Absorption, 1. Fundamentals
Johann Schlauer, Michael Wilken,
Siddhartha Mukherjee,
Matthias Linicus,
Michael Wilken
Air Liquide Engineering & Construction, Frankfurt, Germany
Search for more papers by this authorSiddhartha Mukherjee
Air Liquide Engineering & Construction, Delhi, India
Search for more papers by this authorMatthias Linicus
Air Liquide Engineering & Construction, Frankfurt, Germany
Search for more papers by this authorJohann Schlauer, Michael Wilken,
Siddhartha Mukherjee,
Matthias Linicus,
Michael Wilken
Air Liquide Engineering & Construction, Frankfurt, Germany
Search for more papers by this authorSiddhartha Mukherjee
Air Liquide Engineering & Construction, Delhi, India
Search for more papers by this authorMatthias Linicus
Air Liquide Engineering & Construction, Frankfurt, Germany
Search for more papers by this authorFirst published: 24 March 2022
Abstract
The article contains sections titled:
1 | Introduction |
2 | Thermodynamic Fundamentals |
3 | Enthalpy of Absorption |
4 | Mass Transfer Fundamentals |
4.1 | Mass Transfer Coefficients |
4.2 | Effect of Solute Concentration |
4.3 | Correlation of Mass Transfer Coefficients |
4.4 | Mass Transfer and Chemical Reaction |
4.5 | Modeling of Mass Transfer with Chemical Reaction |
5 | Physical Absorption |
6 | Chemical Absorption |
6.1 | Introduction |
6.2 | Reaction Regimes |
6.3 | Applications of Absorption with Chemical Reaction |
6.3.1 | Application of Amines for Absorption of Carbon Dioxide and Hydrogen Sulfide |
6.3.2 | Application of Activators in Chemical Absorption |
List of Symbols | |
References |
References
- 1Gmehling, J., Kolbe, B., Kleiber, M. and Rarey, J. (2012) Chemical Thermodynamics for Process Simulation, J. Wiley & Sons.
- 2Renon, H. and Prausnitz, J.M. (1968) Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures, AIChe J. 14, 135–144.
- 3Gmehling, J. and Kolbe, B. (1988) Angewandte Chemische Thermodynamik für Chemiker, Verfahrenstechniker und Chemieingenieure, Thieme Verlag, Stuttgart.
- 4Trendenslund, A. and Rasmussen, P. (1985) From UNIFAC to SUPERFAC and Back ? Fluid Phase Equilib. 24, 115–150.
- 5DECHEMA Chemistry Data Series, Vol I, III, IV and V; Order to: DECHEMA e.V. Theodor-Heuss-Allee 25, D-60486 Frankfurt/Main.
- 6Kontogeorgis, G.M., Voutsas, E., Yakoumis, I. and Tassios, D.P. (1996) An Equation of State for Associating Fluids, Ind. Eng. Chem. Res. 35, 4310.
- 7Gross, J. and Sadowski, G. (2000) Application of Perturbation Theory to a Hard-chain Reference Fluid: An Equation of State for Square-well Chains, Fluid Phase Equilib. 168, 183.
- 8Gross, J. and Sadowski, G. (2001) Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules, Ind. Eng. Chem. Res. 40, 1244–1260.
- 9Gross, J. and Sadowski, G. (2002a) Modeling Polymer Systems Using the Perturbed-chain Statistical Associating Fluid Theory Equation of State, Ind. Eng. Chem. Res. 41, 1084–1093.
- 10Schwartzentruber, J. and Renon, H. (1989) Extension of UNIFAC to High Pressures and Temperatures by the Use of a Cubic Equation-of-State, Ind. Eng. Chem. Res. 28, 1049–1955.
- 11Holderbaum, T. and Gmehling, J. (1991) PSRK: A Group Contribution Equation-of-state Based on UNIFAC, Fluid Phase Equilib. 70, 251–265.
- 12Ahlers, J. and Gmehling, J. (2001) Development of a Universal Group Contribution Equation of State: I. Prediction of Liquid Densities for Pure Compounds with a Volume Translated Peng-Robinson Equation of State, Fluid Phase Equilib. 191, 177–188.
- 13Thormann, K. (1959) Absorption, Springer Verlag, Berlin.
