Propanediols
Carl J. Sullivan,
Anja Kuenz,
Klaus-Dieter Vorlop,
Carl J. Sullivan
ARCO Chemical Company, Newtown Square, United States
Search for more papers by this authorAnja Kuenz
Thünen-Institute of Agricultural Technology, Braunschweig, Germany
Search for more papers by this authorKlaus-Dieter Vorlop
Thünen-Institute of Agricultural Technology, Braunschweig, Germany
Search for more papers by this authorCarl J. Sullivan,
Anja Kuenz,
Klaus-Dieter Vorlop,
Carl J. Sullivan
ARCO Chemical Company, Newtown Square, United States
Search for more papers by this authorAnja Kuenz
Thünen-Institute of Agricultural Technology, Braunschweig, Germany
Search for more papers by this authorKlaus-Dieter Vorlop
Thünen-Institute of Agricultural Technology, Braunschweig, Germany
Search for more papers by this authorAbstract
The article contains sections titled:
1. | 1,2-Propanediol and Higher Propylene Glycols |
1.1. | Physical Properties |
1.2. | Chemical Properties |
1.3. | Production |
1.3.1. | Chemical Production |
1.3.2. | Biotechnological Production |
1.4. | Quality Specifications |
1.5. | Transportation and Storage |
1.6. | Economic Aspects |
1.7. | Uses |
1.8. | Derivatives |
2. | 1,3-Propanediol |
2.1. | Properties |
2.2. | Production |
2.2.1. | Chemical Production |
2.2.2. | Biotechnological Production |
2.3. | Quality Specifications |
2.4. | Transportation and Storage |
2.5. | Economic Aspects |
2.6. | Uses |
3. | Toxicology |
References
- 1 Wurtz, A. (1859) Justus Liebigs Annalen der Chemie, 55 (3), 406.
- 2 https://mcgroup.co.uk/news/20140418/propylene-glycol-market-reach-supplydemand-balance-2015.html (accessed 22 November 2017).
- 3 ARCO Chemical Company (1983) Product Brochure, Propylene Glycols, USA.
- 4 Dow Chemical (1979) Product Brochure, Propylene Glycol U.S.P., USA.
- 5 Kirk-Othmer, 3rd ed., 11, 933–956.
- 6 E.W. Flick (ed.) (1985) Industrial Solvents Handbook, Noyes Data Corp., Park Ridge, NJ.
- 7 Curme, G.O. and Johnston, F. (1952) Glycols, Reinhold Publ. Co., New York.
- 8 Mellon, J. (1962) Polyhydric Alcohols, Spartan Books, Spartan Books, Washington.
- 9 Mark, F.E. and Jetten, W. (1986) ASTM Spec. Tech. Publ., 88, 61–77; Chem. Abstr. (1986) 105, 45 989.
- 10 Fiaud, C., Netter, P., Tadjamoli, M., and Tainmann, M. (1986) ASTM Spec. Tech. Publ., 887, 162–175; Chem. Abstr. (1986) 105, 45 990 a.
- 11 Bloom, S.H. and Bloom, M.A. (1986) US 4 585 571.
- 12 Kilfrost, Ltd. (1989) Product Brochure, Kilfrost ABC-3.
- 13
Horsley, L.H. (1973) Azeotropic Data-III Advances in Chemistry Series, 116.
10.1021/ba-1962-0035.ch001 Google Scholar
- 14 Selley, J. (1988) Polyesters, Unsaturated, in Encyclopedia of Polymer Science and Engineering, 2nd edn, vol. 12, Wiley Interscience, New York, pp. 156–290.
- 15 Amoco Chemicals Company (1989) Product Brochure, Processing Unsaturated Polyesters on Amoco Isophthalic Acid, Bulletin IP-430, USA.
- 16 Gagnon, S.D. (1986) 1,2-Epoxide Polymers, in Encyclopedia of Polymer Science and Engineering, 2nd edn, vol. 6, Wiley Interscience, New York, 275–307.
