Biotechnology, 6. Special Applications
View previous versions
Biotechnology
Horst Werner Doelle
University of Queensland, Department of Microbiology, St. Lucia, Queensland, Australia, 4067
Search for more papers by this authorArmin Fiechter
Eidgenössische Technische Hochschule, Institute of Biotechnology, Zürich, Switzerland
Search for more papers by this authorMartijn van Griensven
Ludwig Boltzmann Institute, Wien, Austria
Search for more papers by this authorCornelia Kasper
University of Hannover, Institute of Technical Chemistry, Germany
Search for more papers by this authorRalf Pörtner
Technical University of Hamburg-Harburg, Institute for Bioprocess Engineering, Germany
Search for more papers by this authorGünther Schlegel
University of Göttingen, Institute of Microbiology, Göttingen, Germany
Search for more papers by this authorSakayu Shimizu
Kyoto University, Department of Agricultural Chemistry, Kyoto, Japan
Search for more papers by this authorFrank Stahl
University of Hannover, Institute of Technical Chemistry, Germany
Search for more papers by this authorKirstin Suck
University of Hannover, Institute of Technical Chemistry, Germany
Search for more papers by this authorHideaki Yamada
Kyoto University, Department of Agricultural Chemistry, Kyoto, Japan
Search for more papers by this authorHolger Zorn
University of Hannover, Institute of Food Chemistry, Germany
Search for more papers by this authorHorst Werner Doelle
University of Queensland, Department of Microbiology, St. Lucia, Queensland, Australia, 4067
Search for more papers by this authorArmin Fiechter
Eidgenössische Technische Hochschule, Institute of Biotechnology, Zürich, Switzerland
Search for more papers by this authorMartijn van Griensven
Ludwig Boltzmann Institute, Wien, Austria
Search for more papers by this authorCornelia Kasper
University of Hannover, Institute of Technical Chemistry, Germany
Search for more papers by this authorRalf Pörtner
Technical University of Hamburg-Harburg, Institute for Bioprocess Engineering, Germany
Search for more papers by this authorGünther Schlegel
University of Göttingen, Institute of Microbiology, Göttingen, Germany
Search for more papers by this authorSakayu Shimizu
Kyoto University, Department of Agricultural Chemistry, Kyoto, Japan
Search for more papers by this authorFrank Stahl
University of Hannover, Institute of Technical Chemistry, Germany
Search for more papers by this authorKirstin Suck
University of Hannover, Institute of Technical Chemistry, Germany
Search for more papers by this authorHideaki Yamada
Kyoto University, Department of Agricultural Chemistry, Kyoto, Japan
Search for more papers by this authorHolger Zorn
University of Hannover, Institute of Food Chemistry, Germany
Search for more papers by this authorAbstract
The article contains sections titled:
1. |
Mammalian Cell Culture Technology |
1.1. |
Introduction |
1.2. |
Products from Mammalian Cells |
1.3. |
Cell Types |
1.4. |
Growth Medium for Cell Culture |
1.5. |
Small-Scale Culture Systems for Routine Use |
1.6. |
Types of Bioreactors |
1.7. |
Process Strategies |
1.8. |
Downstream Processes |
1.9. |
Regulatory and Safety Issues |
2. |
Tissue Engineering |
2.1. |
Application of Tissue Engineering |
2.2. |
Principle of Tissue Engineering |
2.3. |
Strategies |
2.4. |
The Essentials |
2.5. |
Cells |
2.6. |
Biomatrices |
2.7. |
Bioreactors for Tissue Engineering |
2.8. |
Growing New from Old |
3. |
Biotechnology and Food |
3.1. |
Production of Food Additives by Cell Culture Systems |
3.1.1. |
Amino Acids |
3.1.2. |
Organic Acids |
3.1.3. |
Vitamins |
3.1.4. |
Sweet Compounds |
3.1.5. |
Sugar Alcohols |
3.1.6. |
Microbial Saccharides |
3.1.7. |
Conjugated Linoleic Acids (CLA) |
3.1.8. |
Lactulose |
3.2. |
Enzyme-Catalyzed Processes |
3.2.1. |
Starch-Modifying Enzymes |
3.2.2. |
Lipases |
3.2.3. |
Pectin-Degrading Enzymes |
3.2.4. |
Chymosin (Aspartic Protease) |
4. |
Biotechnology and Health |
4.1. |
Individualized Medicine |
4.2. |
Clinical Diagnosis as Indicated in Genetic Anomalies in Cancer |
4.3. |
Pharmaceutical Development |
4.4. |
Define Molecular Mechanisms of Toxicity |
4.5. |
Detection of Genetically Modified Organisms |
References
- 1
B.D. Kelly,
T-W. Chiou,
M. Rosenberg,
D.I.C. Wang::
Industrial Animal Cell Culture, in
G. Stephanopolous (ed.):
Biotechnol, vol. 3 (Bioprocessing),
VCH Verlagsgesellschaft,
Weinheim
1993.
10.1002/9783527620845.ch2 Google Scholar
- 2 M. Howaldt, F. Walz, R. Kempken: Kultur von Tierzellen, in H. Chmiel (ed.): Bioprozesstechnik, Elsevier — Spektrum Akademischer Verlag 2005.
- 3 S.S. Otzturk: Cell Culture Technology — An Overview, in S.S. Ozturk and W.-S. Hu (eds.): Cell Culture Technology For Pharmaceutical and Cell-Based Therapies, Taylor & Francis Group, New York 2006.
- 4 M. Butler: Animal Cell Culture and Technology — The Basics. Oxford University Press (1996)
- 5 M.L. Shuler, F. Kargi: Bioprocess Engineering — Basic Concepts. Prentice Hall PTR (2002)
- 6 R.S. Cherry, “Animal cells in turbulent fluids: Details of the physical stimulus and the biological response”, Biotechnol. Adv. 11 (1993) 279.
- 7 T.G. Cotter, M. Al-Rubeai, “Cell death (apoptosis) in cell culture systems”, Trends in Biotechnol. 13 (1995) 150.
- 8 R.P. Singh, M. Al-Rubeai, C.D. Gregory, A.N. Emery, “Cell death in bioreactors: A role for apoptosis”, Biotechnol. Bioeng. 44 (1994) 720.
- 9 M. Al-Rubeai, R.P. Singh, “Apoptosis in cell culture”, Curr. Opin. Biotechnol. 9 (1998) no. 2, 152.
- 10 V. Glaser, “Current trends and innovations in cell culture”, Gen. Eng. N. 21 (2001) 11.
- 11 G. Kretzmer, “Industrial processes with animal cell”, Appl. Microbiol. Biotechnol. 59 (2002) 135.
- 12 R. Korke, A. Rink, T.K. Seow, M.C. Chung, C.W. Beattie, W.-S. Hu, “Genomic and proteomic perspectives in cell culture engineering”, J. Biotechnol. 94 (2002) no. 1, 73.
- 13 F.M. Wurm, “Production of recombinant protein therapeutics in cultivated mammalian cells”, Nat. Biotechnol. 11 (2004) 1393.
- 14 M. Butler, “Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals”, Appl. Microbiol. Biotechnol. 68 (2005) no. 3, 283.
- 15
Y. H. Kim,
T. Iida,
T. Fujita,
S. Terada,
A. Kitayama,
H. Ueda,
E.V. Prochownik,
E. Suzuki,
“Establishment of an apoptosis-resistant and growth-controllable cell line by transfecting with inducible antisense c-jun gene”,
Biotechnol. Bioeng.
58
(1998)
65.
10.1002/(SICI)1097-0290(19980405)58:1<65::AID-BIT7>3.0.CO;2-S CAS PubMed Web of Science® Google Scholar
- 16 C.R. Bebbington, G. Renner, S. Thomson, D. King, G. Abrams, G.T. Yarrington, “High-level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker”, Biotechnol. 10 (1992) 169.
- 17 S.S. Ozturk, W.-S. Hu (eds.): Cell Culture Technology For Pharmaceutical and Cell-Based Therapies. Taylor & Francis Group, New York (2006)
- 18 B. Griffiths: Animal cell products, overview, in R.E. Spier (ed.): Encyclopedia of Cell Technology, vol. 1, John Wiley & Sons, New York, 2000, pp. 70–76.
- 19 S.t.J. Cryz, M. Granstro, B. Gottstein, L. Perrin, A. Cross, J. Larrick: Immunotherapy and Vaccines. Ullmann's Encyclopedia of Industrial Chemistry, Electronic Release, 7th ed., Wiley-VCH, Weinheim 2005.
- 20 G.L. Galfre, D.S. Secher, P. Crawley: Monoclonal Antibodies, Ullmann's Encyclopedia of Industrial Chemistry, Electronic Release, 7th ed., Wiley-VCH, Weinheim 2005.
- 21 G. Köhler, Milstein, “Continuous cultures of fused cells secreting monoclonal antibodies of predefined specifity”, Nature 256 (1975) 495.
- 22 D.C. Andersen, C.F. Goochee, “The effect of cell-culture conditions on the oligosaccharide structures of secreted glycoproteins”, Curr. Opin. Biotechnol. 5 (1994) 546.
- 23 S.W. Harcum: Protein Glycosylation: S.S. Ozturk, W.-S. Hu (eds.) Cell Culture Technology For Pharmaceutical and Cell-Based Therapies. Taylor & Francis Group, New York (2006)
- 24 R.G. Werner: Transgenic technology — a challenge for mammalian cell culture production systems”, in O.-W. Merten et al. (eds.): New Developments and New Applications in Animal Cell Technology, Kluwer Academic Publishers, 1998, 757–763.
- 25 M.W. Young, W.B. Okita, E.M. Brown, J.A. Curling JM, “Production of biopharmaceutical proteins in the milk of transgenic dairy animals”, BioPharm 6 (1997) 34
- 26 I. Garner: The production of proteins in the milk of transgenic livestock”, A comparison of microinjection and nuclear transfer”, in O.-W. Merten et al. (eds.): New Developments and New Applications in Animal Cell Technology, Kluwer Academic Publishers, Amsterdam 1998, pp. 745–750.
- 27 I. Wilmut, A. Schnieke, J. McWhir, A. Kind, K. Campbell, “Viable offspring derived from fetal and adult mammalian cells”, Nature 385 (1997) 810.
- 28 R. Langer, “Tissue engineering”, Mol. Ther. 1 (2000) 12.
- 29 L.G. Griffith, G. Naughton, “Tissue engineering-current challenges and expanding opportunities”, Science 295 (2002) 1009.
- 30
J.P. Petersen,
A. Rücker,
D. von Stechow,
P. Adamietz,
R. Pörtner,
J.M. Rueger,
N.M. Meenen,
“Present and future therapies of articular cartilage defects”,
Eur. J. of Trauma
1
(2003)
1.
10.1007/s00068-003-1215-6 Google Scholar
- 31 R.C. Mulligan, “The basic science of gene therapy”, Science 60 (1993) 926.
- 32 J.Le Doux, M. Yarmush, “Engineering gene transfer technologies: Retroviral-mediated gene transfer”, Bioeng. Sci. 20 (1996) 3.
- 33 A.J. Schlitz, K. Kühlcke, A.A. Fauser, H.G. Eckert, “Optimization of retroviral vector generation for clinical application”, J. Gene Med. 3 (2001) 427.
