Aligned Coaxial Nanowires of Carbon Nanotubes Sheathed with Conducting Polymers
Mei Gao
University of Wollongong, IPRI Wollongong, NSW 2522, Australia
Search for more papers by this authorShaoming Huang Dr.
CSIRO Molecular Science Bag 10, Clayton South, VIC 3169 (Australia)
Search for more papers by this authorLiming Dai Dr.
CSIRO Molecular Science Bag 10, Clayton South, VIC 3169 (Australia)
Search for more papers by this authorGordon Wallace Prof.
University of Wollongong, IPRI Wollongong, NSW 2522, Australia
Search for more papers by this authorRuiping Gao Dr.
School of Materials Science and Engineering Georgia Institute of Technology Atlanta, GA 30332-0245 (USA)
Search for more papers by this authorZhonglin Wang Prof.
School of Materials Science and Engineering Georgia Institute of Technology Atlanta, GA 30332-0245 (USA)
Search for more papers by this authorMei Gao
University of Wollongong, IPRI Wollongong, NSW 2522, Australia
Search for more papers by this authorShaoming Huang Dr.
CSIRO Molecular Science Bag 10, Clayton South, VIC 3169 (Australia)
Search for more papers by this authorLiming Dai Dr.
CSIRO Molecular Science Bag 10, Clayton South, VIC 3169 (Australia)
Search for more papers by this authorGordon Wallace Prof.
University of Wollongong, IPRI Wollongong, NSW 2522, Australia
Search for more papers by this authorRuiping Gao Dr.
School of Materials Science and Engineering Georgia Institute of Technology Atlanta, GA 30332-0245 (USA)
Search for more papers by this authorZhonglin Wang Prof.
School of Materials Science and Engineering Georgia Institute of Technology Atlanta, GA 30332-0245 (USA)
Search for more papers by this authorM.G. is grateful for a joint scholarship from Wollongong University and CSIRO; S.H. and L.D. thank the support from the Department of Industry, Science, and Technology (DIST), Australia; R.P.G. and Z.L.W. thank the support of US NSF grants (DMR-9733160), and the NSF of China.
Abstract
Carbon nanotubes aligned perpendicular to a surface are used as electrodes to form novel, conducting polymer–carbon nanotube (CP–NT) composites. The SEM image (see picture) shows the CP–NT coaxial nanowires, in which an appropriate conducting polymer film is electrochemically deposited onto the carbon nanotube arrays partially immersed into an electrolyte solution.
References
- 1 S. Iijima, Nature 1991, 354, 56.
- 2 See, for example: M. S. Dresselhaus, G. Dresselhaus, P. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press, New York, 1996; M. Terrones, W. K. Hsu, J. P. Hare, H. W. Kroto, H. Terrones, D. R. M. Walton, Phil. Trans. R. Soc. London A 1996, 354, 2025; B. I. Yakobson, R. E. Smalley, Am. Sci. 1997, 85, 325; W. A. de Heer, J.-M. Bonard, K. Fauth, A. Châtelain, L. Forró, D. Ugarte, Adv. Mater. 1997, 9, 87; P. M. Ajayan, Chem. Rev. 1999, 99, 1787; H. Dai, J. Kong, C. Zhou, N. Franklin, T. Tombler, A. Cassell, S. Fan, M. Chapline, J. Phys. Chem. B 1999, 103, 11 246; L. Dai, A. W. H. Mau, J. Phys. Chem. B 2000, 104, 1891.
- 3 P. Poncharal, Z. L. Wang, D. Ugarte, W. A. de Heer, Science 1999, 283, 1513.
- 4 See, for example: S. Frank, P. Poncharal, Z. L. Wang, W. A. de Heer, Science 1998, 280, 1744; T. W. Odom, J.-L. Huang, P. Kim, C. M. Lieber, J. Phys. Chem. B 2000, 104, 2794, and references therein.
- 5 J. D. Holmes, K. P. Johnston, R. C. Doty, B. A. Korgel, Science 2000, 287, 1471; Y. Zhang, K. Suenaga, C. Colliex, S. Iijima, Science 1998, 281, 973.
- 6 M. A. Hamon, J. Chen, H. Hu, Y. Chen, M. E. Itkis, A. M. Rao, P. C. Eklund, R. C. Haddon, Adv. Mater. 1999, 11, 834, and references therein.
- 7 See, for example: L. Dai, Polym. Adv. Technol. 1999, 10, 357, and references therein; M. S. P. Shaffer, A. H. Windle, Adv. Mater. 1999, 11, 937; J. Sandler, M. S. P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, A. H. Windle, Polymer 1999, 40, 5967.
- 8
See, for example: B. Z. Tang, H. Y. Xu, Macromolecules 1999, 32, 2569;
J. Fan, M. Wan, D. Zhu, B. Chang, Z. Pan, S. Xie, J. Appl. Polym. Sci. 1999, 74, 2605;
C. Downs, J. Nugent, P. M. Ajayan, D. J. Duquette, K. S. V. Santhanam, Adv. Mater. 1999, 11, 1028;
10.1002/(SICI)1521-4095(199908)11:12<1028::AID-ADMA1028>3.0.CO;2-N CAS Web of Science® Google ScholarG. Z. Chen, M. S. P. Shaffer, D. Coleby, G. Dixon, W. Zhou, D. J. Fray, A. H. Windle, Adv. Mater. 2000, 12, 522.