10.1007/978-3-642-45939-9 Google Scholar
- 14Jou, F.-Y., Otto, F.D. and Mather, A.E. (1982) Solubility of H2S and CO2 in Aqueous Methyldiethanolamine Solutions, Ind. Eng. Chem. Process Des. Dev. 21, 539–544.
- 15Schillgalies, I. and Gmehling, J. (2012) Systematische Messung der auftretenden Enthalpieeffekte bei der CO2-Absorption in wässrigen Alkoholaminlösungen. Final Report, Max-Buchner-Stiftung Nr. 2903.
- 16Sridharan, K. and Sharma, M.M. (1976) New Systems and Methods for the Measurements of Effective Interfacial Area and Mass Transfer Coefficients in Gas-Liquid Contactors, Chem. Eng. Sci. 31, 767–774.
- 17Joosten, G.E.H. and Danckwerts, P.V. (1973) Chemical Reactions and Effective Interfacial Areas in Gas Absorption, Chem. Eng. Sci. 28, 453–461.
- 18Perry, R.H., Green, D.W. and Maloney, J.O. (1984) Chemical Engineers' Handbook, 5th edn, McGraw-Hill, New York, pp. 14–1–14–40.
- 19Danckwerts, P.V. and Sharma, M.M. (1966) The Absorption of Carbon Dioxide into Solutions of Alkalis and Amines, Chem. Eng. 244–280.
- 20Richardson, J.F., Harker, J.H. and Backhurst, J.R. (2002) Coulson and Richardson's Chemical Engineering, 5th edn, vol. 2, Butterworth-Heinemann.
- 21Bird, R.B., Steward, W.E. and Lightfoot, E.N. Transport Phenomena, J. Wiley & Sons, New York, p. 1965 ff.
- 22Schulman, W.H.L., Ulbrich, C.F., Proulx, A.Z. and Zimmermann, J.O. (1955) Performance of Packed Columns III: Wetted and Effective Interfacial Areas, Gas and Liquid Phase Mass Transfer Rates, AIChE J. 1, 253.
- 23Andrew, S.P.S. (1961) Aspects of Gas/Liquid Mass Transfer, Acta Technol. Chim. 153.
- 24Onda, K., Takeuchi, H. and Okumoto, Y. (1968) Mass Transfer Coefficients between Gas and Liquid Phases in Packed Columns, J. Chem. Eng. Jpn. 1, 56–62.
- 25Thuy, L.T. and Weiland, R.H. (1976) Mechanisms of Gas Desorption from Aqueous Solution, Ind. Eng. Chem. Fundam. 15, 286–293.
- 26Weiland, R.H., Rawal, M. and Rice, G. (1982) Stripping of Carbon Dioxide from Monoethanolamine Solutions in a Packed Column, AIChE J. 28, 963–973.
- 27Scheffe, R.D. and Weiland, R.H. (1987) Mass-Transfer Characteristics of Valve Trays, Ind. Eng. Chem. Res. 26, 228–236.
- 28Pocher, B., Schmok, K. and Wünsch, G. (1984) Experimentelle Untersuchungen zum Studium des CO2-Stofftransportes bei der Gasreinigung mittels der physikalischen Tieftemperatur-Absorption, Freiberg. Forschungsh. A A 698, 5–78.
- 29Yüksel, M.L. and Schlünder, E.U. (1987) Heat and Mass Transfer in Non-Isothermal Absorption of Gases in Falling Liquid Film. Part I and Part II, Chem. Eng. Process. 22, 193–213.
- 30Hörner, B., Viebahn, U. and Dialer, K. (1986) Mass Transfer in Turbulent Liquid during Absorption, Chem. Eng. Sci. 41, 1723–1733.
- 31Hikita, H. and Konishi, Y. (1984) Desorption of Carbon Dioxide from Supersaturated Water in an Agitated Vessel, AIChE J. 30, 945–951.
- 32van Krewelen, D.W. and Hoftijzer, P.J. (1948) Kinetics of Gas-Liquid Reactions. Part I. General Theory, Rec. Trav. Chim. 67, 563.
10.1002/recl.19480670708 Google Scholar
- 33Danckwerts, P.V. (1951) Significance of Liquid-Film Coefficients in Gas Absorption, Ind. Eng. Chem. 43, 1460.
- 34Danckwerts, P.V. (1979) The Reaction of CO2 with Ethanolamines, Chem. Eng. Sci. 34, 443–446.