- 34 PhRMA. Biotechnol New Medicines in Development. Pharmaceutical Research and Manufacturers of America 2002.
- 35 R. Freshney: Culture of animal cells. John Wiley, New York (1994)
- 36 V. Kasche, K. Probst, J. Maass, “The DNA and RNA content of crude and crystalline trypsin used to trypsinize animal cell cultures: kinetics of trypsinization”, Eur. J. Cell Biol 22 (1980) 388.
- 37 L. Hayflick, P.S. Moorhead, “The serial cultivation of human diploid cell strains”, Exp. Cell Res. 25 (1961) 585.
- 38 C.P. Edwards, A. Aruffo, “Current applications of COS cell based treatment expression system”, Curr. Opin. Biotechnol. 4 (1993) 558.
- 39 L. Ikonomou, Y.J. Schneider, S.N. Agathos, “Insect cell culture for industrial production of recombinant proteins”, Appl. Microbiol. Biotechnol. 62 (2003) no. 1, 1.
- 40 American Type Culture Collection (ATCC). http://www.atcc.org
- 41 European Collection of Animal Cell Culture (ECACC). http://www.ecacc.org.uk
- 42 German Resource Centre for Biological Material (DSMZ): http://www.dsmz.de
- 43 FDA: U.S. Food and Drug Administration. http://www.fda.gov
- 44 EMEA: European Medicine Agency. http://www.emea.eu.ing
- 45 M. Butler, H. Jenkins, “Nutritional aspects of the growth of animal cells in culture”, J. Biotechnol. 12 (1989) 97.
- 46 H. Eagle, “Amino acid metabolism in mammalian cell cultures”, Science 130 (1959) 432.
- 47
J. Zanghi,
A. Schmelzer,
R. Mendoza,
R. Knop,
W. Miller,
“Bicarbonate Concentration and osmolality are key determinants in the inhibition of CHO cell polysialylation under elevated pCO2 or pH”,
Biotechnol. Bioeng.
65
(1999)
182.
10.1002/(SICI)1097-0290(19991020)65:2<182::AID-BIT8>3.0.CO;2-D CAS PubMed Web of Science® Google Scholar
- 48 S.K.W. Oh:, F.K.F. Chua:, A.B.H. Choo:, “Intracellular responses of productive hybridomas subjected to high osmotic pressure”, Biotechnol. Bioeng. 46 (1995) 525.
- 49
J.S. Ryu,
G.M. Lee,
“Effect of hypoosmotic stress on hybridoma cell growth and antibody production”,
Biotechnol. Bioeng.
55
(1997)
565.
10.1002/(SICI)1097-0290(19970805)55:3<565::AID-BIT14>3.0.CO;2-F CAS PubMed Web of Science® Google Scholar
- 50 M.M. Zhu, A. Goyal, D.L. Rank, S.K. Gupta, T. Van den Boom, S.S. Lee, “Effects of elevated pCO2 and osmolality on growth of CHO cells and production of antibody-fusion protein B1: a case study”, Biotechnol. Prog. 21 (2005) no. 1, 70.
- 51 V.M. de Zengotita, A.E. Schmelzer, W.M. Miller, “Characterization of hybridoma cell responses to elevated pCO2 and osmolality: Intracellular pH, cell size, apoptosis, and metabolism”, Biotechnol. Bioeng. 77 (2002) 369.
- 52 T. Fletscher, “Designing culture media for recombinant protein production”, BioProcess 1 (2005) 30.
- 53 J.G. Griffiths, “Serum and growth factors in cell culture media: an introduction review”, Dev. Biol. Stand. 66 (1987) 155.
- 54 D. Barnes, G. Sato, “Serum-free cell culture: an unifying approach”, Cell 22 (1980) 649.
- 55 A. Gambhir, C. Zhang, A. Europa, W.-S. Hu, “Analysis of the use of fortified medium in continuous culture of mammalian cells”, Cytotechnol. (1999) 31 243.
- 56 H. Kallel, A. Jouini, S. Majoul, S. Rourou, “Evaluation of various serum and animal protein free media for the production of a veterinary rabies vaccine in BHK-21 cells”, J Biotechnol. 95 (2002) no. 3, 195.
- 57 F. Frank, J. Dolníková, “Hybridoma growth and monoclonal antibody production in iron-rich protein-free medium: Effect of nutrient concentration”, Cytotechnol. 7 (1991) 33.
- 58 F. Frank, J.Dolníková, “Nucleosomes occurring in protein-free hybridoma cell cultures. Evidence for programmed cell death”, FEBS letters 248 (1991) 285.
- 59 D. Fassnacht, S. Rössing, N. Ghaussy, R. Pörtner, “Influence of non-essential amino acids on apoptotic and necrotic death of mouse hybridoma cells in batch cultures”, Biotechnol. Letters 19 (1997) 35.
- 60 P.L Pham, S. Perret, H.C. Doan, B. Cass, G. St-Laurent, A. Kamen, Y. Durocher, “Large-scale transient transfection of serum-free suspension-growing HEK293 EBNA1 cells: peptone additives improve cell growth and transfection efficiency”, Biotechnol Bioeng. 84 (2003) Nov., 332.
- 61 J.S. Kim, B.C. Ahn, B.P. Lim, Y.D. Choi, E.C. Jo, “High-level scu-PA production by butyrate-treated serum-free culture of recombinant CHO cell line”, Biotechnol Prog. 20 (2004), Nov.-Dec., 1788.
- 62 D. Fassnacht, S. Rössing, F. Fran (k. M. Al-Rubeai, R. Pörtner, “Effect of Bcl-2 expression on hybridoma cell growth in serum-supplemented, protein-free and diluted media”, Cytotechnology 26 (1998) 119.
- 63 Z. Zhang, Y. Chisti, M. Moo-Young, “Effects of the hydrodynamic environment and shear protectants on survival of erythrocytes in suspension”, J Biotechnol. 43 (1995) Nov., 33.
- 64 M. Al-Rubeai, A.N. Emery, S. Chalder, “The effect of Pluronic F-68 on hybridoma cells in continuous culture”, Applied Microbiology and Biotechnol 37 (1992) 44.
- 65 G.M. Lee, B.O. Palsson, “Immobilization can improve the stability of hybridoma antibody productivity in serum-free media”, Biotechnol and Bioeng. 36 (1990) 1049.
- 66 I. Lüdemann, R. Pörtner, C. Schaefer, K. Schick, K. Ŝrámková, K. Reher, M. Neumaier, F. Franék, H. Märkl, “Improvement of the culture stability of non-anchorage-dependent animal cells grown in serum-free media through immobilization”, Cytotechnology 19 (1996) 111.
- 67 M.S. Sinacore, D. Drapeau, S. Radamson, “Adaptation of mammalian cells to growth in serum-free media”, Mol Biotechnol. 15 (2000) July, 249.
- 68 T. Link, M. Backstrom, R. Graham, R. Essers, K. Zorner, J. Gatgens, J. Burchell, J. Taylor-Papadimitriou, G.C. Hansson, T. Noll, “Bioprocess development for the production of a recombinant MUC1 fusion protein expressed by CHO-K1 cells in protein-free medium”, J Biotechnol. 110 (2004) May 13, 51.
- 69 R.R. Balcarcel, L.M. Clark, “Metabolic screening of mammalian cell cultures using well-plates”, Biotechnol Prog. 19 (2003) Jan.Feb., 98.
- 70 J.T. Lu, Y.C. Chung, Z.R. Chan, Y.C. Hu, “A novel oscillating bioreactor BelloCell: Implications for insect cell culture and recombinant protein production”, Biotechnol Lett. 27 (2005) Aug., 1059.
- 71 P. Girard, M. Jordan, M. Tsao, F.M. Wurm, “Small-scale bioreactor system for process development and optimization”, Biochem. Eng. J. 7 (2001) no. 2, 117.
- 72 J.G. Auninŝ, B. Bader, A. Caola, J. Griffiths, M. Katz, P. Licari, K. Ram, C.S. Ranucci, W. Zhou, “Fluid mechanics, cell distribution, and environment in CellCube bioreactors”, Biotechnol. Prog. 19 (2003) 2.
- 73 R. Kunitake, A. Suzuki, H. Ichihashi, S Matsuda, O. Hirai, K. Morimoto: Fully automated roller bottle handling system for large scale culture of mammalian cells. Journal of Biotechnol 52: 289 (1997)
- 74 R. Heidemann, U. Riese, D. Lutkemeyer, H. Buntemeyer, J. Lehmann, “The Super-Spinner: a low cost animal cell culture bioreactor for the CO2 incubator”, Cytotechnology 14 (1994) no. 1, 1.
- 75 A.L. van Wezel “Growth of cell strains and primary cells on microcarriers in homogenous culture”, Nature 216 (1967) 64.
- 76 K. Nilsson, F. Buzsaky, K. Mosbach, “Growth of anchorage dependent cells on macroporous microcarrier”, Bio/Technology 4 (1986) 989.
- 77 B. Lundgren, G. Blüml: Microcarriers in cell culture production, in G. Subramanian: Bioseparation and Bioprocessing — A Handbook, Wiley-VCH, Weinheim 1998.
- 78 C.A.M. van der Velden-de Groot, “Microcarrier technology, present status and perspective”, Cytotechnology 18 (1995) 51.
- 79 G. Blüml: Microcarrier Cell culture Technology, in R. Pörtner, (ed.): Animal Cell Biotechnol — Methods and Protocols, Humana Press 2006.
- 80 S.C. Wu, C.C. Liu, W.C. Lian, “Optimization of microcarrier cell culture process for the inactivated enterovirus type 71 vaccine development”, Vaccine 22 (2004) Sept., 3858.
- 81 R.Z. Mendonca, L.M. Ioshimoto, R.M. Mendonca, M. De-Franco, E.J. Valentini, W. Becak, I. Raw, C.A. Pereira “,Preparation of human rabies vaccine in VERO cell culture using a microcarrier system”, Braz J Med Biol Res. 26 (1993) no. 12, 1305.
- 82 R.Z. Mendonca, L.R. Vaz-de-Lima, M.I. Oliveira, C.A. Pereira, S. Hoshino-Shimizu, “Studies on the efficiency of measles virus antigen production using VERO cell culture in a microcarrier system”, Braz J Med Biol Res. 27 (1994) no. 7, 1575.
- 83 N.A. Bleckwenn, H. Golding, W.E. Bentley, J. Shiloach, “Production of recombinant proteins by vaccinia virus in a microcarrier based mammalian cell perfusion bioreactor”, Biotechnol. Bioeng. 90 (2005) no. 6, 663.
- 84 R.M. Gallegos Gallegos, E.L. Espinosa L. Larios Ramos Ramirez, Kretschmer, R. Schmid, A. Aguilar Setien, “Rabies veterinary virus vaccine produced in BHK-21 cells grown on microcarriers in a bioreactor”, Arch Med Res. 26 (1995) no. 1, 59.
- 85 H. Hübner: Cell Encapsulation, in R. Pörtner (ed.): Animal Cell Biotechnol — Methods and Protocols, Humana Press 2006.
- 86 S. Murtas, G. Capuani, M. Dentini, C. Manetti, G. Masci, M. Massimi, A. Miccheli, V. Crescenzi, “Alginate beads as immobilization matrix for hepatocytes perfused in a bioreactor: a physico-chemical characterization”, J Biomater Sci Polym Ed. 16 (2005) no. 7, 829.