- 9 D. B. Romero, M. Carrard, W. A. de Heer, L. Zuppiroli, Adv. Mater. 1996, 8, 899; Y. Saito, S. Uemura, K. Hamaguchi, Jpn. J. Appl. Phys. 1998, 37, L346.
- 10
S. A. Curran, P. M. Ajayan, W. J. Blau, D. L. Carroll, J. N. Coleman, A. B. Dalton, A. P. Davey, A. Drury, B. McCarthy, S. Maier, A. Strevens, Adv. Mater. 1998, 10, 1091.
10.1002/(SICI)1521-4095(199810)10:14<1091::AID-ADMA1091>3.0.CO;2-L CAS Web of Science® Google Scholar
- 11
H. Ago, K. Petritsch, M. S. P. Shaffer, A. H. Windle, R. H. Friend, Adv. Mater. 1999, 11, 1281.
10.1002/(SICI)1521-4095(199910)11:15<1281::AID-ADMA1281>3.0.CO;2-6 CAS Web of Science® Google Scholar
- 12 R. H. Baughman, C. Changxing, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. de Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz, Science 1999, 284, 1340; M. Gao, L. Dai, R. H. Baughman, G. M. Spinks, G. G. Wallace, SPIE, in press.
- 13 S. Huang, L. Dai, A. W. H. Mau, J. Phys. Chem. B 1999, 103, 4223; Y. Yang, S. Huang, H. He, A. W. H. Mau, L. Dai, J. Am. Chem. Soc. 1999, 121, 10 832; S. Huang, A. W. H. Mau, T. Turney, P. White, L. Dai, J. Phys. Chem. B 2000, 104, 2193; Q. Chen, L. Dai, Appl. Phys. Lett. 2000, 76, 2719; D. Li, L. Dai, S. Huang, A. W. H. Mau, Z. L. Wang, Chem. Phys. Lett. 2000, 316, 349.
- 14 L. Dai, J. Macromol. Sci. Rev. Macromol. Chem. Phys. 1999, 39, 237, and references therein.
- 15 D. Sazou, C. Georgolios, J. Electroanal. Chem. 1997, 429, 81; P. M. McManus, R. J. Cushman, S. C. Yang, J. Phys. Chem. 1987, 91, 744; A. G. MacDiarmid, J. C. Chiang, W. S. Huang, B. D. Humphrey, N. D. Somasiri, Mol. Cryst. Liq. Cryst. 1985, 125, 309.
- 16 The polyaniline-encapasulated nanotubes gave IR absorption peaks at 1514 (C=C stretching of the benzenoid rings), 1622 (C=C stretching of the quinoid rings), 1359 (C−N stretching), and 1197 cm−1 (electronic-like absorption of N=Q=N, where Q represents the quinoid ring), consistent with reported data.[14] XPS measurements indicated a decrease in the carbon content to 71.08 % and concomitant increases to 12.11, 5.81, and 11.00 % for nitrogen, sulfur, and oxygen, respectively, after the electrodeposition of polyaniline. The calculated C:N atomic ratio of 6.7 is close to that of aniline (C:N=6), suggesting the formation of a continuous polyaniline coating with a thickness greater than the XPS detection depth (typically, 10 nm; see Figure 3). The corresponding atomic ratios of 3.8 for O:S and 4.7 for N:S indicated a high doping level of the polymer coating by H2SO4.[17] Further evidence for the electrodeposition of polyaniline on the nanotube surface comes from Raman scattering measurements. Whilst the Raman spectrum of the bare nanotubes shows an intense peak at 1584 cm−1, attributable to the E2g mode of the multiwall nanotubes, with a shoulder centered at 1322 cm−1 associated with the amorphous graphite,[2] the corresponding Raman spectrum for the polyaniline-coated nanotubes reveals broad bands around 1600, 1495, and 1390 cm−1, typical for polyaniline.[18] An additional peak at 1330 cm−1 is associated with the stretching vibration of the -C-N+- polaron groups, indicating the conducting nature of the polymer coating.
- 17 L. Dai, J. Lu, B. Matthews, A. W. H. Mau, J. Phys. Chem. B 1998, 102, 4049.
- 18 A. H.-L. Goff, M. C. Bernard, Synth. Met. 1993, 60, 115.
- 19 L. Dai, White, J. W. Polymer 1997, 38, 775, and references therein.
- 20 Z. L. Wang, P. Poncharal, W. A. de Heer, Microsc. Microanal. 2000, 6, 224.
- 21 R. P. Gao, Z. L. Wang, Z. G. Bai, W. A. de Heer, L. Dai, M. Gao, Phys. Rev. Lett. 2000, 85, 622.
- 22 G. Shi, S. Jin, G. Xue, C. Li, Science 1995, 267, 994.