In vivo gallbladder bile diffusion coefficient measurement by diffusion-weighted echo planar imaging in hamster fed normal and lithogenic diets
Corresponding Author
Bernard Tiffon
Unité INSERM 350, Institut Curie, Centre Universitaire, Orsay, France
Institut Curie, Centre Universitaire, bât 112, 91405 Orsay Cédex, France===Search for more papers by this authorMichel Parquet
INRA, Laboratoire de Physiologie de la Nutrition, Université Paris-Sud, Orsay, France
Search for more papers by this authorSandrine Dubrac
INRA, Laboratoire de Physiologie de la Nutrition, Université Paris-Sud, Orsay, France
Search for more papers by this authorClaude Lutton
INRA, Laboratoire de Physiologie de la Nutrition, Université Paris-Sud, Orsay, France
Search for more papers by this authorAndreas Volk
Unité INSERM 350, Institut Curie, Centre Universitaire, Orsay, France
Search for more papers by this authorCorresponding Author
Bernard Tiffon
Unité INSERM 350, Institut Curie, Centre Universitaire, Orsay, France
Institut Curie, Centre Universitaire, bât 112, 91405 Orsay Cédex, France===Search for more papers by this authorMichel Parquet
INRA, Laboratoire de Physiologie de la Nutrition, Université Paris-Sud, Orsay, France
Search for more papers by this authorSandrine Dubrac
INRA, Laboratoire de Physiologie de la Nutrition, Université Paris-Sud, Orsay, France
Search for more papers by this authorClaude Lutton
INRA, Laboratoire de Physiologie de la Nutrition, Université Paris-Sud, Orsay, France
Search for more papers by this authorAndreas Volk
Unité INSERM 350, Institut Curie, Centre Universitaire, Orsay, France
Search for more papers by this authorAbstract
It is shown that in vivo measurement of bile water apparent diffusion coefficient (ADC) by diffusion-weighted echo-planar imaging (EPI) in hamster gallbladder is possible providing motion artifact-free ADC values. These ADC values are used to estimate bile viscosity variation induced by normal diets, cholesterol gallstone-inducing diets, and an antilithiasic drug, and to determine if a link exists between bile viscosity and cholesterol gallstone formation. Measurements were performed at 4.7 T with respiratory triggering in five groups of hamsters fed a commercial (RC) or a semisynthetic (SSD) diet, a SSD containing 0.2% hyodeoxycholic acid (SSD+HDC) and two lithogenic diets (LD5, LD10). ADC decreased significantly in LD10 (2.15 ± 0.07 × 10−3 mm2s−1) and SSD+HDC (2.03 ± 0.04) compared to RC (2.40 ± 0.05) but not in the most lithogenic LD5 diet (2.33 ± 0.06). No direct relationship was found between bile viscosity and gallstone incidence; however, viscosity seems to be related to lipid contents of diets. Magn Reson Med 43:854–859, 2000. © 2000 Wiley-Liss, Inc.
REFERENCES
- 1 Bateson MC, Bouchier IAD. Prevalence of gallstones in Dundee: a necropsy study. Br Med J 1975; 4: 427–430.
- 2 Reuben A, Maton PN, Murphy GM, Dowling RH. Bile lipid secretion in obese and nonobese individuals with and without gallstones. Clin Sci 1985; 69: 71–79.
- 3 Capron JP, Dupas JL, Capron-Chivrac D. Les facteurs associés à la lithiase cholestérolique. Gastroenterol Clin Biol 1980; 4: 63–77.
- 4 Berr F, Pratschke E, Fisher S, Paumgartner G. Disorders of bile acid metabolism in cholesterol gallstone disease. J Clin Invest 1992; 90: 859–868.
- 5 Vlahcevic ZR, Bell CC, Buhac IJ, Farrar JT, Swell L. Diminished bile acids pool size in patient with gallstones. Gastroenterology 1970; 59: 165–173.
- 6 Kern F. Effects of dietary cholesterol on cholesterol and bile acids homeostasis in patients with cholesterol gallstones. J Clin Invest 1994; 93: 1186–1194.
- 7 Smith BF, LaMont JT. The central issue of cholesterol gallstones. Hepatology 1986; 6: 529–531.
- 8 Kishk SMA, Darweesh RMA, Doods WJ. Sonographic evaluation of resting gallbladder volume and postprandial emptying in patients with gallstones. AJR Am J Roentgenol 1987; 148: 875–879.
- 9 Bouchier IAD, Cooperband S, El Kodsi B. Mucous substances and viscosity of normal and pathological human bile. Gastroenterology 1965; 49: 343–353.
- 10 Levy PF, Smith BF, LaMont JT. Human gallbladder mucin accelerates nucleation of cholesterol in artificial bile. Gastroenterology 1984; 87: 270–275.
- 11 Lee SP. Hypersecretion of mucus glycoprotein by the gallbladder epithelium in experimental cholelithiasis. J Pathol 1981; 134: 199–207.
- 12 Lee SP, LaMont JT, Carey MC. Role of gallbladder mucus hypersecretion in the evolution of cholesterol gallstones: studies in the prairie dog. J Clin Invest 1981; 67: 1712–1723.
- 13 Pemsingh RS, Mac Pherson BR, Scott GW. Mucus hypersecretion of the gallbladder epithelium of ground squirrel fed a lithogenic diet for the induction of cholesterol gallstones. Hepatology 1987; 7: 1267–1271.
- 14 Lee SP, LaMont JT, Carey MC. Aspirin prevention of cholesterol gallstone formation in prairie dogs. Science 1981; 211: 1429–1431.