- 87 T.D. Sielaff, M.Y. Hu, B. Amiot, M.D. Rollins, S. Rao, B. McGuire, J.R. Bloomer, W.S. Hu, F.B. Cerra, “Gel-entrapment bioartificial liver therapy in galactosamine hepatitis”, J Surg Res. 59 (1995) 179.
- 88 J. Davis: Hollow Fibre Cell Culture, in R. Pörtner, (ed.): Animal Cell Biotechnol — Methods and Protocols, Humana Press 2006.
- 89 F.W. Falkenberg, “Production of monoclonal antibodies in the miniPERM bioreactor: comparison with other hybridoma culture methods”, Res Immunol. 149 (1998), July-Aug., 560.
- 90 U. Marx, H. Matthes, A. Nagel, R.V. Baehr, “Application of a hollow fiber membrane cell culture system in medicine”, Am. Biotechnol. Lab., 11 (1993) 26.
- 91 I. Martin, D. Wendt, M. Heberer, “The role of bioreactors in tissue engineering”, Trends Biotechnol., 22 (2004) 80.
- 92 R. Pörtner, St. Nagel-Heyer, Ch. Goepfert, P. Adamietz, N.M. Meenen, “Bioreactor design for tissue engineering”, Journal of Bioscience and Bioeng. 100 (2005) no. 3, 235.
- 93 V. Barron, E. Lyons, C. Stenson-Cox, P.E. Mc Hugh, A. Pandit, “Bioreactors for cardiovascular cell and tissue growth: a review”, Ann. Biomed. Eng. 31 (2003) 1017.
- 94 R.A. Chamuleau, “Artificial liver support in the third millennium. Artif. Cells Blood Substit. Immobil. Biotechnol. 31 (2003) 117.
- 95 L. De Bartolo, A. Bader, “Review of a flat membrane bioreactor as a bioartificial liver”, Ann. Transplant. 6 (2001) 40.
- 96 J.C. Gerlach, “Development of a hybrid liver support system: A review”, International Journal of Artificial Organs 19 (1996) 645.
- 97
J.E: Prenosil,
P.E. Villeneuve,
“Automated production of cultured epidermal autografts and sub-confluent epidermal autografts in a computer controlled bioreactor”,
Biotechnol. Bioeng.
59
(1998)
679.
10.1002/(SICI)1097-0290(19980920)59:6<679::AID-BIT4>3.0.CO;2-C CAS PubMed Web of Science® Google Scholar
- 98
A. Nagel,
E. Effenberger,
S. Koch,
L. Lübbe,
U. Marx:
Human cancer and primary cell culture in the new hybrid bioreactor system tecnomouse, in
R.E. Spier,
J.B. Griffiths and
W. Berthold (eds.):
Animal cell technology: products of today, prospects for tomorrow,
Butterworth-Heinemann,
1994,
pp. 296–298.
10.1016/B978-0-7506-1845-8.50072-7 Google Scholar
- 99 W.S. Hu, J.G. Aunins, “Large-scale mammalian cell culture”, Curr Opin Biotechnol. 8 (1997) April, 148.
- 100 S. Ozturk, “Engineering challenges in high density cell culture systems”, Cytotechnology 22 (1996) 3.
- 101 K.B. Konstantinov, “Monitoring and Control of the Physiological State of Cell Cultures”, Biotechnol and Bioeng. 52 (1996) 271.
- 102 S.R. Fox, U.A. Patel, M.G. Yap, D.I. Wang, “Maximizing interferon-gamma production by Chinese hamster ovary cells through temperature shift optimization: experimental and modeling”, Biotechnol Bioeng. 85 (2004) no. 2, 177.
- 103 S.M. Schatz, R.J. Kerschbaumer, G. Gerstenbauer, M. Kral, F. Dorner, F. Scheiflinger, “Higher expression of Fab antibody fragments in a CHO cell line at reduced temperature”, Biotechnol Bioeng. 84 (2003) no. 4, 433.
- 104 S.S. Mostafa, X. Gu, “Strategies for improved dCO2 removal in large-scale fed-batch cultures”, Biotechnol Prog. 19 (2003) Jan.-Feb., 45.
- 105 B. Frahm, H.-C. Blank, P. Cornand, W. Oelner, U. Guth, P. Lane, A. Munack, K. Johannsen, R. Pörtner, “Determination of dissolved CO2 concentration and CO2 production rate of mammalian cell suspension culture based on off-gas measurement”, Journal of Biotechnol 99 (2002) 133.
- 106 R. Kimura, W.M. Miller, “Glycosylation of CHO-Derived Recombinant tPA Produced under Elevated pCO2”, Biotechnol Progress 13 (1997) 311.
- 107 T. Omase, K.-I. Higashiyama, S. Shioya, K.-I. Suga, “Effects of lactate concentration on hybridoma culture in lactate-controlled fed-batch operation”, Biotechnol and Bioeng. 39 (1992) 556.
- 108 I. Lüdemann, R. Pörtner, H. Märkl, “Effect of NH3 on the cell growth of a hybridoma cell line”, Cytotechnology 14 (1994), 11.
- 109 Y. Chisti “Hydrodynamic damage to animal cells”, Crit Rev Biotechnol. 21 (2001) Oct., 67.
- 110 Y. Chisti, “Animal-cell damage in sparged bioreactors”, Trends Biotechnol. (2000) 18 (10), 420.
- 111 J.J. Chalmers, “Cells and bubbles in sparged bioreactors”, Cytotechnology 15 (1994) no.s 1–3, 311.
- 112 Ch. Fenge, E. Lüllau: Cell Culture Bioreactors, in S. S:Ozturk, W.-S. Hu (eds.): Cell Culture Technology For Pharmaceutical and Cell-Based Therapies, Taylor & Francis Group, New York 2006.
- 113 A.N. Emery, D.C. Jan, M. Al-Rubeai, “Oxygenation of intensive cell-culture systems”, Applied Microbiology and Biotechnol 43 (1995) 1028.
- 114 H.J. Henzler, O.J. Kauling, “Oxygenation of cell cultures”, Bioprocess Engineering 9 (1993) 61.
- 115 N. Ma, M. Mollet, J.J. Chalmers: Aeration, mixing and hydrodynamics in bioreactors, in S.S. Ozturk, and W.-S. Hu (eds.): Cell Culture Technology For Pharmaceutical and Cell-Based Therapies, Taylor & Francis Group, New York 2006.
- 116 S. Zhang, A. Handa-Corrigan, R.E. Spier, “A comparision of oxygenation methods for high-density perfusion cultures of animal cells”, Biotechnol and Bioeng. 41 (1993) 685.
- 117 R. Pörtner, A. Schilling, I. Lüdemann, H. Märkl, “High density fed-batch cultures for hybridoma cells performed with the aid of a kinetic model”, Bioprocess Engineering 15 (1996) 117.
- 118 Y. Christi, “Animal cell culture in stirred bioreactors: Observations on scale-up”, Bioprocess Engineering 9 (1993) 191.
- 119 D. Nehring, P. Czermak, J. Vorlop, H. Lubben, “Experimental study of a ceramic microsparging aeration system in a pilot-scale animal cell culture”, Biotechnol Prog. 20 (2004) Nov.-Dec., 1710.
- 120 J. Lehmann, G.W. Piehl, R. Schulz, “Bubble free cell culture aeration with porous moving membranes”, Development Biology Standard 66 (1987) 227.
- 121 R. Johannsen, J. Lehmann: Tierische Zellkulturen, in P. Präve, U. Faust, W. Sittig, D.A. Sukatsch: Handbuch der Biotechnologie. Oldenbourg Verlag, München 1994, pp. 179–206.
- 122 H.N. Qi, C.T. Goudar, J.D. Michaels, H.J. Henzler, G.N. Jovanovic, K.B. Konstantinov, “Experimental and theoretical analysis of tubular membrane aeration for Mammalian cell bioreactors”, Biotechnol Prog. 19 (2003) Aug., 1183.
- 123 H. Märkl, “Bioreaktoren” Chemie Ingenieur Technik 63 (1991) no. 12, 1213.
- 124 W. Storhas, R. Gengenbach: Sauerstoffeintrag in der Fermentation adhärenter Säugerzellkulturen, GVC — VDI -Tagungen am 21. Mai 1990, Würzburg 1990.
- 125 J. Varley, J. Birch, “Reactor design for large scale suspension animal cell culture”, Cytotechnology 29() no. 3, 177.
- 126 D.S. Kompala, S.S. Ozturk: Optimization of high cell density perfusion bioreactors, in S.S. Ozturk, and W.-S. Hu (eds.): Cell Culture Technology For Pharmaceutical and Cell-Based Therapies, Taylor & Francis Group, New York 2006.
- 127 L.R. Castilho, R.A. Medronho, “Cell retention devices for suspended-cell perfusion cultures”, Adv Biochem Eng Biotechnol. 74 (2002) 129.
- 128 H. Dong, Y.J. Tang, R. Ohashi, J.F. Hamel, “A perfusion culture system using a stirred ceramic membrane reactor for hyperproduction of IgG2a monoclonal antibody by hybridoma cells”, Biotechnol Prog. 21 (2005) Jan.-Feb., 140.
- 129 M.C. Dalm, S.M. Cuijten, W.M. van Grunsven, J. Tramper, D.E. Martens, “Effect of feed and bleed rate on hybridoma cells in an acoustic perfusion bioreactor: part I. Cell density, viability, and cell-cycle distribution”, Biotechnol Bioeng. 88 (2004) Dec., 547.
- 130 R. Pörtner, M. Matsumura, T. Hatae, K. Murakami, H. Kataoka, “Perfusion-microcarrier cultivation of rCHO-cells in serum-free medium for production of human renin”, Bioprocess Engineering 7 (1991) 63.
- 131
J. Stevens,
S. Eickel,
U. Onken:
Lamellar clarifier — A new device for animal cell retention in perfusion culture systems, in
R.E. Spier,
J.B. Griffiths and
W. Berthold:
Animal Cell Technology: Products of today, prospects of tomorrow,
Butterworth-Heinemann,
1994,
pp. 234–239.
10.1016/B978-0-7506-1845-8.50057-0 Google Scholar
- 132 T. Arai, S. Yokoyama M. Tokashiki: 50 l scale perfusion culture of hybridoma cells by gravitational settling for cell separation in S. Kaminogawa et al. (eds.): Animal Cell Technology: Basic & Applied Aspects5 1993, pp. 341–346.
- 133 St. Apelman: Separation of animal cells in continuous cell culture systems, in H. Murakami et al. (eds.): Animal Cell Technology: Basic & Applied Aspects, Kluwer Academic Publishers, Netherlands 1992, pp. 149–154
- 134 V. Jäger, “Kontinuierliche Durchflußzentrifuge für die Perfusionskultur tierischer Zellen”, BioTec 2 (1992) 4.
- 135 P. Himmelfarb, P.S. Thayer, H.E. Martin, “Spin-filter culture: the propagation of mammalian cells in suspension”, Science 164 (1969) 555.
- 136 D.C. Jan, A.N. Emery, M. Al-Rubeai, “Introducing spin filter eliminates hydrodynamic damage to hybridomas in bioreactor”, Biotechnol Techniques 7 (1993) 351.
