Communication
Functionalized Tellurium(II) Thiolates: Tellurium Bis(2-hydroxyethanethiolate) Hydrate, the First H2O–TeII Complex
Holger Fleischer Dr.,
Dieter Schollmeyer Dr.,
Holger Fleischer Dr.
Institut für Anorganische Chemie und Analytische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14, 55099 Mainz (Germany) Fax: (+49) 6131-3923351
Search for more papers by this authorDieter Schollmeyer Dr.
Institut für Organische Chemie Johannes-Gutenberg-Universität (Germany)
Search for more papers by this authorHolger Fleischer Dr.,
Dieter Schollmeyer Dr.,
Holger Fleischer Dr.
Institut für Anorganische Chemie und Analytische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14, 55099 Mainz (Germany) Fax: (+49) 6131-3923351
Search for more papers by this authorDieter Schollmeyer Dr.
Institut für Organische Chemie Johannes-Gutenberg-Universität (Germany)
Search for more papers by this authorFirst published: 13 October 2000
Citations: 8
This work was supported by the Fonds der Chemischen Industrie.
Abstract
References
- 1 W. Mazurek, A. G. Moritz, M. J. O'Connor, Inorg. Chim. Acta 1986, 113, 143–146.
- 2 E. A. Stukalo, E. M. Yur'eva, L. N. Markovskii, Zh. Org. Khim. 1983, 19, 343–346.
- 3 T. Chivers, J. Chem. Soc. Dalton Trans. 1996, 1185–1194.
- 4 H. Fleischer, S. Stauf, D. Schollmeyer, Inorg. Chem. 1999, 38, 3725–3729.
- 5 R. E. Allan, H. Gornitzka, J. Kärcher, M. A. Paver, M.-A. Rennie, C. A. Russell, P. R. Raithby, D. Stalke, A. Steiner, D. S. Wright, J. Chem. Soc. Dalton Trans. 1996, 1727–1730.
- 6 A. Albeck, H. Weitman, B. Sredni, M. Albeck, Inorg. Chem. 1998, 37, 1704–1712.
- 7 The reactivity of monothioglycol hence differs from that of o-sulfanylphenol, which does not reduce TeIV to TeII:
- 7a Werner Schnabel, PhD Thesis, Universität Hamburg, 1980;
- 7b K. von Deuten, W. Schnabel, G. Klar, Cryst. Struct. Commun. 1980, 9, 161–165.
- 8 Te(SCH2CH2OH)2⋅H2O, Mr=299.86, m.p. 45–47 °C, monoclinic, space group Pc, a=1104.1(4), b=480.5(2), c=870.7(3) pm, β=103.769(5)°, V=0.4486(5)nm3; Z=2; ρcalcd=2.220 Mg m−3, λ=0.71073 pm, T=187 K, crystal dimensions 0.125×0.145×0.228 mm3; Siemens-P4 diffractometer, 2θmax=56°, 4166 reflections, 2115 independent (Rint=0.055), observed 1692, R=0.0525 (|F|>4σ(F)), wR2=0.1291, max./min. residual electron density 2.51/−1.65 e Å−3. Structure solution by direct methods (SIR92),[9] refinement against F 2 (SHELXL-97).[10] Hydrogen atoms were refined with a riding model. The hydrogen atoms of the water molecule were not found in the analysis of the single-crystal X-ray structure. Their presence could be established by the signal intensity of the H atoms attached to O atoms relative to that of the H atoms attached to C atoms in a 1H NMR spectrum of other crystals from the same sample. Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-143980. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: (+44) 1223-336-033; e-mail: [email protected]).
- 9 SIR—a program for the automatic solution fo crystal structures by direct methods: A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, J. Appl. Crystallogr. 1994, 27, 435–436.
- 10 G. M. Sheldrick, SHELXL-97, Program for crystal structure refinement, Universität Göttingen, 1997.
- 11 L. Dupont, O. Dideberg, J. Lamotte, L.-J. Piette, Acta Crystallogr. Sect. B 1979, 35, 849.
- 12 S. Husebye, K. Maarthmann-Moe, O. Mikalsen, Acta Chem. Scand. 1989, 43, 754–756.
- 13 L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals, 3rd ed., Cornell University Press, Cornell, 1960.
- 14 K. Mereiter, A. Preisinger, A. Zellner, W. Mikenda, H. Steidl, J. Chem Soc. Dalton Trans. 1984, 1275–1277.
- 15 Gaussian 94, Revision E.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1995.
- 16 Geometry optimization and single-point energy calculation of Te(SCH2CH2OH)2⋅H2O (C1-Symmetry) was performed at the MP2 level by using a double-zeta effective core potential basis set, according to Hay and Wadt,[17] augmented by polarization functions for Te, S, O, and C determined by Höllwarth et al. (MP2/LANL2DZP).[18] The hyperconjugative interaction in the natural bond orbital (NBO) basis was calculated by using the method developed by Reed et al.[19]
- 17 W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284–298.
- 18 A. Höllwarth, M. Böhme, S. Dapprich, A. W. Ehlers, A. Gobbi, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp, G. Frenking, Chem. Phys. Lett. 1993, 208, 237–240.
- 19 A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899–926.