- 35Pinsert, B.R.W., Pearson, L. and Roughton, F.J.W. (1956) The Kinetics of Combination of CO2 with OH−, Trans. Faraday Soc. 52, 1512.
- 36Sharma, M.M. (1965) Kinetics of Reaction of Carbonyl Sulfide and Carbon Dioxide with Amines and Catalysis with Brønsted Bases of the Hydrolysis of COS, Trans. Faraday Soc. 61, 681–688.
- 37Hikita, H., Asai, S., Ishikawa, H. and Honda, M. (1977) The Kinetics of Reaction of Carbon Dioxide with Monoethanolamine, Diethanolamine and Triethanolamine by Rapid Mixing Method, Chem. Eng. J. (Lausanne) 13, 7–12.
- 38Yu, W.C., Astarita, G. and Savage, D.W. (1985) Kinetics of Carbon Dioxide Reaction in Solutions of Methyldiethanolamine, Chem. Eng. Sci. 40, 1585–1590.
- 39Versteeg, G.F. (1987) Mass Transfer and Chemical Reaction Kinetics in Acid Gas Treating Processes, Twente University Enschede, NL, Thesis.
- 40Haimour, N., Didarian, A. and Sandall, O.C. (1987) Kinetics of the Reaction Between Carbon Dioxide and Methyldiethanolamine, Chem. Eng. Sci. 42, 1393–1398.
- 41Blauwhoff, P.M.M., Versteeg, G.F. and van Swaij, W.P.M. (1983) A Study on the Reaction between CO2 and Alkanolamines in Aqueous Solution, Chem. Eng. Sci. 38, 1411–1429, 39 (1984) 207 – 225.
- 42Laddha, S.S. and Danckwerts, P.V. (1981) Reaction of CO2 with Ethanolamines Kinetics from Gas-Absorption, Chem. Eng. Sci. 36, 479–482.
- 43Caplow, M. (1968) J. Am. Chem. Soc. 90, 6795.
- 44Sada, E., Kumazawa, H., Han, Z.Q. and Matsuyama, H. (1985) Chemical Kinetics of the Reaction of Carbon Dioxide with Ethanolamine in Nonaqueous Solvents, AIChE J. 31, 1297–1303.
- 45Danckwerts, P.V. and Kennedy, A.M. (1954) Kinetics of Liquid-Film Processes in Gas Absorption, Part 1: Models of the Absorption Process, Trans. Inst. Chem. Eng. 32, 49.
- 46Ouverkerk, C. (1978) Design for Selective H2S Absorption, Hydrocarbon Process 57, 89–94.
- 47Cornelissen, A.E. (1980) Simulation of Absorption H2S and CO2 into Aqueous Alkanolamines in Tray and Packed Columns, Trans. Inst. Chem. Eng. 58, 242–250.
- 48Cornelisse, R., Beenackers, A.A.C.M., van Beckum, F.P.H. and van Swaij, W.P.M. (1980) Numerical Calculation of Simultaneous Mass Transfer of Two Gases accompanied by Complex Reversible Reactions, Chem. Eng. Sci. 35, 1245–1260.
- 49Counce, R.M. and Perona, J.J. (1983) Scrubbing of Gaseous Nitrogen Oxides in Packed Towers, AIChE. J. 29, 26–32.
- 50Yu, W.C. and Astarita, G. (1987) Selective Absorption of Hydrogen Sulfide in Tertiary Amine Solution, and Design of Packed Towers for Selective Chemical Absorption, Chem. Eng. Sci. 42, 419–433.
- 51Cramer, S.D. (1982) The Solubility of Methane, Carbon Dioxide, and Oxygen in Brines from 0 to 300°C, Bur. Mines Rep. Invest. 1–17.
- 52Serra, M.C.C., Pessoa, F.L.P. and Palavra, A.M.F. (2006) Solubility of Methane in Water and in a Medium for the Cultivation of Methanotrophs Bacteria, J. Chem. Thermodyn. (12), 38, 1629–1633.
- 53Lekvam, K. and Bishnoi, P.R. (1997) Dissolution of Methane in Water at Low Temperatures and Intermediate Pressures, Fluid Phase Equilib. 131, 297–309.
- 54Landolt-Börnstein, IV, 4 c, Springer Verlag, Berlin, 1976.