- 17 Woods, G. (1987) The ICI Polyurethane Book, Wiley Interscience, New York.
- 18 Meskens, F.A. (1981) Synthesis, 7, 501.
- 19
Parker, E.E. (1966) Industrial and Engineering Chemistry, 58 (4), 54.
10.1021/ie50676a014 Google Scholar
- 20 T. McMilland (ed.) (1990) Process Economics Program Yearbook International, SRI International.
- 21 Pagliaro, M. and Rossi, M. (2010) The Future of Glycerol, 2nd ed., Royal Society of Chemistry, Cambridge, UK, 45–58.
- 22 Behr, A., Eilting J., Irawadi, K., Leschinski J. and Linder F. (2005) Improved utilization of renewable resources: new important derivates of glycerol. Green Chemistry, 10, 10–30.
- 23 https://www.adm.com/products-services/industrials/propylene-glycol (accessed 22 November 2017).
- 24 http://www.catalysts.basf.com/p02/USWeb-Internet/en_GB/content/microsites/catalysts/news/news159 (accessed 22 November 2017).
- 25 Dasari, M., Kiatsimkul, P., Sutterlin, W., Suppes, G.J. (2005) Low pressure hydrogenolysis of glycerol to propylene glycol, Applied Catalysis A: General, 281, 225–231.
- 26 Scheeline, H.W. and Naka, H. (1978) Propylene Glycol, Process Economics Review, Report No. PEP77–3, SRI International.
- 27 Exxon (1985) US 4 533 772. (Michaelson, R.C., Austin, R.G.).
- 28 Exxon (1981) EP 77 201. (Michaelson, R.C., Austin, R.G.).
- 29 Gulf Research & Development (1981) US 4 308 409 (Wu, C.Y., Kobylinski, T.P., Bozik, J.E.).
- 30 Bennett, G.N. and San, K.-Y. (2001) Microbial formation, biotechnological production and applications of 1,2-propanediol. Applied Microbiology and Biotechnology, 55, 1–9.
- 31 Badia, J., Ros, J., and Aguilar, J. (1985) Fermentation mechanism of fucose and rhamnose in Salmonella typhimurium and Klebsiella pneumoniae. Journal of Bacteriology, 161 (1), 435–437.
- 32 Suzuki, T. and Onishi, H. (1968) Aerobic dissimilation of L-rhamnose and the production of l-rhamnonic Acid and 1,2-propanediol by Yeasts. Agricultural and Biological Chemistry, 32, 888.
- 33 Saxena, R.K., Anand, P., Saran, S., Isar, J., and Agarwal, L. (2010) Microbial production and applications of 1,2-propanediol. Indian Journal of Microbiology, 50 (1), 2–11. doi: 10.1007/s12088-010-0017-x
- 34 Enebo, L. (1954) Studies in cellulose decomposition by an anaerobic thermophilic bacterium and two associated non-cellulolytic species. Viktor Pettersons Bokindustrie Akuebolag. Stockholm.
- 35 Turner, K.W. and Roberton, A.M. (1979) Xylose, arabinose, and rhamnose fermentation by Bacteroides ruminicola. Applied and Environmental Microbiology, 38 (1), 7–12.
- 36 Oude Elferink, S.J.W.H., Krooneman, J., Gottschal, J.C., Spoelstra, S.F., Faber, F., and Driehuis, F. (2001) Anaerobic conversion of lactic acid to acetic acid and 1,2-propanediol by Lactobacillus buchneri. Applied and Environmental Microbiology, 67 (1), 125–132. doi: 10.1128/aem.67.1.125-132.2001
- 37 Cameron, D.C. and Cooney, C.L. (1986) A novel fermentation: The production of (R)-1,2-propanediol and acetol by Clostridium thermosaccharolyticum. Nature Biotechnology, 4, 651–654.
- 38
Sanchez Rivera, F., Cameron, D.C., and Cooney, C.L. (1987) Influence of environmental factors in the production of R(-)-1,2-propanediol by Clostridium thermosaccharolyticum. Biotechnology Letters, 9 (7), 449–454.
10.1007/BF01027450 Google Scholar
- 39 Altaras, N.E., Etzel, M.R., and Cameron, D.C. (2001) Conversion of sugars to 1,2-propanediol by Thermoanaerobacterium thermosaccharolyticum HG-8. Biotechnology Progress, 17 (1), 52–56. doi: 10.1021/bp000130b
- 40 Boronat, A. and Aguilar, J. (1981) Metabolism of L-fucose and L-rhamnose in Escherichia coli: differences in induction of propanediol oxidoreductase. Journal of Bacteriology, 147 (1), 181–185.
- 41 Tran-Din, K. and Gottschalk, G. (1985) Formation of D(-)-1,2-propanediol and D(-)-lactate from glucose by Clostridium sphenoides under phosphate limitation. Archives of Microbiology, 142, 87–92.
- 42 Cameron, D.C., Altaras, N.E., Hoffman, M.L., and Shaw, A.J. (1998) Metabolic engineering of propanediol pathways. Biotechnology Progress, 14 (1), 116–125. doi: 10.1021/bp9701325.
- 43 Altaras, N.E. and Cameron, D.C. (1999) Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Applied and Environmental Microbiology, 65 (3), 1180–1185.
- 44 Islam, Z. (2016) Engineering Saccharomyces cerevisiae for the production of 1,2-propanediol using glycerol as a carbon and energy source. Ph.D thesis, Department of Life Sciences & Chemistry, Jacobs University Bremen, Germany.
- 45 Hoffman, M.L. (1999) Metabolic engineering of 1,2-propanediol product in Saccharomyces cerevisiae, Ph.D thesis, University of Wisconsin – Madison.
- 46 Aliprandi, P., Navarro, E., Raynaud, C., Corre, G.B., and Soucaille, P. (2015) New microorganism and method for the production of 1,2-propanediol based on NADPH dependent acetol redctase and improved NADPH supply, CA000002948718A1.
- 47 Voelker, F., Dumon-Seignovert, L., and Soucaille, P. (2015) Mutant YQHD enzyme for the production of a biochemical by fermentation. US 8969053 B2.
- 48 Siebert, D. and Wendisch, V.F. (2015) Metabolic pathway engineering for production of 1,2-propanediol and 1-propanol by Corynebacterium glutamicum. Biotechnology for Biofuels, 8, 91. doi: 10.1186/s13068-015-0269-0.
- 49 Jain, R., Sun, X., Yuan, Q., and Yan, Y. (2015) Systematically engineering Escherichia coli for enhanced production of 1,2-propanediol and 1-propanol. ACS Synthetic Biology, 4 (6), 746–756. doi: 10.1021/sb500345t.
- 50 Li, H. and Liao, J.C. (2013) Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol. Microbial Cell Factories, 12 (4), 1–9.
- 51 Clomburg, J.M. and Gonzalez, R. (2011) Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol. Biotechnology and Bioengineering, 108 (4), 867–879. doi: 10.1002/bit.22993.
- 52 Jung, J.Y., Yun, H.S., Lee, J., and Oh, M.K. (2011) Production of 1,2-propanediol from glycerol in Saccharomyces cerevisiae. Journal of Microbiology and Biotechnology, 21 (8), 846–853. doi: 10.4014/jmb.1103.03009.
- 53 The United States Pharmacopeia (1984) 21st Revision, Official January 1, 1985, United States Pharmacopeial Convention, Inc., Rockville, MD.
- 54 Levdikova, T. (2014) “Global PG production to go beyond 2.56 Mln Tonnes in 2017, According to in-demand report by merchant research & consulting,” The Market Publisher http://www.prweb.com/releases/2014/03/prweb11679702.htm (accessed 20 November 2017).
- 55 https://www.dow.com/propyleneglycol/about/ (accessed 20 November 2017).
- 56 Hercamp, R.D., Hudgens, R.D., and Coughenour, G.E. (1990) “Aqueous Propylene Glycol Coolant for Heavy Duty Engines,” SAE Technical Paper Ser. no. 900 434, SAE International.
- 57 VEB Petrochemisches Kombinat Schwedt (1984) DD 208 478, (Steinhauer, R. et al.); Chem. Abstr. (1984) 101, P 194 972 q.
- 58 Meiji Seika Kaisha, Ltd. (1986) JP-Kokai 61 149 064, (Takahashi, Y. and Yoshida, T.); Chem. Abstr. (1986) 105, P 189 731 q.
- 59 Institut Francais du Petrole (1985) FR 2 560 884. (Bre, A., Mollard, M., and Osgan, M.); Chem. Abstr. (1986) 104, P 150 114 v.
- 60 Dow Product Brochure (1981) “The Glycol Ethers Handbook,”.
- 61 Nudy, L.R. and Johnston, W.A. (1990) Household Pers. Prod. Ind., 27 (4), 90.
- 62 Aldrich Catalog Handbook of Fine Chemicals (1988) Aldrich Chemical Company, Milwaukee, WI.
- 63 Mateo, J.L., Ruiz Murillo, O., and Sastre, R. (1984) Anales de Quimica, Series C, 80 (2), 178.
- 64 Lapuka, L.F. et al. (1981) Khimiya Geterotsiklicheskikh. Soedinenii. (9), 1182; Chem. Abstr. (1981) 95, 20039e.
- 65 Lenz, R.W. (1967) Organic Chemistry of Synthetic High Polymers, Interscience, New York, p. 93.
- 66 Kraus, G.A. (2008) Synthetic Methods for the Preparation of 1,3-Propanediol. Clean Soil Air Water, 35 (8), 648–651.
- 67
Hall, R. and Stern, E.S. (1950) Journal of the Chemical Society, 490.
10.1039/JR9500000490 Google Scholar
- 68 Ruhrchemie AG (1978) US 4 094 914 (Rottig, W. et al.).
- 69 Shell Oil Company (2009) US 7 538 061 B2 (Knifton, J.F., et al.).
- 70 Shell Oil Company (2009) US 4 873 378 (Murphy, M. et al.).
- 71 Kurosaka T., Maruyama H., Naribayashi I. and Sasaki Y. (2008) Production of 1,3-propanediol by hydrogenolysis of glycerol catalyzed by Pt/WO3/ZrO2. Catalysis Communication, 9 (6), 1360–1363.
- 72 Wang K.Y., Hawley M.C. and DeAthos S.J. (2003), Industrial & Engineering Chemistry Research, 42, 2913–2923.
- 73
Freund, A. (1881) Über die Bildung und Darstellung von Trimethylenalkohol aus Glycerin. Monatshefte für Chemie, 2, 636–641.
10.1007/BF01516545 Google Scholar
- 74 Werkman, C.H. and Gillen, G.F. (1932) Bacteria producing trimethylene glycol. Journal of Bacteriology, 23, 167–182.
- 75 Lee, C.S., Aroua, M.K., Daud, W.M.A.W., Cognet, P., Pérès-Lucchese, Y., Fabre, P.L., Reynes, O., and Latapie, L. (2015) A review: Conversion of bioglycerol into 1,3-propanediol via biological and chemical method. Renewable and Sustainable Energy Reviews, 42, 963–972.
- 76 Saxena, R.K., Anand, P., Saran, S., and Isar, J. (2009) Microbial production of 1,3-propanediol: Recent developments and emerging opportunities. Biotechnology Advances, 27 (6), 895–913.
- 77 Forage, R.G. and Foster, M.A. (1982) Glycerol fermentation in Klebsiella pneumoniae functions of the coenzyme B12 dependent glycerol and diol dehydratases. Journal of Bacteriology, 149, 413–419.
- 78 Menzel, K., Zeng, A.P., and Deckwer, W.D. (1997) High concentration and productivity of 1,3 propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme and Microbial Technology, 20, 82–86.
- 79 Yang, G., Tian, J.S., and Li, J.L. (2007) Fermentation of 1,3 propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Applied Microbiology and Biotechnology, 73, 1017–1024.
- 80 Homann, T., Tag, C., Biebl, H., Deckwer, W.-D., and Schink, B. (1990) Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Applied Microbiology and Biotechnology, 33 (2), 121–126.
- 81 Pflugmacher, U. and Gottschalk, G. (1994) Development of an immobilized cell reactor for the production of 1,3 propanediol by Citrobacter freundii. Applied Microbiology and Biotechnology, 41, 313–316.
- 82 Boenigk, R., Bowien, S., and Gottschalk, G. (1993) Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii. Applied Microbiology and Biotechnology, 38 (4), 453–457.
- 83 Biebl, H. (1991) Glycerol fermentation of 1,3-propanediol by Clostridium butyricum-Measurement of product inhibition by use of a pH-auxostat. Applied Microbiology and Biotechnology, 35, 701–705.
- 84 Biebl, H., Marten, S., Hippe, H., and Deckwer, W.D. (1992) Glycerol conversion to 1,3-propanediol by newly isolated Clostridia. Applied Microbiology and Biotechnology, 36, 592–597.
- 85 Willke, T. and Vorlop, K.D. (2008) Biotransformation of glycerol into 1,3-propanediol. European Journal of Lipid Science and Technology, 110, 831–840.
- 86 Barbirato, F., Grivet, J.P., Soucaille, P., and Bories, A. (1996) 3 Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3 propanediol by enterobacterial species. Applied and Environmental Microbiology, 62, 1448–1451.
- 87 Schuetz, H. and Radler, F. (1984) Anaerobic reduction of glycerol to 1,3-propanediol by Lactobacillus brevis and Lactobacillus buchneri. Systematic and Applied Microbiology, 5, 169–178.
- 88 Veiga da Cunha, M. and Foster, M.A. (1992) Sugar-glycerol cofermentations in lactobacilli: the fate of lactate. Journal of Bacteriology, 174 (3), 1013–1019.
- 89 Otte, B., Grunwaldt, E., Mahmoud, O., and Jennewein, S. (2009) Genome shuffling in Clostridium diolis DSM 15410 for improved 1,3-propanediol production. Applied and Environmental Microbiology, 75 (24), 7610–7616.
- 90 Xu, Y.Z., Guo, N.N., Zheng, Z.M., Ou, X.J., Liu, H.J., and Liu, D.H. (2009) Metabolism in 1,3-propanediol fed-batch fermentation by a D-lactate deficient mutant of Klebsiella pneumoniae. Biotechnology Bioengineering, 104 (5), 965–972.
- 91 Korea Research Institute of Bioscience and Biotechnology (2010) WO 2010/064 744 A1 (Kim, C.H., Seo, J.W., Heo, S.Y., Seo, M.Y., Oh, B.R., Baek, J.O., Seo, P.S., and Choi, M.H.)
- 92 Metabolic Explorer (2010) US 2010/0 137 655 A1 (Soucaille, P.).
- 93 Maervoet, V.E.T., De Maeseneire, S.L., Avci, F.G., Beauprez, J., Soetaert, W.K., and De Mey, M. (2016) High yield 1,3-propanediol production by rational engineering of the 3-hydroxypropionaldehyde bottleneck in Citrobacter werkmanii. Microbial Cell Factories, 15 (1). doi: 10.1186/s12934-016-0421-y.
- 94 E.I. DuPont des Nemours and Company (1997) US 5 686 276 (Laffend, L.A., Nagarajan, V., and Nakamura, C.W.).
- 95 Nakamura, C.E. and Whited, G.M. (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Current Opinion in Biotechnology, 14 (5), 454–459.
- 96 http://www.chemicals-technology.com/projects/dupont-tate-lyle-biochemical-loudon-tennessee/ (accessed 2 January 2018).
- 97 http://www.duponttateandlyle.com/sites/default/files/Susterra(R)%20Propanediol%20-%20LCA%20Overview.pdf (accessed 2 January 2018).
- 98 Mendes, F.S., Gonzales-Pájuelo, M., Cordier, H., Francois, J.M., and Vasconcelos, I. (2011) 1,3-Propanediol production in a two-step process fermentation from renewable feedstock. Applied Microbiology and Biotechnology, 92 (3), 519–527.
- 99
Liu, H.J., Ou, X.J., Zhou, S., and Liu, D.H. (2010) Microbial 1,3-propanediol, its copolymerization with terephthalate, and applications. Microbiological Monographs, 14, 405–425.
10.1007/978-3-642-03287-5_16 Google Scholar
- 100 Kuhz, H., Kuenz, A., Prusse, U., Willke, T., and Vorlop, K.D. (2017) Products Components: Alcohols. Advances in biochemical engineering/biotechnology. doi: 10.1007/10_2016_74.
- 101 Bagnato, G., Iulianelli, A., Sanna, A., and Basile, A. (2017) Glycerol production and transformation: A critical review with particular emphasis on glycerol reforming reaction for producing hydrogen in conventional and membrane reactors. Membranes (Basel), 7 (2). doi: 10.3390/membranes7020017.
- 102 Dobson, R., Gray, V., and Rumbold, K. (2012) Microbial utilization of crude glycerol for the production of value-added products. Journal of Industrial Microbiology and Biotechnology, 39 (2), 217–226. doi: 10.1007/s10295-011-1038-0.
- 103 Chatzifragkou, A., Papanikolaou, S., Kopsahelis, N., Kachrimanidou, V., Dorado, M.P., and Koutinas, A.A. (2014) Biorefinery development through utilization of biodiesel industry by-products as sole fermentation feedstock for 1,3-propanediol production. Bioresource Technology, 159, 167–175. doi: 10.1016/j.biortech.2014.02.021.
- 104 Biddy, M.J., Scarlata, C., and Kinchin, C. (2016) Chemicals from biomass: A market assessment of bioproducts with near-term potential. Technical Report NREL/TP-5100-65509.
- 105 Jin, P., Li, S., Lu, S.G., Zhu, J.G., and Huang, H. (2011) Improved 1,3-propanediol production with hemicellulosic hydrolysates (corn straw) as cosubstrate: Impact of degradation products on Klebsiella pneumoniae growth and 1,3-propanediol fermentation. Bioresource Technology, 102 (2), 1815–1821. doi: 10.1016/j.biortech.2010.09.048.
- 106 Xin, B., Wang, Y., Tao, F., Li, L., Ma, C., and Xu, P. (2016) Co-utilization of glycerol and lignocellulosic hydrolysates enhances anaerobic 1,3-propanediol production by Clostridium diolis. Scientific Reports, 6, 19044. doi: 10.1038/srep19044.
- 107 EC (2000) Directive 2000/54/ec of the European parliament and of the council of 18 September 2000 on the protection of workers from risks related to exposure to biological agents at work.
- 108 Johnson, E.E. and Rehmann, L. (2016) The role of 1,3-propanediol production in fermentation of glycerol by Clostridium pasteurianum. Bioresource Technology, 209, 1–7.
- 109 Papanikolaou, S., Fakas, S., Fick, M., Chevalot, I., Galiotou-Panayotou, M., Komaitis, M., Marc, I., and Aggelis, G. (2008) Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methylesters) manufacturing process: Production of 1,3-propanediol, citric acid and single cell oil. Biomass and Bioenergy, 32, 60–71.
- 110 Wilkens, E., Ringel, A.K., Hortig, D., Willke, T., and Vorlop, K.D. (2012) High-level production of 1,3-propanediol from crude glycerol by Clostridium butyricum AKR102a. Applied Microbiology and Biotechnology, 93 (3), 10571063. doi: 10.1007/s00253-011-3595-6.
- 111 Otte, B., Grunwaldt, E., Mahmoud, O., and Jennewein, S. (2009) Genome shuffling in Clostridium diolis DSM 15410 for improved 1,3-propanediol production. Applied and Environmental Microbiology, 75 (24), 7610–7616. doi: 10.1128/AEM.01774-09
- 112 Bock, R. (2004) Biokonversion von Glycerin zu 1,3-Propandiol mit freien und immobilisierten Mikroorganismen. Dissertation, TU Braunschweig.
- 113 Tang, X.M., Tan, Y.S., Zhu, H., Zhao, K., and Shen, W. (2009) Microbial conversion of glycerol to 1,3-propanediol by an engineered strain of Escherichia coli. Applied and Environmental Microbiology., 75, 1628–1634.
- 114 Liu, H.J., Zhang, D.J., Xu, Y.H., Mu, Y., Sun, Y.Q., and Xiu, Z.L. (2007) Microbial production of 1,3-propanediol from glycerol by Klebsiella pneumoniae under micro-aerobic conditions up to a pilot scale. Biotechnology Letters, 29, 1281–1285.
- 115 Xu, Y.Z., Guo, N.N., Zheng, Z.M., Ou, X.J., Liu, H.J., and Liu, D.H. (2009) Metabolism in 1,3-propanediol fed-batch fermentation by a D-lactate deficient mutant of Klebsiella pneumoniae. Biotechnology and Bioengineering., 104, 965–972.
- 116 Petrov, K. and Petrova, P. (2009) High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Applied Microbiology and Biotechnology, 84, 659–665.
- 117 Jolly, J., Hitzmann, B., Ramalingam, S., and Ramachandran, K.B. (2014) Biosynthesis of 1,3-propanediol from glycerol with Lactobacillus reuteri: effect of operating variables. Journal of Bioscience and Bioengineering, 118 (2), 188–194. doi: 10.1016/j.jbiosc.2014.01.003.
- 118 http://www.prnewswire.com/news-releases/13-propanediol-market-worth-6212-million-by-2021-287634261.html, 2015 (accessed 22 November 2017).
- 119 http://www.duponttateandlyle.com/susterra/engine_coolant_glycol_antifreeze (accessed 22 November 2017).
- 120 Ruddick, J.A. (1972) Toxicology and Applied Pharmacology, 21, 102.
- 121 Motoyoshi, K. et al. (1984) The safety of propylene glycol and other humectants. Cosmet. Toiletries, 99, 83–91.
- 122 Trancik, R.J. and Maibach, H.I. (1982) Propylene glycol: irritation or sensitization. Contact Dermatitis, 8, 185–189.
- 123 Gaunt, F. et al. (1972) Food and Cosmetics Toxicology, 10, 151.
- 124 Robertson, O.H. et al. (1947) Journal of Pharmacology and Experimental Therapeutics, 91, 52.
- 125 FDA report PB-245 450 (1974).
- 126 Fed. Regist. 42 (1977) June 17, 30 865.
- 127 Van Winkle, W. (1941) Journal de Pharmacologie, 72, 227.
- 128 Creek, R.D. (1970) Poultry Science, 49 (6), 1686; Chem. Abstr., 74 (1971) 74453.
Further Reading
-
G. Centi and R.A. Santen (eds) (2007) Catalysis for Renewables, Wiley-VCH, Weinheim.
10.1002/9783527621118 Google Scholar
- G.P. Chiusoli and P.M. Maitlis (eds) (2006) Metal-Catalysis in Industrial Organic Processes, Royal Society of Chemistry, Cambridge, UK.
- B. Kamm, P.R. Gruber, and M. Kamm (eds) (2006) Biorefineries - Industrial Processes and Products, Wiley-VCH, Weinheim.
- Martin, A.E. and Murphy, F.H. (2017) Glycols, Polypropylene Glycol, Kirk Othmer Encyclopedia of Chemical Technology, 5th edn, John Wiley & Sons, Hoboken, NJ, online DOI.
- Pagliaro, M. and Rossi, M. (2008) The Future of Glycerol, Royal Society of Chemistry, Cambridge, UK.