- 137 I.Z. Shirgaonkar, S. Lanthier, A. Kamen, “Acoustic cell filter: a proven cell retention technology for perfusion of animal cell cultures”, Biotechnol Adv. 22 (2004) no. 6, 433.
- 138 V.M. Gorenflo, L. Smith, B. Dedinsky, B. Persson, J.M. Piret, “Scale-up and optimization of an acoustic filter for 200 L/day perfusion of a CHO cell culture”, Biotechnol Bioeng. 80 (2002) Nov., 438.
- 139 M.J. Comer, M.J. Dearns, J. Wahl, M. Munster, T. Lorenz, B. Szperalski, S. Koch, U. Behrendt, H. Brunner, “Industrial production of monoclonal antibodies and therapeutic proteins by dialysis fermentation”, Cytotechnology 3 (1990) 295.
- 140 R. Pörtner, H. Märkl, “Dialysis cultures”, Applied Microbiology and Biotechnol 50 (1998) 403.
- 141 M.A. Applegate, G. Stephanopoulos, “Development of a single-pass ceramic matrix bioreactor for large scale mammalian cell culture”, Biotechnol and Bioeng. 40 (1992) no. 9, 1056.
- 142
G. Wang,
W. Zhang,
C. Jacklin,
L. Eppstein,
D. Freedman,
“High cell density perfusion culture of hybridoma cells for production of monoclonal antibodies in the celligen packed bed reactor”,
Animal Cell Technology. Basic & Applied Aspects
5
(1993)
463.
10.1007/978-94-011-2044-9_63 Google Scholar
- 143 D.J. Oh, S.K. Choi, H.N. Chang, “High-density continuous cultures of hybridoma cells in a depth filter perfusion system”, Biotechnol and Bioeng. 44 (1994) 895.
- 144 S.T. Yang, J. Luo, C. Chen, “A fibrous-bed bioreactor for continuous production of monoclonal antibody by hybridoma”, Adv Biochem Eng Biotechnol. 87 (2004) 61.
- 145 R. Pörtner, H. Märkl, “Festbettreaktoren für die Kultur tierischer Zellen”, BIOforum 18 (1995) 449.
- 146 D. Fassnacht, R. Pörtner, “Experimental and theoretical considerations on oxygen supply for animal cell growth in fixed bed reactors”, Journal of Biotechnol 72 (1999) no. 3, 169.
- 147 N. Golmakany, M.J. Rasaee, M. Furouzandeh, S.A. Shojaosadati, S. Kashanian, K. Omidfar, “Continuous production of monoclonal antibody in a packed-bed bioreactor”, Biotechnol Appl Biochem. 41 (2005) Jun, Pt 3, 273.
- 148
C. Born,
M. Biselli
C. Wandrey:
Production of monoclonal antibodies in a pilot scale fluidized bed bioreactor, in
E.C. Beuvery
et al. (eds.):
Animal Cell Technology: Developments Towards the 21st Century,
Kluwer Academic Publishers,
Amsterdam
1995,
pp. 683–686.
10.1007/978-94-011-0437-1_107 Google Scholar
- 149 D. Müller, F. Unterluggauer, G. Kreismayr, C. Schmatz, A. Assadian, S. Wiederkum, S. Preis, K. Vorauer-Uhl, O. Doblhoff-Dier, H. Katinger: “Continuous perfused fluidized bed technology, increased productivities and product concentration”, Proceedings of the 16th ESACT Meeting: Animal Cell Technology: Products from Cells, Cells as Products, 1999, pp. 319–321.
- 150 G. Blüml, M. Reiter, N. Zach, T. Gaida, C. Schmatz, A. Assadian, H. Katinger: “Fluidized bed technology: Influence of fluidization velocity on nutrient consumption and product expression”, Proceedings of the 15th ESACT Meeting: New developments and new applications in animal cell technology, 1998, pp. 385—387.
- 151 H. Miyoshi, K. Yanagi, H. Fukuda, N. Ohshima, “Long-term continuous culture of hepatocytes in a packed-bed reactor utilizing porous resin”. Biotechnol and Bioeng. 43 (1994) 635.
- 152 T. Hongo, M. Kajikawa, S. Ishida, S. Ozawa, Y. Ohno, J. Sawada, A. Umezawa, Y. Ishikawa, T. Kobayashi, H. Honda, “Three-dimensional high-density culture of HepG2 cells in a 5-ml radial-flow bioreactor for construction of artificial liver” J Biosci Bioeng. 99 (2005) no. 3, 237.
- 153 D. Fassnacht, S. Rössing, J. Stange, R. Pörtner, “Long-term cultivation of immortalized mouse hepatocytes in a high density, fixed-bed reactor”, Biotechnol Techniques 12 (1998) 25.
- 154 T. Noll, N. Jelinek, S. Schmid, M. Biselli, C. Wandrey, “Cultivation of hematopoietic stem and progenitor cells: biochemical engineering aspects”, Adv. Biochem. Eng. Biotechnol. 74 (2002) 111.
- 155 G.J. Cabrita, B.S. Ferreira, C.L. da Silva, R. Goncalves, G. Almeida-Porada, J.M. Cabral, “Hematopoietic stem cells: from the bone to the bioreactor”, Trends Biotechnol. 21 (2003) 233.
- 156 H. Schubert, I. Garrn, A. Berthold, W.U. Knauf, B. Reufi, T. Fietz, U.M. Gross, “Culture of haematopoietic cells in a 3-D bioreactor made of Al2O3 or apatite foam”, J. Mater. Sci. Mater. Med. 15 (2004) 331.
- 157 D. Nehring, R. Gonzales R. Pörtner, P. Czermak, “Experimental and modeling study of different process modes for retroviral production in a fixed bed reactor”, Journal of Biotechnol 122 (yyyy) no. 2, 239.
- 158 S. McTaggart, M. Al-Rubeai, “Effects of culture parameters on the production of retroviral vectors by a human packaging cell line”, Biotechnol Prog. 16 (2000) Sept.-Oct., 859.
- 159 O.W. Merten, “State-of-the-art of the production of retroviral vectors”, J. Gene Medicine 6 (2004) 105.
- 160 O.W. Merten, P.E. Cruz, C. Rochette, C. Geny-Fiamma, C. Bouquet, D. Goncalves, O. Danos, M.J.T. Carrondo:, “Comparison of different bioreactor systems for the production of high titer retroviral vectors”, Biotechnol. Prog. 17 (2001) 326.
- 161 D. Fassnacht, I. Reimann, R. Pörtner, H. Märkl, “Scale up von Festbettreaktoren zur Kultivierung tierischer Zellen”, Chemie Ingenieur Technik 73 (2001) 1075.
- 162 R. Pörtner, H. Märkl D. Fassnacht: Immobilization of Mammalian Cells in Fixed Bed Reactors. Bioforum. Bioresearch plus Biotechnol. G.I.T. Verlag, Darmstadt 1999.
- 163 M. Motobu, S. Matsuo, P.-C. Wang, H. Kataoka, M. Matsumura, “High renin productivity of rCHO cells cultivated in radial-flow nonwoven fabric mat packed-bed reactor with increasing circulation flow rate”, Journal of Fermentation and Bioeng. 83 (1997) 443.
- 164 H.P.A. Hoffmeister:, H.S. Conradt, R. Pörtner, A. Grebe, B.-U. Wilhelm and H.H.W. Hoffmeister:: “Rotating bed bioreactors: A novel way to natural proteins by tissue-like cultivation of mammalian cells”, 19th ESACT Meeting, Harrogate, June 5–8, 2005
- 165 M.P. Durrschmid, K. Landauer, G. Simic, H. Klug, T. Keijzer, F. Trampler, A. Oudshoorn, M. Groschl, D. Muller, O. Doblhoff-Dier, “Comparison of fluidized bed and ultrasonic cell-retention systems for high cell density mammalian cell culture”, Biotechnol Prog. 19 (2003) May-June, 1045.
- 166 J.M. Davis, J.A. Hanak, “Hollow-fiber cell culture”, Meth. Mol. Biol. 75 (1997) 77.
- 167 N.S. Lipman, L.R. Jackson, “Hollow fibre bioreactors: an alternative to murine ascites for small scale (<1 gram) monoclonal antibody production”, Res Immunol. 149 (1998) Jul.-Aug., 571.
- 168 D. Lowrey, S. Murphy, R.A. Goffe, “A comparison of monoclonal antibody productivity in different hollow fiber bioreactors”, J Biotechnol. 36 (1994) July, 35.
- 169 D. Eibl, R. Eibl, “Einwegkultivierungstechnologie für biotechnische Pharma-Produktionen,” BioWorld 3 (2005) 1. (Supplement BioteCHnet).
- 170 V. Glaser, “Disposable bioreactors become standard fare”, GEN 25 (2005) no. 14, 80.
- 171 H. Blasey, C. Isch, C.R. Bernard, “Cellcube: a new system for large scale growth of adherent cells”, Biotechnol.Techn. 9 (1995) no. 10, 725.
- 172 V. Singh, “Disposable bioreactor for cell culture using wave-induced agitation”, Cytotechnol. 30 (1999) 149.
- 173 W. Weber, E. Weber, S. Geisse, K. Memmert, “Optimisation of protein expression and establishment of the wave bioreactor for Baculovirus/insect cell culture”, Cytotechnol. 9 (2002) 77.
- 174 S. Fox, “The impact of disposable bioreactors on the CMO industry”, Contract Pharma 6 (2005) http://contractpharma.com/archive/2005/06/fature 2.php./21.8.05
- 175 S. Aldridge, “New biomanufacturing opportunities & challenges”, GEN 25 (2005) no. 12, 1.
- 176 L.N. Pierce P.W. Shabram, “Scalability of a disposable bioreactor from 12 L — 500 L run in perfusion mode with a CHO-based cell line: A tech review”, BioProcessing J 3 (2004) no. 4, 1.
- 177 B. Griffiths, “Scale-up of suspension and anchorage-dependent animal cells”, Mol Biotechnol. 17 (2001) no. 3, 225.
- 178 D.M. Marks, “Equipment design considerations for large scale cell culture”, Cytotechnology 42 (2003) 21.
- 179 F. Hesse, M. Ebel, N. Konisch, R. Sterlinski, W. Kessler, R. Wagner, “Comparison of a production process in a membrane-aerated stirred tank and up to 1000-L airlift bioreactors using BHK-21 cells and chemically defined protein-free medium”, Biotechnol Prog. 19 (2003), May-June, 833.
- 180 C. Burger, M.J.T. Carrondo:, H. Cruz, M. Cuffe et al., “An integrated strategy for the process development of a recombinant antibody-cytokine fusion protein expressed in BHK cells”, Appl. Microbiol. Biotechnol. 52 (1999) 345.
- 181 L. Chu, D.K. Robinson, “Industrial choices for protein production by large-scale cell culture”, Current Opinion in Biotechnol 12 (2001) 180.
- 182 M. Krahe: Biochemical Engineering. In: Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2005)
- 183 J.B. Griffith, “Animal cell culture processes — batch or continuous?”, Journal of Biotechnol 22 (1992) 21.
- 184 W. Zhou, J. Rehm, W.-S. Hu, “High viable cell concentration fed-batch cultures of hybridoma cells through online nutrient feeding”, Biotechnol and Bioeng. 46 (1995) 579.