- 55Walas, S.W. (1984) Phase Equilibria in Chemical Engineering, 1st Edition - December 27, 1984, Elsevier, eBook ISBN: 9781483145082.
- 56Prausnitz, J.M., Andersen, T.F., Grens, E.A., et al. (1980) Computer Calculations for Multicomponent Vapor-Liquid Equilibria, Prentice Hall, Englewood Cliffs, NJ.
- 57Westmeier, S., Hanthal, W.H., Hecht, G., et al. (1986) Stoffwerte, Verfahrenstechnische Berechnungsmethoden,” Part 7, VCH Verlagsgesellschaft, Weinheim/New York.
- 58Landolt-Börnstein, IV, 42 c, Springer Verlag, Berlin, 1980.
- 59IUPAC-NIST Solubility Database, https://srdata.nist.gov/solubility/ (assessed 01 February 2022).
- 60http://www.ddbst.de/ddb.html (accessed 2 September 2021).
- 61https://dechema.de/en/detherm.html (accessed 2 September 2021).
- 62Barry Burr and Lili Lyddon, Bryan Research & Engineering, Inc., Bryan, TX. https://bre.com/PDF/A-Comparison-of-Physical-Solvents-for-Acid-Gas-Removal-REVISED.pdf (accessed 6 September 2021).
- 63Whitman, W.G. (1923) The Two-Film Theory of Absorption, Chem. Met. Eng. 29, 147.
- 64Levenspiel, O. (1999) Chemical Reaction Engineering, 3rd edn, J. Wiley & Sons, New York.
10.1021/ie990488g Google Scholar
- 65Rinprasertmeechai, S., Chavadej, S., Rangsunvigit, P. and Kulprathipanja, S. (2012) Carbon Dioxide Removal from Flue Gas Using Amine-Based Hybrid Solvent Absorption, Int. J. Chem. Biol. Eng. 6.
- 66Park, S.W., Choi, B.S. and Lee, J.W. (2006) Chemical Absorption of Carbon Dioxide with Triethanolamine in Non-ionic Solutions, Korean J. Chem. Eng. 23 (1), 138–143.
- 67Astarita, G., Savage, D.W. and Bisio, A. (1983) Gas Treating with Chemical Solvents, J. Wiley & Sons, New York.
- 68Polasek, J. and Bullin, J.A. (2006) Selecting Amines for Sweetening Units, Bryan Res. Eng. 1–9.
- 69Xu, G.W., Zhang, C.F., Qin, S.J. and Wang, Y.W. (1992) Kinetics Study on Absorption of Carbon Dioxide into Solutions of Activated Methyldiethanolamine, Ind. Eng. Chem. Res. 31, 921–927.
- 70Tobiesen, F.A. and Svendsen, H.F. (2006) Study of a Modified Amine-based Regeneration Unit, Ind. Eng. Chem. Res. 31, 921–927.
- 71Closmann, F., Nguyen, T. and Rochelle, G.T. (2009) MDEA/Piperazine as a Solvent for CO2 Capture, Energ. Proc. 1, 1351–1357.
- 72Choi, W.J., Seo, J.B., Jung, J.H. and Oh, K.J. (2009) Removal Characteristics of CO2 using Aqueous MEA/AMP Solutions in the Absorption and Regeneration Process, Chem. Eng. Progr. 81, 32–36.
- 73Cheng-Hsiu, Y., Chih-Hung, H. and Chung-Sung, T. (2012) A Review of CO2 Capture by Absorption and Adsorption, Aerosol Air Qual. Res. 12, 745–769.
- 74Sada, E., Kumuzawa, H. and Butt, M.A. (1976) Gas Absorption with Consecutive Chemical Reactions: Absorption of Carbon Dioxide into Aqueous Amine Solutions, Can. J. Chem. Eng. 54, 421–424.
- 75Hikita, H., Asai, S., Kaatsu, Y. and Ikuno, S. (1979) Absorption of Carbon Dioxide into Aqueous Monoethanolamine Solutions, AIChE J. 25, 793–800.
- 76Bishnoi, S. and Rochelle, G.T. (2002) Absorption of Carbon Dioxide in Aqueous Piperazine/Methyldiethanolamine, AIChE 48, 2788–2799.