- 15 Cowie A, Sutor D. Viscosity and osmolality of abnormal biles. Digestion 1975; 13: 312–315.
- 16 Coene P, Groen AK, Davids PHP, Hardeman M, Tytgat GNJ. Bile viscosity in patients with biliary drainage. Scand J Gastroenterol 1994; 29: 757–763.
- 17 Bakan D, Barnhardt J. Determination of parameters effecting proton relaxation of hepatic and gallbladder biles in dogs. Hepatology 1988; 8: 341–346.
- 18 Cohen-Solal C, Parquet M, Tiffon B, Volk A, Laurent M, Lutton C. Magnetic resonance imaging for the visualization of cholesterol gallstones in hamster fed a new high sucrose lithogenic diet. J Hepatol 1995; 22: 486–494.
- 19 Tiffon B, Parquet M, Volk A, Lutton C. Gallbladder bile viscosity evaluation in hamster by diffusion weighted MRI. Magma 1996; 4: 263–264.
- 20 Smith J, Lutton C. Determination of hepatic acyl-coenzyme A-cholesterol acyltransferase activity in LPN hamsters: a model for cholesterol gallstone formation. J Gastroenterol Hepatol 1997; 12: 877–886.
- 21 Le Bihan D. Molecular diffusion, tissue microdynamics and microstructure. NMR Biomed 1995; 8: 375–386.
- 22 Dzik-Jurasz A, Wolber J, Leach M, Rowland I. 1H and 19F MRS investigation of the influence of viscosity on diffusion and longitudinal relaxation of small molecules. In: Proceedings of the 7th Annual Meeting of ISMRM, Philadelphia, 1999. p 1801.
- 23 Muller MF, Prasad P, Siewert B, Nissenbaum MA, Raptopoulos V, Edelman RR. Abdominal diffusion mapping with use of a whole-body echo-planar system. Radiology 1994; 190: 475–478.
- 24 Yamashita Y, Namimoto T, Mitsuzaki K, Urata J, Tsushigame T, Takahashi M, Ogawa M. Mucin-producing tumor of the pancreas: diagnostic value of diffusion-weighted echo-planar MR imaging. Radiology 1998; 208: 605–609.
- 25 Namimoto T, Yamashita Y, Sumi S, Tang Y, Takahashi M. Focal liver masses: characterization with diffusion-weighted echo-planar MR imaging. Radiology 1997; 204: 739–744.
- 26 Yamashita Y, Tang Y, Takahashi M. Ultrafast MR imaging of the abdomen: echo planar imaging and diffusion-weighted imaging. J Magn Reson Imaging 1998; 8: 367–374.
- 27 Okada Y, Ohtomo K, Kiryu S, Sasaki Y. Breath-hold T2-weighted MRI of hepatic tumors: value of echo planar imaging with diffusion-sensitizing gradient. J Comput Assist Tomogr 1998; 22: 364–371.
- 28 Amano Y, Kumazaki T, Ishihara M. Single-shot diffusion-weighted echo-planar imaging of normal and cirrhotic livers using a phased-array multicoil. Acta Radiol 1998; 39: 440–442.
- 29 Ichikawa T, Haradome H, Hachiya J, Nitatori T, Araki T. Diffusion-weighted MR imaging with a single-shot echoplanar sequence: detection and characterization of focal hepatic lesions. AJR Am J Roentgen 1998; 170: 397–402.
- 30 Ayyad N, Cohen BI, Mosbach EH, Miki S. Palmitic acid enhances cholesterol gallstone incidence in Sasco hamsters fed cholesterol enriched diets. Lipids 1992; 27: 993–998.
- 31 Cohen BI, Mosbach EH, Mc Sherry CK, Rzigalinski B, Kuroki S. A hydrophilic bile acid effects partial dissolution of cholesterol gallstones in the prairie dog. Lipids 1986; 21: 575–579.
- 32 Singhal AK, Cohen BI, Finver-Sadowsky J, McSherry CK, Mosbach EH. Role of hydrophilic bile acids and of sterols on cholelithiasis in the hamster. J Lipid Res 1984; 25: 564–570.
- 33 Sacquet E, Parquet M, Riottot M, Raizman A, Jarrige P, Huguet C, Infante R. Intestinal absorbtion, excretion and biotransformation of hyodeoxycholic acid in man. J Lipid Res 1983; 24: 604–613.
- 34 Parquet M, Pessah M, Sacquet E, Salvat C, Raizman A. Effective glucuronidation of 6-α hydroxylated bile acids by human hepatic and renal microsomes. Eur J Biochem 1988; 171: 329–334.
- 35 Cohen-Solal C, Parquet M, Férézou J, Sérougne C, Lutton C. Effects of hyodeoxycholic acid and α-hyocholic acid, two 6α-hydroxylated bile acids, on cholesterol and bile acid metabolism in the hamster. Biochim Biophys Acta 1995; 1257: 189–197.
- 36 McSherry CK, Mosbach EH, Cohen BI, Une M, Stenger RJ, Singhal AK. Hyodeoxycholic acid: a new approach to gallstone prevention. Am J Surg 1985; 149: 126–132.
- 37 Palmieri R, Brucato F, Ferraro G, Agrati AM, Palmieri R, Germogli R. Dissolution of cholesterol gallstones by taurohyodeoxycholic acid in carefully selected patients. Clin Drug Invest 1996; 11: 131–138.
- 38 Van de Heijning BJ, Stolk M, Van Erpecum K, Renooij W, Groen A, Van Berge-Henegouwen G. Bile salt-induced cholesterol crystal formation from model bile vesicles: a time course study. J Lipid Res 1994; 35: 1002–1011.