- 185 J.O. Schwabe, R. Pörtner, H. Märkl, “Improving an online feeding strategy for fed-batch cultures of hybridoma cells by dialysis and ‘nutrient-split’-feeding”, Bioprocess Engineering 20 (1999) 475.
- 186
P.W. Sauer,
J.E. Burky,
M.C. Wesson,
H.D. Sternard,
L. Qu,
“High-yielding, generic fed-batch cell culture process for production of recombinant antibodies”,
Biotechnol and Bioeng.
67
(2000)
585.
10.1002/(SICI)1097-0290(20000305)67:5<585::AID-BIT9>3.0.CO;2-H CAS PubMed Web of Science® Google Scholar
- 187 P. Lenas, T. Kitade, H. Watanabe, H. Honda, T. Kobayashi, “Adaptive fuzzy control of nutrients concentration in fed-batch culture of mammalian cells”, Cytotechnology 25 (1997) 9.
- 188
M. de Tremblay,
M. Perrier,
C. Chavarie,
J. Archambault,
“Fed-batch culture of hybridoma cells: comparison of optimal control approach and closed loop strategies”,
Bioprocess Engineering
9
(1993)
13.
10.1007/BF00389535 Google Scholar
- 189
S. Dhir,
K.J. Morrow Jr.,
R.R. Rhinehart,
T. Wiesner,
“Dynamic optimization of hybridoma growth in a fed-batch bioreactor”,
Biotechnol and Bioeng.
67
(2000)
197.
10.1002/(SICI)1097-0290(20000120)67:2<197::AID-BIT9>3.0.CO;2-W CAS PubMed Web of Science® Google Scholar
- 190 R. Pörtner, J.-O. Schwabe B. Frahm, “Evaluation of selected control strategies for fed-batch cultures of a hybridoma cell line”, Biotechnol and Applied Biochemistry 40 (2004) 47
- 191 B. Frahm, P. Lane, H. Atzert, A. Munack, M. Hoffmann, V.C. Hass, R. Pörtner, “Automated, adaptive, model-based control by the Open-Loop-Feedback-Optimal (OLFO) controller for the effective fed-batch cultivation of hybridoma cells”, Biotechnol Progress 18 (2002) 1095.
- 192 J.A. Roubos, C.D. de Gooijer, G. van Straten, A.J.B. van Boxtel, “Comparison of optimisation methods for fed-batch cultures of hybridoma cells”, Bioprocess Engineering 17 (1997) 99.
- 193 B. Frahm, P. Lane, H. Märkl, R. Pörtner, “Improvement of a mammalian cell culture process by adaptive, model-based dialysis fed-batch cultivation and suppression of apoptosis”, Bioprocess and Biosystems Engineering 26 (2003) 1.
- 194 A. Frison, K. Memmert, “Fed-batch process for MAb production” Genetic Engineering News 22 (2002) 11.
- 195 H. Kurokawa, Y.S. Park, S. Iijima, T. Kobayashi, “Growth characteristics in fed-batch culture of hybridoma cells with control of glucose and glutamine concentrations”, Biotechnol and Bioeng. 44 (1994) 95.
- 196 L. Xie, D.I.C. Wang:, “Fed-batch cultivation of animal cells using different medium design concepts and feeding strategies”, Biotechnol and Bioeng. 43 (1994) 1175.
- 197 D. Chee D. Furng Wong, K. Tin Kam Wong, L. Tang Goh, C. Kiat M. Heng Gek Sim Yap, “Impact of dynamic online fed-batch strategies on metabolism, productivity and N-glycosylation quality in CHO cell cultures”, Biotechnol Bioeng. 89 (2005) Jan 20, 164.
- 198 W.M. Miller, H.W. Blanch, C.R. Wilke, “A kinetic analysis of hybridoma growth and metabolism in batch and continuous suspension culture: Effect of nutrient concentration, dilution rate and pH”, Biotechnol and Bioeng. 32 (1987) 947.
- 199 M. Harigae, M. Matsumura, H. Kataoka, “Kinetic study on HBs-MAb production in continuous cultivation”, Journal of Biotechnol 34 (1994) 227.
- 200
A.F. Europa,
A. Gambhir,
P.-C. Fu,
W.S. Hu,
“Multiple steady states with distinct cellular metabolism in continuous culture of mammalian cells”,
Biotechnol and Bioeng.
67
(2000)
25.
10.1002/(SICI)1097-0290(20000105)67:1<25::AID-BIT4>3.0.CO;2-K CAS PubMed Web of Science® Google Scholar
- 201 K.K. Frame, W.-S. Hu, “Kinetic study of hybridoma cell growth in continuous culture. I. A model for non-producing cells”, Biotechnol and Bioeng. 37 (1991) 55.
- 202 R. Pörtner, and Th. Schäfer: Modeling hybridoma cell growth and metabolism — A comparision of selected models and data; Journal of Biotechnol 49: 119–135 (1996)
- 203 D. Voisard, F. Meuwly, P.A. Ruffieux, G. Baer, A. Kadouri, “Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells”, Biotechnol Bioeng. 82 (2003) Jun 30, 751.
- 204 C. Geserick, H.P. Bonarius, L. Kongerslev, H. Hauser, P.P. Mueller, “Enhanced productivity during controlled proliferation of BHK cells in continuously perfused bioreactors”, Biotechnol Bioeng. 69 (2000) Aug 5 266.
- 205 E. Lullau, A. Kanttinen, J. Hassel, M. Berg, A. Haag-Alvarsson, K. Cederbrant, B. Greenberg, C. Fenge, F. Schweikart, “Comparison of batch and perfusion culture in combination with pilot-scale expanded bed purification for the production of soluble recombinant beta-secretase”, Biotechnol Prog. 19 (2003) Jan.-Feb. (1) 37.
- 206
B.G.D. Bödeker,
R. Newcomb,
P. Yuan,
A. Braufman,
W. Kelsey:
Production of recombinant factor VIII from perfusion cultures: I. Large-Scale fermentation in
R.E. Spier,
J.B. Griffiths and
W. Berthold (eds.):
Animal cell technology: products of today, prospects for tomorrow,
Butterworth-Heinemann,
1994,
pp. 580–583.
10.1016/B978-0-7506-1845-8.50133-2 Google Scholar
- 207 A. Bohmann, R. Pörtner, H. Märkl, “Performance of a membrane dialysis bioreactor with radial-flow fixed bed for the cultivation of a hybridoma cell line”, Applied Microbiology and Biotechnol 43 (1995) 772.
- 208 D. Fassnacht, S. Rössing, R.P. Singh, M. Al-Rubeai, R. Pörtner, “Influence of Bcl-2 on antibody productivity in high cell density perfusion cultures of hybridoma”, Cytotechnology 30 (1999) 95.
- 209 M. Fussenegger, D. Fassnacht, R. Schwartz, J.A. Zanghi, M. Graf, J.E. Bailey, R. Pörtner,. “Regulated overexpression of the survival factor bcl-2 in CHO cells increases viable cell density in batch culture and decreases DNA release in extended fixed- bed cultivation”, Cytotechnology 32 (2000) 45.
- 210 P. Meissner, H. Pick, A. Kulangara, P. Chatellard, K. Friedrich, F.M. Wurm, “Transient gene expression: recombinant protein production with suspension-adapted HEK293-EBNA cells”, Biotechnol Bioeng. 75 (2001) Oct 20, 197.
- 211 M. Derouazi, P. Girard, F. Van Tilborgh, K. Iglesias, N. Muller, M. Bertschinger, F.M. Wurm, “Serum-free large-scale transient transfection of CHO cells”, Biotechnol Bioeng. 87 (2004) Aug 20, 537.
- 212 L. Baldi, N. Muller, S. Picasso, R. Jacquet, P. Girard, H.P. Thanh, E. Derow, F.M. Wurm. “Transient gene expression in suspension HEK-293 cells: application to large-scale protein production”, Biotechnol Prog. 21 (2005) Jan.-Feb., 148.
- 213 H.D. Blasey, J.P. Aubry, G.J. Mazzei, A.R. Bernard, “Large scale transient expression with COS cells”, Cytotechnology 18 (1996) 183.
- 214 P. Girard, M. Derouazi, G. Baumgartner, M. Bourgeois, M. Jordan, B. Jacko, F. Wurm, “100-liter transient transfection”, Cytotechnology 38 (2002) 15.
- 215 R.G. Werner, J. Walter, “Downstream Processing von aus Zellkulturen gewonnenen Produkten”, BioEng. 1990, no. 5, 14.
- 216 R.G. Werner, W. Berthold, “Purification of proteins produced by biotechnological process”, Drug research 38 (1988) no. 3, 422.
- 217 P. Matejtschuk, R.M. Baker, G.E. Chapman: Purification and characterisation of monoclonal antibodies, in G. Subramanian: Bioseparation and Bioprocessing — A Handbook, Wiley-VCH, Weinheim 1998.
- 218 S. Liu, M. Carroll, R. Iverson, C. Valera, J. Vennari, KTurco, R. Piper, R. Kiss, H. Lutz, “Development and qualification of a novel virus removal filter for cell culture applications”, Biotechnol Prog. 16 (2000) May-Jun., 425. Erratum in: Biotechnol Prog 16 (2000) Sep-Oct, 916.
- 219 J. Wang, A. Mauser, S.F. Chao, K. Remington, R. Treckmann, K. Kaiser, D. Pifat, J. Hotta, “Virus inactivation and protein recovery in a novel ultraviolet-C reactor”, Vox Sanguinis 86 (2004) May, 230.
- 220 R.G. Werner, F. Walz, W. Noé A. Konrad, “Safety and economic aspects of continuous mammalian cell culture”, Journal of Biotechnol 22 (1992) 51.
- 221 S.G. Stolberg, “The biotech death of Jesse Gelsinger”, N Y Times Mag 1999, p. 136–140, 149–150.
- 222 T. Ariga, “Gene therapy for primary immunodeficiency diseases: recent progress and misgivings”, Curr Pharm Des 12 (2006) no. 5, 549.
- 223 R.G. Werner, et al., “Safety and economic aspects of continuous mammalian cell culture”, J Biotechnol 22 (1992), no.s 1–2, 51.
- 224 R. Langer, “Tissue engineering”, Mol Ther 1 (2000), no. 1, 12.
- 225 D.D. Jenkins, et al., “Tissue engineering and regenerative medicine”, Clin Plast Surg 30 (2003), no. 4, 581.
- 226 B.D. Boyan, et al., “Bone and cartilage tissue engineering”, Clin Plast Surg 26 (1999) no. 4, 629.
- 227 G. Vunjak-Novakovic: “The fundamentals of tissue engineering: scaffolds and bioreactors”, Novartis Found Symp, 2003. 249: p. 34–46; discussion 46–51, 170–4, 239–41.
- 228 B.D. Boyan, et al., “Bone and cartilage tissue engineering”, Clin Plast Surg 26 (1999) no. 4, 629.
- 229 T.B. Woodfield, et al., “Scaffolds for tissue engineering of cartilage”, Crit Rev Eukaryot Gene Expr 12 (2002) no. 3, 209.
- 230
V. Zacchi,
et al.,
“In vitro engineering of human skin-like tissue”,
J Biomed Mater Res
40
(1998)
no. 2,
187.
10.1002/(SICI)1097-4636(199805)40:2<187::AID-JBM3>3.0.CO;2-H CAS PubMed Web of Science® Google Scholar
- 231 B. Pomahac, et al., “Tissue engineering of skin”, Crit Rev Oral Biol Med 9 (1998) no. 3, 333.
- 232 W.H. Eaglstein, V. Falanga, “Tissue engineering for skin: an update”, J Am Acad Dermatol 39 (1998), no. 6, 1007.
- 233 A. Bader, et al., “Reconstruction of liver tissue in vitro: geometry of characteristic flat bed, hollow fiber, and spouted bed bioreactors with reference to the in vivo liver”, Artif Organs 19 (1995) no. 9. 941.
- 234 E. Tziampazis, A. Sambanis, “Tissue engineering of a bioartificial pancreas: modeling the cell environment and device function”, Biotechnol Prog 11 (1995) no. 2, 115.
- 235 G. Zund, et al., “Tissue engineering in cardiovascular surgery: MTT, a rapid and reliable quantitative method to assess the optimal human cell seeding on polymeric meshes”, Eur J Cardiothorac Surg 15 (1999) no. 4, 519.
- 236 W.H. Zimmermann, T. Eschenhagen, “Tissue engineering of aortic heart valves”, Cardiovasc Res 60 (2003) no. 3, 460.
- 237 G.H. Altman, “Cell differentiation by mechanical stress”, Faseb J 16 (2002), no. 2, 270.
- 238 G.H. Altman, et al., “Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering”, J Biomech Eng 124 (2002), no. 6, 742.
- 239 R. MauckL., et al., Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng, 2000. 122(3): p. 252–60.
- 240 E.G. Lima, et al., “Functional tissue engineering of chondral and osteochondral constructs”, Biorheology 41 (2004), no.s 3–4, 577.
- 241 A. Ignatius, et al., “Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices”, Biomaterials 26 (2005) no. 3, 311.
- 242 G. Grenier, et al., “Tissue reorganization in response to mechanical load increases functionality”, Tissue Eng 11 (2005) no.s 1–2, 90.
- 243 J. Garvin, et al., “Novel system for engineering bioartificial tendons and application of mechanical load”, Tissue Eng 9 (2003) no. 5, 967.
- 244 O. Demarteau, et al., “Development and validation of a bioreactor for physical stimulation of engineered cartilage”, Biorheology 40 (2003) no.s 1–3, 331.
- 245 D.L. Butler, S.A. Goldstein, F. Guilak, “Functional tissue engineering: the role of biomechanics”, J Biomech Eng 122 (2000), no. 6, 570.
- 246 H.D. Humes, “Stem cells: the next therapeutic frontier”, Trans Am Clin Climatol Assoc 116 (2005) 167, discussion 183.
- 247 R.H. Lee, et al., “Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue”, Cell Physiol Biochem 14 (2004), no.s 4–6, 311.
- 248 R. Cancedda, et al.: Bone marrow stromal cells and their use in regenerating bone, Novartis Found Symp, 2003. 249: p. 133–43; discussion 143–7, 170–4, 239–41.
- 249 K. Anselme, et al., “In vitro control of human bone marrow stromal cells for bone tissue engineering”, Tissue Eng 8 2002. no. 6, 941.
- 250 P.A. Zuk, et al., “Multilineage cells from human adipose tissue: implications for cell-based therapies”, Tissue Eng 7 (2001) no. 2, 211.
- 251 H.J. Kolb, E. Holler, “Hematopoietic transplantation: state of the art”, Stem Cells 15 (1997) Suppl 1, 151; discussion 158.
- 252 M. Korbling, Z. Estrov, R. Champlin, “Adult stem cells and tissue repair”, Bone Marrow Transplant 32 (2003) Suppl 1, S23.
- 253 D. Schmidt, et al., “Umbilical cord blood derived endothelial progenitor cells for tissue engineering of vascular grafts”, Ann Thorac Surg 78 (2004) no. 6, 2094.
- 254 A.I. Caplan, S.P. Bruder, “Mesenchymal stem cells: building blocks for molecular medicine in the 21st century”, Trends Mol Med 7 (2001) no. 6, 259.
- 255 D. Shi, Biomaterials and tissue engineering. 1st ed. Biological and medical physics, biomedical engineering. 2004, Berlin; New York: Springer-Verlag Berlin Heidelberg, 246 p.
- 256 M.P. Lutolf, J.A. Hubbell, “Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering”, Nat Biotechnol 23 (2005) no. 1, 47.
- 257 A.P. Pego, et al., “Biodegradable elastomeric scaffolds for soft tissue engineering”, J Control Release 87 (2003) no.s 1–3, 69.
- 258 H. Yoshimoto, et al., “A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering”, Biomaterials 24 (2003) no. 12, 2077.
- 259 K.A. Gross, L.M. Rodriguez-Lorenzo, “Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering”, Biomaterials 25 (2004) no. 20, 4955.
- 260 S.J. Lee, et al., “Macroporous biodegradable natural/synthetic hybrid scaffolds as small intestine submucosa impregnated poly(D,L-lactide-co-glycolide) for tissue-engineered bone”, J Biomater Sci Polym Ed 15 (2004) no. 8, 1003.
- 261 D.W. Hutmacher, “Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives”, J Biomater Sci Polym Ed 12 (2001) no. 1, 107.
- 262 P.A. Gunatillake, R. Adhikari, “Biodegradable synthetic polymers for tissue engineering”, Eur Cell Mater 5 (2003) 1, discussion 16.
- 263 D.W. Hutmacher, J.C. Goh, S.H. Teoh, “An introduction to biodegradable materials for tissue engineering applications”, Ann Acad Med Singapore 30 (2001) no. 2, 183.
- 264 R.P. Lanza, R.S. Langer, W.L. Chick, Principles of tissue engineering 1997, San Diego Austin: Academic Press; R.G. Landes. 808 p.
- 265 D.L. Butler, S.A. Goldstein, F. Guilak. “Functional tissue engineering: the role of biomechanics.” J Biomech Eng 122 (2000) no. 6, 570.
- 266 L.G. Griffith, “Emerging design principles in biomaterials and scaffolds for tissue engineering,” Ann N Y Acad Sci 961 (2002) 83.
- 267 D.W. Hutmacher, “Scaffolds in tissue engineering bone and cartilage”, Biomaterials 21 (2000) no. 24, 2529.
- 268 J. Hodde, “Naturally occurring scaffolds for soft tissue repair and regeneration”, Tissue Eng 8 (2002) no. 2, 295.
- 269
J. Chaudhuri,
M. Al-Rubeai
(2005).
Bioreactors for tissue engineeering: principles, design and operation. Dordrecht;
[London],
Springer.
10.1007/1-4020-3741-4 Google Scholar
- 270 I. Martin, D. Wendt, M. Heberer, “The role of bioreactors in tissue engineering”, Trends Biotechnol 22 (2004) no. 2, 80.
- 271 A. Ratcliffe, L.E. Niklason, “Bioreactors and bioprocessing for tissue engineering”, Ann N Y Acad Sci 961 (2002), 210.
- 272
F. H. Silver
(1994).
Biomaterials, medical devices, and tissue engineering: an integrated approach.
London; New York,
Chapman & Hall.
10.1007/978-94-011-0735-8 Google Scholar
- 273 K. Shetty, G. Paliyath, A. Pometto, R. E. Levin (Editors), Food Biotechnology, second edition, CRC Press, Boca Raton, FL (USA), 2006.
- 274 D. Wilke: Bacterial food additives and dietary supplements, in J.R. Neeser, J.B. German (eds.): Bioprocesses and biotechnology for functional foods and nutraceuticals, Marcel Dekker, Inc., New York 2004.
- 275 Y. Hara, H. Izui, H. Ito, US 2005/196846 A1, 2005.
- 276 H.J. Lee, H.C. Seo, N.H. Park, KR 9701830 B1, 1997.
- 277 N. Prabhu, J.S.C. Babu:, S. Sundaram, “l-glutamic acid production in a continuous stirred tank bioreactor using coimmobilized bio-catalyst using a fluorosensor”, Biomed. Sci. Instrum. 38 (2002) 495.
- 278 J. Ohnishi, M. Ikeda, “Comparisons of potentials for l-lysine production among different Corynebacterium glutamicum strains”, Biosci. Biotechnol. Biochem., 70 (2006) 1017.
- 279 B. Bathe, EP 1574582 A1, 2005.
- 280 J. Ohnishi, R. Katahira, S. Mitsuhashi, S. Kakita, M. Ikeda, “A novel gnd mutation leading to increased l-lysine production in Corynebacterium glutamicum”, FEMS Microbiol. Lett. 242 (2005) 265.
- 281 C. Winterhalter, W. Leinfelder, EP 885962/A1, 1998.
- 282 H. Takagi, S. Nakamori, A. Yamaguchi, K. Nishino, US 2005/221453 A1, 2005.
- 283 H. Takagi, S. Nakamori, M. Wada, H. Mori, EP 1571223 A2, 2005.
- 284 T. Roukas, “Biotechnology of citric acid production”, Food Sci. Technol. 148 (2006) 349.
- 285 T. P. West, B. Reed, G. Xie, “Fungal citric acid production on distillers grains”, Curr. Trends Microbiol. 1 (2004) 97.
- 286 P. Jamal, M. Z. Alam, M. Ramlan, M. Salleh, M.M. Nadzir, “Screening of Aspergillus for citric acid production from palm oil mill effluent”, Biotechnology 4 (2005) 275.
- 287 V.R. Bindumole, K. Sasikiran, C. Balagopalan, B. Nambisan, “Cassava starch factory waste as an alternative substrate for citric acid production by Aspergillus niger MTCC 282”, Indian J. Microbiol. 45 (2005) 235.
- 288 P. Johnson-Green, Introduction to food biotechnology, CRC Series in contemporary food science. CRC Press, Boca Raton, London, New York, D.C. Washington, 2002.
- 289 S.V. Kamzolova, I.G. Morgunov, A. Aurich, O.A. Perevoznikova, N.V. Shishkanova, U. Stottmeister, T.V. Finogenova, “Lipase secretion and citric acid production in Yarrowia lipolytica yeast grown on animal and vegetable fat”, Food Technol. Biotechnol. 43 (2005) 113.
- 290 W. Rymowicz, E. Cibis, “Optimization of citric acid production from glucose syrup by Yarrowia lipolytica using response surface methodology”, Electronic Journal of Polish Agricultural Universities 9 (2006) http://www.ejpau.media.pl/volume9/issue1/art-20.html
- 291 A. Vaidya, R. Pandey, S. Mudliar, M. Kumar, T. Chakrabarti, S. Devotta, “Production and recovery of lactic acid for polylactide — an overview”, Crit. Rev. Environ. Sci. Technol. 35 (2005) 429.
- 292 Y. Tokiwa, T. Raku, “Polylactide (PLA) biodegradable plastics. The front line for the biological degradation mechanism and the fermentation production. Kankyo Gijutsu”, Environmental Conservation Engineering 34 (2005) 399.
- 293 R.P. John, K.M. Nampoothiri, A. Pandey, “Solid-state fermentation for l-lactic acid production from agro wastes using Lactobacillus delbrueckii”, Process Biochem. 41 (2006) 759.
- 294 X.M. Wang, Q.H. Wang, N.Q. Ren, X.Q. Wang, “Lactic acid production from kitchen waste with a newly characterized strain of Lactobacillus plantarum”, Chem. Biochem. Eng. Q 19 (2005) 383.
- 295 E.N. Efremenko, O.V. Spiricheva, D.V. Veremeenko, A.V. Baibak, V.I. Lozinsky, “l-(+)-Lactic acid production using poly(vinyl alcohol)-cryogel-entrapped Rhizopus oryzae fungal cells”, J. Chem. Technol. Biotechnol. 81 (2006) 519.
- 296 Y. Liu, W. Liao, C. Liu, S. Chen, “Optimization of l-(+)-lactic acid production using pelletized filamentous Rhizopus oryzae NRRL 395”, Appl. Biochem. Biotechnol. (2006), 129–132, 844–853.
- 297 S.K. Singh, S.U. Ahmed, A. Pandey, “Metabolic engineering approaches for lactic acid production”, Process Biochem. 41 (2006) 991.
- 298 S. Kardinahl, D. Rabelt, M. Reschke, “Biotransformation: from vision to technology”, Chem. Ing. Tech. 78 (2006) 209.
- 299 C.I. Kado, C. J. Pujol, A.W. Chan, US 2004/086984 A1, 2004.
- 300 H.A. Emara, “l-ascorbic acid production by Azotobacter chroococcum”, New Egypt. J. Microbiol. 9 (2004) 310.
- 301 R.D. Hancock, R. Viola, “Biotechnological approaches for l-ascorbic acid production”, Trends Biotechnol. 20 (2002) 299.
- 302 A. Jimenez, M.A. Santos, M. Pompejus, J.L. Revuelta, “Metabolic engineering of the purine pathway for riboflavin production in Ashbya gossypii”, Appl. Environ. Microbiol. 71 (2005) 5743.
- 303 K.H. Lee, J.K. Han, Y.H. Park, K.H. Lee, H. Choi, J.H. Park, EP 1426446 A1, 2004).
- 304 C. Burgess, M. O'Connell-Motherway, W. Sybesma, J. Hugenholtz, D. van Sinderen, “Riboflavin production in Lactococcus lactis: Potential for in situ production of vitamin-enriched foods”, Appl. Environ. Microbiol. 70 (2004) 5769.
- 305 P.G. Bruinenberg, E.J. Smid, EP 1625795 A1, 2006.
- 306 X. Duan, S. Zhang, “Dunaliella salina biomass harvest. Haihuyan Yu Huagong”, Sea-lake Salt & Chemical Industry 27 (1998) 22.
- 307 A.A. Turenkov, Y.D. Turiyanskiy, E.A. Kunschikova, I.S. Kunschikova, A.S. Sten'ko, N.K. Bezkorovayna, M.S. Gorna, WO 2004/057012 A1, 2004.
- 308 T.J. Fang, Y.S. Cheng, “Improvement of astaxanthin production by Phaffia rhodozyma through mutation and optimization of culture conditions”, J. Ferment. Bioeng. 75 (1993) 466.
- 309 T. Rose, M. Kunz, “Production of isomalt”, Landbauforschung Voelkenrode 241 241 Sonderheft (2002), 75.
- 310 A. Krastanov, T. Yoshida, “Production of palatinose using Serratia plymuthica cells immobilized in chitosan”, J. Ind. Microbiol. Biotechnol. 30 (2003) 593.
- 311 H.H. Sato, A.L.L. Moraes:, BR 2001002556 A, 2003.
- 312 X. Li, D. Zhang, F. Chen, J. Ma, Y. Dong, L. Zhang, “Klebsiella singaporensis sp. nov., a novel isomaltulose-producing bacterium” Int. J. Syst. Evol. Microbiol. 54 (2004) 2131.
- 313 T. Doerr, L. Guderjahn, J. Kowalczyk, WO 2006/007993 A1, 2006.
- 314 J. Kowalczyk, T. Doerr, L. Guderjahn, H. Evers, J.K. Nielebock, WO 2005/061690 A1, 2005.
- 315 Y. Tezuka, Y. Nagai, WO 2004/062385 A1, 2004.
- 316 P.S.J. Cheetham:, “Biotransformations; new routes to food ingredients”, Chem. Ind. 7 (1995) 265.
- 317 J.M. Guisan, G. Alvaro, J. Aguado, M.D. Romero, M.J. Guerra, E. Polo, “Application of immobilized thermolysin derivatives for aspartame synthesis”, Rev. R. Acad. Cienc. Exactas Fis. Nat. Madrid 88 (1994) 443.
- 318 J.A. Vignoli, M.A.P.C. Celligoi:, R.S.F. Silva:, “Development of a statistical model for sorbitol production by free and immobilized Zymomonas mobilis in loofa sponge Luffa cylindrica”, Process Biochem. 41 (2006) 240.
- 319 M.L. Cazetta, M.A.P.C. Celligoi:, J.B. Buzato, I.S. Scarmino, R.S.F.da Silva, “Optimization study for sorbitol production by Zymomonas mobilis in sugar cane molasses”, Process Biochem. 40 (2005) 747.
- 320 D.V. Cortez, I.C. Roberto, “Effect of phosphate buffer concentration on the batch xylitol production by Candida guilliermondii”, Lett. Appl. Microbiol. 42 (2006) 321.
- 321 M.P. Vasquez, M.B. De Souza, Jr., N. Pereira, Jr., “RSM analysis of the effects of the oxygen transfer coefficient and inoculum size on the xylitol production by Candida guilliermondii”, Appl. Biochem. and Biotechnol. (2006), 129–132, 256–264.
- 322 F.C. Sampaio, C. Alencar de Moraes, D. De Faveri, P. Perego, A. Converti, F.M.L. Passos:, “Influence of temperature and pH on xylitol production from xylose by Debaryomyces hansenii UFV-170”, Process Biochem. 41 (2006) 675.
- 323 A.I. El-Batal, S.A. Khalaf, “Xylitol production from corn cobs hemicellulosic hydrolysate by Candida tropicalis immobilized cells in hydrogel copolymer carrier”, Inter. J. Agric. Biol. 6 (2004) 1066.
- 324 J.M. Marton, M.G.A. Felipe:, J.B. Almeida e Silva, A. Pessoa, Jr., “Evaluation of the activated charcoals and adsorption conditions used in the treatment of sugarcane bagasse hydrolysate for xylitol production”, Braz. J. Chem. Eng. 23 (2006) 9.
- 325 F. Kamal, H. Mehrgan, M.M. Assadi, S.A. Mortazavi, “Mutagenesis of Xanthomonas campestris and selection of strains with enhanced xanthan production”, Iran. Biomed. J. 7 (2003) 91.
- 326 A. Becker, F. Katzen, A. Pühler, L. Ielpi, “Xanthan gum biosynthesis and application: a biochemical/genetic perspective”, Appl. Microbiol. Biotechnol. 50 (1998) 145.
- 327 J. Janaun, K.W. Wong, C.M. Chu, A. Prabhakar: Evaluation of xanthan production from Xanthomonas campestris using sago starch as carbon source, 7th World Congress of Chemical Engineering, Glasgow, July 10–14, 2005.
- 328 E.J. Vandamme, W. Soetaert, “Biotechnical modification of carbohydrates”, FEMS Microbiol. Rev. 16 (1995) 163.
- 329 A. Seto, H. Yoshijima, K. Toyomasu, H.O. Ogawa, H. Kakuta, K. Hosono, K. Ueda, T. Beppu, “Effective extracellular trehalose production by Cellulosimicrobium cellulans”, Appl. Microbiol. Biotechnol. 64 (2004) 794.
- 330 J.C. Gonzalez-Hernandez, M. Jimenez-Estrada, A. Pena, “Comparative analysis of trehalose production by Debaryomyces hansenii and Saccharomyces cerevisiae under saline stress”, Extremophiles 9 (2005) 7.
- 331 M. Kubota, I. Sawatani, K. Oku, K. Takeuchi, S. Murai, “The development of (,(- trehalose production and its applications”, J. Appl. Glycosci. 51 (2004) 63.
- 332 S. Kishino, J. Ogawa, Y. Omura, K. Matsumura, S. Shimizu, “Conjugated linoleic acid production from linoleic acid by lactic acid bacteria”, J. Am. Oil Chem. Soc. 79 (2002) 159.
- 333 T.Y. Lin, “Conjugated linoleic acid production by cells and enzyme extract of Lactobacillus delbrueckii ssp. bulgaricus with additions of different fatty acids”, Food Chem. 94 (2006) 437.
- 334 A. Ando, J. Ogawa, S. Kishino, S. Shimizu, “Conjugated linoleic acid production from castor oil by Lactobacillus plantarum JCM 1551”, Enzyme Microb. Technol. 35 (2004) 40.
- 335 J. Ogawa, K. Matsumura, S. Kishino, Y. Omura, S. Shimizu, “Conjugated linoleic acid accumulation via 10-hydroxy-12-octadecaenoic acid during microaerobic transformation of linoleic acid by Lactobacillus acidophilus”, Appl. Environ. Microbiol. 67 (2001) 1246.
- 336 R.A. Rastall, G.R. Gibson, Prebiotic oligosaccharides: evaluation of biological activities and potential future developments, Int. J. Probiotics Prebiotics (2002) 107.
- 337 T. Mizoa, “Lactulose as a growth promoting factor for Bifidobacterium and its physiological aspects”, Bull. Int. Dairy Fed. 313 (1996) 43.
- 338 Y.J. Lee, C.S. Kim, D.K. Oh, “Lactulose production by (-galactosidase in permeabilized cells of Kluyveromyces lactis”, Appl. Microbiol. Biotechnol. 64 (2004) 787.
- 339 J. Mayer, J. Conrad, I. Klaiber, S. Lutz-Wahl, U. Beifuss, L. Fischer, “Enzymatic production and complete nuclear magnetic resonance assignment of the sugar lactulose”, J. Agric. Food Chem. 23 (2004) 6983.
- 340 R. Gupta, P. Gigras, H. Mohapatra, V.K. Goswami, B. Chauhan, “Microbial (-amylases: a biotechnological perspective”, Process Biochem. 38 (2003) 1599.
- 341 M.J.E.C. van der Maarel, B. van der Veen, J.C.M. Uitdehaag:, H. Leemhuis, L. Dijkhuizen, “Properties and applications of starch-converting enzymes of the (-amylase family”, J. Biotechnol. 94 (2002) 137.
- 342 B. Balkan, F. Ertan, “Production and properties of (-amylase from Penicillium chrysogenum and its application in starch hydrolysis”, Prep. Biochem. Biotechnol. 35 (2005) 169.
- 343 N. Declerck, M. Machius, P. Joyet, G. Wiegand, R. Huber, C. Gaillardin, “Engineering the thermostability of Bacillus licheniformis (-amylase”, Biologia 57 (2002) 203.
- 344 J.R. Whitaker, A.C.J. Voragen, D. W. S. Wong (Eds.) Handbook of food enzymology 2002, Marcel Dekker, New York.
- 345 E.A. Snellman, R.R. Colwell, “Acinetobacter lipases: molecular biology, biochemical properties and biotechnological potential”, J. Ind. Microbiol. Biotechnol. 31 (2004) 391.
- 346 Y. Shimada: “Modification of oils and fats by enzymatic process”, Mem. Fac. Eng. Osaka City Univ. 2004, 45, 77–80.
- 347 W. Tungjaroenchai, C.H. White, W.E. Holmes, M.A. Drake, “Influence of adjunct cultures on volatile free fatty acids in reduced-fat Edam cheeses”, J. Dairy Sci. 87 (2004) 3224.
- 348 K.E. Jaeger, T. Eggert, “Lipases for biotechnology”, Curr. Opin. Biotechnol. 13 (2002) 390.
- 349 S. Ferreira-Dias, A.C. Correia, M.M.R. da Fonseca, “Response surface modeling of glycerolysis catalyzed by Candida rugosa lipase immobilized in different polyurethane foams for the production of partial glycerides”, J. Mol. Catal. B Enzym. 21 (2003) 71.
- 350 P. Dominguez de Maria, C. Carboni-Oerlemans, B. Tuin, G. Bargeman, A. van der Meer, R. van Gemert, “Biotechnological applications of Candida antarctica lipase A: State-of-the-art”, J. Mol. Catal. B Enzym. 37 (2005) 36.
- 351 P. Fickers, M. Ongena, J. Destain, F. Weekers, P. Thonart, “Production and down-stream processing of an extracellular lipase from the yeast Yarrowia lipolytica”, Enzyme Microb. Technol. 38 (2006) 756.
- 352 H. Zorn, H. Bouws, M. Takenberg, M. Nimtz, R. Getzlaff, D.E. Breithaupt, R.G. Berger, “An extra-cellular carboxylesterase from the basidiomycete Pleurotus sapidus hydrolyses xanthophyll esters”, Biol. Chem. 386 (2005) 435.
- 353 R.S. Jayani, S.S. Saxena, R. Gupta, “Microbial pectinolytic enzymes: a review”, Process Biochem. 40 (2005) 2931.
- 354 L. Edens, A.A. van Dijk, S. Hopper, H. Ilgenfritz, W. Kemmner, S. Klugbauer, A. Fritz, D. Maier, P. Tan, F. Spreafico, A. Stock, E. Kimpel, O. Heinrich, B. Gerhard, A. Ehrenreich, S. Losko, C. Wagner, U. Folkers, R. Albang, WO 2004/074468 A1, 2004.
- 355 Z. Yu, “Pectinase XXL — technical revolution in fruit and vegetable juice processing industry”, Shipin Gongye Keji (Science and Technology of Food Industry) 24 (2003) 65.
- 356 B. Li, G. Zhao, G. Shuai, H. Hao, “Application of pectinase to the treatment of Kiwi fruit juice”, Niangjiu (Liquer making) 29 (2002) 71.
- 357 Z. He, W. Li, X. Lin, “Study on pectinase processing techniques in loquat fruit juice”, Shipin Kexue (Food Science) 25 (2004) 72.
- 358 C. Grassin, P. Fauquembergue, “Application of pectinases in beverages”, Prog. Biotechnol. 14 (1996) 453.
- 359 M.T. Numan, N.B. Bhosle, “(-l-Arabinofuranosidases: the potential applications in biotechnology”, J. Ind. Microbiol. Biotechnol. 33 (2006) 247.
- 360 A.E.S. Espinosa:, J.S. Pena, V.M. Santana, R.G. Fernandez, J.M. Grillo, “Comparison of bovine chymosin secreted from recombinant strains of Pichia pastoris and Kluyveromyces lactis”, Biotechnol. Apl. 16 (1999) 160.
- 361 A.J.J. van Ooyen, P. Dekker, M. Huang, M.M.A. Olsthoorn:, D.L. Jacobs, P.A. Colussi, C.H. Taron, “Heterologous protein production in the yeast Kluyveromyces lactis”, FEMS Yeast Res. 6 (2006) 381.
- 362 F. Dajnowiec, A. Reps, I. Jarmul, R. Wasilewski, “Rennet substitutes manufactured with the use microorganisms modified by genetic engineering methods”, Przem. Spozyw. 51 (1997) 39.
- 363 V.V. Starovoitova, T.I. Velichko, L.A. Baratova, I.Y. Filippova, G.I. Lavrenova, “A comparative study of functional properties of calf chymosin and its recombinant forms”, Biochemistry Mosc. 71 (2006) 320.
- 364 S. Kumar, N.S. Sharma, M.R. Saharan, R. Singh, “Extracellular acid protease from Rhizopus oryzae: purification and characterization”, Process Biochem. 40 (2005) 1701.
- 365 S. Kumar, N.S. Sharma, M.R. Saharan, R. Singh, “Biochemical changes during ripening of Cheddar cheese prepared by milk clotting enzyme from Rhizopus oryzae”, J. Food Sci. Technol. 41 (2004) 279.
- 366 J.E. Staunton, D.K. Slonim, H.A. Coller, P. Tamayo, M.J. Angelo, J. Park, U. Scherf, J.K. Lee, W.O. Reinhold, J.N. Weinstein, J.P. Mesirov, E.S. Lander, T.R. Golub, “Chemosensitivity prediction by transcriptional profiling”, Proc Natl Acad Sci U S A 98 (2001) 10787.
- 367 F.S. Collins, L.D. Brooks, A. Chakravarti, “A DNA polymorphism discovery resource for research on human genetic variation”, Genome Res. 8 (1998) 1229.
- 368 M.K. Halushka, I.B. Fan, K. Bently, L. Hsie, N. Shen, A. Weder, R. Cooper, R. Lipshutz, A. Chakarvarti, “Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis”, Nat Genet. 22 (1999) 239.
- 369 D.G. Wang, J.B. Fan, C.J. Siao, A. Berno, P. Young, R. Sapolsky, G. Ghandour, N. Perkins, E. Winchester, J. Spencer, L. Kruglyak, L. Stein, L. Hsie, T. Topaloglou, E. Hubbell, E. Robinson, M. Mittmann, M.S. Morris, N. Shen, D. Kilburn, J. Rioux, C. Nusbaum, S. Rozen, T.J. Hudson, E.S. Lander, et al. “Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome”, Science 280 (1998) 1077.
- 370 R.A. Heller, M. Schena, A. Chai, D. Shalon, T. Bedilion, J. Gilmore, D.E. Woolley, R.W. Davis, “Discovery and analysis of inflammatory disease-related genes using cDNA microarrays”, Proc. Natl. Acad. Sci. USA 94 (1997) 2150.
- 371 K. Bussow, Z. Konthur, A. Lueking, H. Lehrach, G. Walter, “Protein array technology. Potential use in medical diagnostics”, Am J Pharmacogenomics, 1 (2001) no. 1, 37.
- 372 J. Khan, M. Bittner, Y. Chen, P.S. Meltzer, J.M. Trent, “DNA microarray technology: the anticipated impact on the study of human disease”, Biochim. Biophys. Acta 1423 (1999) M17.
- 373 W.E. Evans, R.K. Guy “Gene expression as a drug discovery tool”, Nat Genet. 36 (2004) no. 3, 214.
- 374 K. Ochi, Y. Daigo, T. Katagiri, S. Nagayama, T. Tsunoda, A. Myoui, N. Naka, N. Araki, I. Kudawara, M. Ieguchi, Y. Toyama, J. Toguchida, H. Yoshikawa, Y. Nakamura, “Prediction of response to neoadjuvant chemotherapy for osteosarcoma by gene-expression profiles”, Int J Oncol. 24 (2004) no. 3 647.
- 375 P.Y. Lum, C.D. Armour, S.B. Stepaniants, G. Cavet, M.K. Wolf, J.S. Butler, J.C. Hinshaw, P. Garnier, G.D. Prestwich, A. Leonardson, P. Garrett-Engele, C.M. Rush, M. Bard, G. Schimmack, J.W. Phillips, C.J. Roberts, D.D. Shoemaker, “Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes”, Cell 116 (2004) Jan 9, 121.
- 376 K. Stegmaier, K.N. Ross, S.A. Colavito, S. O'Malley, B.R. Stockwell, T.R: Golub , “Gene expression-based high-throughput screening(GE-HTS) and application to leukemia differentiation”, Nat Genet. 36 (2004) no. 3, 257.
- 377 D.R. Call, F.J. Brockman, D.P. Chandler, “Detecting and genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays”, Int J Food Microbiol. 67 (2001) 71.
- 378 V. Chizhikov, A. Rasooly, K. Chumakov, D.D. Levy, “Microarray analysis of microbial virulence factors”, Appl Environ Microbiol. 67 (2001) 3258.
- 379 I. Nagano, M. Kunishima, Y. Itoh, Z. Wu, Y. Takahashi, “Detection of verotoxin-producing Escherichia coli O157:H7 by multiplex polymerase chain reaction”, Microbiol Immunol. 42 (1998) 371.
- 380 J. Yu, J.B. Kaper, “Cloning and characterization of the eae gene of enterohaemorrhagic Escherichia coli O157:H7”, Mol Microbiol. 6 (1992) 411.
- 381 R. Prager, U. Strutz, A. Fruth, H. Tschape, “Subtyping of pathogenic Escherichia coli strains using flagellar (H)-antigens: serotyping versus fliC polymorphisms”, Int J Med Microbiol. 292 (2003) 477.
- 382 Y. Liu-Stratton, S. Roy, C.K. Sen, “DNA microarray technology in nutraceutical and food safety” Toxicol Lett. 150 (2004) 29.
- 383 S. Wilkening, F. Stahl, A. Bader, “Comparison of primary human hepatocytes and hepatoma cell line HepG2 with regard to biotransformation properties”, Drug Metabolism and Disposition 31 (2003) 1035.
- 384 P. Dabrowska: The division of powers between the EU and the Member States with regard to deliberate release of GMOs (the new Directive 2001/18), GLJ, 2002, p. 3.
Further Reading
- D. Bagchi, F. Lau, D. Ghosh (eds.): Biotechnology in Functional Foods and Nutraceuticals, CRC/Taylor & Francis, Boca Raton 2010.
- M. Butler (ed.): Cell Culture and Upstream Processing, Taylor & Francis, New York, NY 2007.
- J. Chaudhuri, M. Al-Rubeai (eds.): Bioreactors for Tissue Engineering, Springer, Dordrecht 2005.
-
R. I. Freshney:
Culture of Animal Cells,
5th ed.,
Wiley-Liss,
Hoboken, NJ
2005.
10.1002/9780471747598 Google Scholar
-
S. C. Gad (ed.):
Handbook of Pharmaceutical Biotechnology,
Wiley-Interscience,
Hoboken
2007.
10.1002/0470117117 Google Scholar
-
G. Gellissen (ed.):
Production of Recombinant Proteins,
Wiley-VCH,
Weinheim
2005.
10.1002/3527603670 Google Scholar
- R. Lanza, R. Langer, J. Vacanti: Principles of Tissue Engineering, 3rd ed., Elsevier Acad. Press, Amsterdam 2007.
- U. Meyer, T. Meyer, J. Handschel, H. P. Wiesmann (eds.): Fundamentals of Tissue Engineering and Regenerative Medicine, Springer, Heidelberg 2009.
- K. Shetty, G. Paliyath, A. Pometto, R. E. Levin (eds.): Food Biotechnology, 2nd ed., CRC/Taylor & Francis, Boca Raton 2006.
-
W. Soetaert,
E. J. Vandamme (eds.):
Industrial Biotechnology,
Wiley-VCH,
Weinheim
2010.
10.1002/9783527630233.ch Google Scholar
- G. Walsh: Pharmaceutical Biotechnology, Wiley, Chichester 2007.