- 77Bishnoi, S. and Rochelle, G.T. (2000) Absorption of Carbon Dioxide into Aqueous Piperazine: Reaction Kinetics, Mass Transfer and Solubility, Chem. Eng. Sci. 55, 5531–5543.
- 78Xiao, J., Li, C. W., Li, M. H., (2000) Kinetics of Absorption of Carbon Dioxide into Aqueous Solutions of 2-Amino-2-methyl-1-propanol + Monoethanolamine, Chem. Eng. Sci., 55: 161-175.
- 79Liao, C.H. and Li, M.H. (2002) Kinetics of Absorption of Carbon Dioxide into Aqueous Solutions of Monoethanolamine + N-Methyldiethanolamine, Chem. Eng. Sci. 57, 4569–4582.
- 80Gouedard, C., Picq, D., Launay, F. and Carrette, P.-L. (2012) Int. J. Greenh. Gas. Control. 10, 244.
- 81Davis, J. and Rochelle, G. (2009) Energ. Proc. 1, 1.
10.1016/j.egypro.2009.01.045 Google Scholar
- 82Fostas, B., Gangstad, A., Nenseter, B., et al. (2011) Energ. Proc. 4, 1566.
- 83Fytianos, G., Grimstvedt, A., Knuutila, H. and Svendsen, H.E. (2014) Energ. Proc. 63, 1869.
- 84Ali, B.S. and Aroua, M.K. Effect of Piperazine on CO2 Loading in Aqueous Solutions of MDEA at Low Pressure, Int. J. Thermophys. 25, 1863–1869.
- 85Kent, K.L. and Eisenberg, B. (1976) Better Data for Amine Treating, Hydrocarbon Process. 55 (2), 87–90.
- 86Chen, C.C. and Ng, A. (1980) Determine Equilibrium Absorption Rates, Hydrocarbon Process 59 (4), 122–126.
- 87Rivas, O.R. and Prausnitz, J.M. (1979) Sweeting of Sour Natural Gas by Mixed-Solvent Absorption: Solubilities of Ethane, Carbon Dioxide, and Hydrogen Sulfide in Mixtures of Physical and Chemical Solvents, AIChE J. 25 (6), 975–984.
- 88Lal, D., Otto, F.D. and Mather, A.E. (1985) Solubility of H2S and CO2 in a Diethanolamine Solution at Low Partial Pressures, Can. J. Chem. Eng. 63, 681–685.
- 89P. V. Danckwerts, McNeil: “The Absorption of Carbon Dioxide into Aqueous Amine Solutions and the Effects of Catalysis,” Trans. Inst. Chem. Eng. 45 (1967) T32 – T49.
- 90Sartori, G. and Savage, D.W. (1983) Sterically Hindered Amines for CO2 Removal from Gases, Ind. Eng. Chem. Fundam. 22, 239–249.
- 91Savage, D.W., Funk, E.W., Yu, W.C. and Astarita, G. (1986) Selective Absorption of H2S and CO2 into Aqueous Solutions of Methyldiethanolamine, Ind. Eng. Chem. Fundam. 25, 326–330.
- 92Lee, J.I., Otto, F.D. and Mather, A.E. (1973) Design Data for Diethanolamine Acid Gas Treating Systems, Gas Process/Canada 65 (March–April), 26–34.
- 93Lee, J.I., Otto, F.D. and Mather, A.E. (1973) Solubility of Hydrogen Sulfide in Aqueous Diethanolamine Solutions at High Pressure, J. Chem. Eng. Data 18, 71–73.
- 94Isaacs, E.E., Otto, F.D. and Mather, A.E. (1977) Solubility of Hydrogen Sulfide and Carbon Dioxide in an Aqueous Diisopropanolamine Solution, J. Chem. Eng. Data 22, 71–73.
- 95Isaacs, E.E., Otto, F.D. and Mather, A.E. (1977) The Solubility of Mixtures of Carbon Dioxide and Hydrogen Sulfide in an Aqueous DIPA Solution, Can. J. Chem. Eng. 55, 210–212.
- 96Martin, J.L., Otto, F.D. and Mather, A.E. (1978) Solubility of Hydrogen Sulfide and Carbon Dioxide in a Diglycolamine Solution, J. Chem. Eng. Data 23, 163–164.
- 97Isaacs, E.E., Otto, F.D. and Mather, A.E. (1980) Solubility of Mixtures of H2S and CO2 in a Monoethanolamine Solution at Low Partial Pressures, J. Chem. Eng. Data 25, 118–120.
- 98Kuranov, G., Rumpf, B., Smirnova, N.A. and Maurer, G. (1996) Solubility of Single Gases Carbon Dioxide and Hydrogen Sulfide in Aqueous Solutions of A-Methyldiethanolamine in the Temperature Range 313–413 K at Pressures up to 5 MPa, Ind. Eng. Chem. Res. 35, 1959–1966.
- 99Jou, F.-Y., Carroll, J.J., Mather, A.E. and Otto, F.D. (1993) The Solubility of Carbon Dioxide and Hydrogen Sulfide in a 35 wt% Aqueous Solution of Methyldiethanolamine, Can. J. Chem. Eng. 71, 264–268.
- 100Shen, K.-P. and Li, M.-H. (1994) Solubility of Carbon Dioxide in Aqueous Mixtures of Monoethanolamine with Methyldiethanolamine, J. Chem. Eng. Data 37, 96–100.
- 101Jou, F.-Y., Otto, F.D. and Mather, A.E. (1994) Vapor–Liquid Equilibrium of Carbon Dioxide in Aqueous Mixtures of Monoethanolamine and Methyldiethanolamine, Ind. Eng. Chem. Res. 33, 2002–2005.
- 102M. L. Kennard, A. Meisen: “Solubility of Carbon Dioxide in Aqueous Diethanolamine Solutions at Elevated Temperatures and Pressures,” J. Chem. Eng. Data 29 (1984) 309 – 312.
- 103Roberts, B.E. and Mather, A.E. (1988) Solubility of CO2 and H2S in a Hindered Amine Solution, Chem. Eng. Commun. 64, 105.
- 104Teng, T.T. and Mather, A.E. (1989) Solubility of CO2, H2S and their Mixtures in an AMP Solution, Can. J. Chem. Eng. 67, 846–850.
- 105Jou, F.-Y., Otto, F.D. and Mather, A.E. (1985) Equilibria of H2S and CO2 in Triethanolamine Solutions, Can. J. Chem. Eng. 63, 122–125.
- 106Augsten, D.M., Rochelle, G.T., Peng, X. and Chen, C.C. (1989) Model of Vapor–Liquid Equilibria for Aqueous Acid Gas – Alkanolamine Systems Using the Electrolyte – NRTL Equation, Ind. Eng. Chem. Res. 28, 1060–1073.
- 107Augsten, D.M., Rochelle, G.T. and Chen, C.C. (1991) Model of Vapor–Liquid Equilibria for Aqueous Acid Gas – Alkanolamine Systems. 2. Representation of H2S and CO2 Solubility in Aqueous MDEA and CO2 Solubility in Aqueous Mixture of MDEA with MEA or DEA, Ind. Eng. Chem. Res. 30, 543–555.
- 108Li, Y.G. and Mather, A.E. (1994) Correlation and Prediction of the Solubility of Carbon Dioxide in a Mixed Alkanolamine Solution, Ind. Eng. Chem. Res. 33, 2006–2015.
- 109Li, Y.G. and Mather, A.E. (1996) Correlation and Prediction of the Solubility of CO2 and H2S in Aqueous Solutions of Triethanolamine, Ind. Eng. Chem. Res. 35, 4804–4809.
- 110Schlauer, J. (1993) Eine neue Absorptions-Isotherme zur Korrelation von simultanen Löslichkeitsgleichgewichten von saueren Gasen in basischen Lösungsmitteln. Presented at the GVC meeting, Bamberg, Germany, May 7.
- 111Alvis, R.S., Hatcher, N.A. and Weiland, R.H. (2012) CO2 Removal from Syngas Using Piperazine-Activated MDEA and Potassium Dimethyl Glycinate. Presented at Nitrogen + Syngas, Athens, Greece.
- 112Wilk, A., Wieclaw-Solny, L., Tatarczuk, A., et al. (2017) Solvent Selection for CO2 Capture from Gases with High Carbon Dioxide Concentration, Korean J. Chem. Eng., April.
- 113Dubois, L. and Thomas, D. (2011) Carbon Dioxide Absorption into Aqueous Amine Based Solvents: Modeling and Absorption Tests, Energ. Proc. 4, 1353–1360.