Volume 24, Issue 1 pp. 59-80
Research Article

The skin effect in vibrating systems with many concentrated masses

M. Lobo

Corresponding Author

M. Lobo

Departamento de Matemáticas, Estadística y Computación, Avenida de los Castros s/n. 39005 Santander, Spain

Departamento de Matemáticas, Estadística y Computación, Avenida de los Castros s/n. 39005 Santander, Spain===Search for more papers by this author
E. Pérez

E. Pérez

Departamento de Matemática Aplicada y Ciencias de la Computación, Avenida de los Castros s/n. 39005 Santander, Spain

Search for more papers by this author

Abstract

We address the asymptotic behaviour of the vibrations of a body occupying a domain \documentclass{article}\usepackage{amsfonts}\begin{document}\pagestyle{empty}$\Omega\subset\mathbb{R}^n, n=2,3$\end{document}equation image. The density, which depends on a small parameter $\varepsilon$\nopagenumbers\end , is of the order $O(1)$\nopagenumbers\end out of certain regions where it is $O(\varepsilon^{-m})$\nopagenumbers\end with $m>2$\nopagenumbers\end. These regions, the concentrated masses with diameter $O(\varepsilon)$\nopagenumbers\end, are located near the boundary, at mutual distances $O(\eta)$\nopagenumbers\end, with $\eta=\eta(\varepsilon)\rightarrow 0$\nopagenumbers\end. We impose Dirichlet (resp. Neumann) conditions at the points of $\partial\Omega$\nopagenumbers\end in contact with (resp. out of) the masses. We look at the asymptotic behaviour, as $\varepsilon\rightarrow 0$\nopagenumbers\end, of the eigenvalues of order $O(1)$\nopagenumbers\end, the high frequencies, of the corresponding eigenvalue problem. We show that they accumulate on the whole positive real axis and characterize those giving rise to global vibrations of the whole system. We use the fact that the corresponding eigenfunctions, microscopically, present a skin effect in the concentrated masses. Copyright © 2001 John Wiley & Sons, Ltd.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.