 519–523.
- van Voorst, F., van der Does, C., Brunner, J., Driessen, A. J. M., de Kruijff, B. (1998) Translocase-bound SecA is largely shielded from the phospholipid acyl chains, Biochemistry 37, 12261–12268.
- van Wely, K. H. M., Swaving, J., Broekhuizen, C. P., Rose, M., Quax, W. J., Driessen, A. J. M. (1999) Functional identification of the product of the Bacillus subtilis yvaL gene as a SecG homologue, J. Bacteriol. 181, 1786–1792.
- Veenendaal, A. K., van der Does, C., Driessen, A. J. M. (2001) Mapping the sites of interaction between SecY and SecE by cysteine scanning mutagenesis, J. Biol. Chem. 276, 32559–32566.
- Vogel, H., Fischer, S., Valentin, K. (1996) A model for the evolution of the plastid sec apparatus inferred from secY gene phylogeny, Plant Mol. Biol. 32, 685–692.
- von Heijne, G. (1997) Getting greasy: how transmembrane polypeptide segments integrate into the lipid bilayer, Mol. Microbiol. 24, 249–253.
- von Heijne, G. (1998) Life and death of a signal peptide, Nature 396, 111–113.
- Weinkauf, S., Hunt, J. F., Scheuring, J., Henry, L., Fak, J., Oliver, D. B., Deisenhofer, J. (2001) Conformational stabilization and crystallization of the SecA translocation ATPase from Bacillus subtilis, Acta Crystallogr. D. Biol. Crystallogr. 57, 559–565.
- Woodbury, R. L., Topping, T. B., Diamond, D. L., Suciu, D., Kumamoto, C. A., Hardy, S. J., Randall, L. L. (2000) Complexes between protein export chaperone SecB and SecA: evidence for separate sites on SecA providing binding energy and regulatory interactions, J. Biol. Chem. 275, 24191–24198.
- Xu, Z., Knafels, J. D., Yoshino, K. (2000) Crystal structure of the bacterial protein export chaperone SecB, Nature Struct. Biol. 7, 1172–1177.
- Yamada, H., Tokuda, H., Mizushima, S. (1989) Proton motive force-dependent and -independent protein translocation revealed by an efficient in vitro assay system of Escherichia coli, J. Biol. Chem. 264, 1723–1728.
- Yamane, K., Ichihara, S., Mizushima, S. (1987) In vitro translocation of protein across Escherichia coli membrane vesicles requires both the proton motive force and ATP, J. Biol. Chem. 262, 2358–2362.
- Yamane, K., Akiyama, Y., Ito, K., Mizushima, S. (1990) A positively charged region is a determinant of the orientation of cytoplasmic membrane proteins in Escherichia coli, J. Biol. Chem. 265, 21166–21171.
- Yang, Y. B., Yu, N., Tai, P. C. (1997) SecE-depleted membranes of Escherichia coli are active. SecE is not obligatorily required for the in vitro translocation of certain protein precursors, J. Biol. Chem. 272, 13660–13665.
Biopolymers Online: Biology • Chemistry • Biotechnology • Applications
Browse other articles of this reference work: